
Shared Memory Parallelism

• Introduction to Threads
• Exercise: Racecondition

• OpenMP Programming Model
• Scope of Variables: Exercise 1
• Synchronisation: Exercise 2

• Scheduling
• Exercise: OpenMP scheduling

• Reduction
• Exercise: Pi

• Shared variables
• Exercise: CacheTrash

• Tasks
• Future of OpenMP

!1

Processes and Threads

Modern operating systems load
programs as processes

• Resource holder

• Execution
A process starts executing at its
entry point as a thread

Threads can create other threads
within the process

All threads within a process share
code & data segments

Threads have lower overhead than
processes

Code segment

Data segment

thread
main()

…thread thread

Threads: “processes” sharing memory

• Process == address space
• Thread == program counter / stream of instructions
• Two examples

• Three processes, each with one thread
• One process with three threads

!3

Kernel Kernel
ThreadsThreads

System 
space

User 
space

Process 1 Process 2 Process 3 Process 1

The Shared-Memory Model

Shared Memory

Core

Private  
Memory

Core

Private  
Memory

Core

Private  
Memory

What Are Threads Good For?

Making programs easier to understand

Overlapping computation and I/O

Improving responsiveness of GUIs

Improving performance through parallel execution
‣ with the help of OpenMP

Fork/Join Programming Model

• When program begins execution, only master thread active

• Master thread executes sequential portions of program

• For parallel portions of program, master thread forks (creates or
awakens) additional threads

• At join (end of parallel section of code), extra threads are
suspended or die

Relating Fork/Join to Code (OpenMP)

for {

}

for {

}

Sequential code

Parallel code

Sequential code

Parallel code

Sequential code

Domain Decomposition Using Threads

Shared  
Memory

 Thread 0 Thread 2

Thread 1

f ()

f ()

f ()

Shared
Memory

Task Decomposition Using Threads
Thread 0 Thread 1

e ()

g ()h ()

f ()

Shared versus Private Variables

Shared
Variables

Private
Variables

Private
Variables

Thread

Thread

Parallel threads can “race” against each other to update resources

Race conditions occur when execution order is assumed but not
guaranteed

Example: un-synchronised access to bank account

Race Conditions

Deposits $100
into account

Withdraws $100
from account

Initial balance = $1000
Final balance = ?

Race Conditions

Deposits $100
into account

Withdraws $100
from account

Initial balance = $1000
Final balance = ?

Time Withdrawal Deposit

T0 Load (balance = $1000)

T1 Subtract $100 Load (balance = $1000)

T2 Store (balance = $900) Add $100

T3 Store (balance = $1100)

Code Example in OpenMP
exercise: RaceCondition

for (i=0; i<NMAX; i++) {
 a[i] = 1;
 b[i] = 2;
}
#pragma omp parallel for shared(a,b)
for (i=0; i<12; i++) {
 a[i+1] = a[i]+b[i];
}

1: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0
4: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 3.0, 5.0, 7.0, 9.0, 11.0
4: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0
4: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0

!13

Code Example in OpenMP

thread computation  
0 a[1] = a[0] + b[0]
0 a[2] = a[1] + b[1]
0 a[3] = a[2] + b[2] <--| Problem
1 a[4] = a[3] + b[3] <--| Problem
1 a[5] = a[4] + b[4]
1 a[6] = a[5] + b[5] <--| Problem
2 a[7] = a[6] + b[6] <--| Problem
2 a[8] = a[7] + b[7]
2 a[9] = a[8] + b[8] <--| Problem
3 a[10] = a[9] + b[9] <--| Problem
3 a[11] = a[10] + b[10]

!14

How to Avoid Data Races

• Scope variables to be local to threads
• Variables declared within threaded functions
• Allocate on thread’s stack
• TLS (Thread Local Storage) 

• Control shared access with critical regions
• Mutual exclusion and synchronization
• Lock, semaphore, event, critical section, mutex…

Examples variables

!16

Domain Decomposition

Sequential Code:

int a[1000], i;
for (i = 0; i < 1000; i++) a[i] = foo(i);

Domain Decomposition

Sequential Code:

int a[1000], i;
for (i = 0; i < 1000; i++) a[i] = foo(i);

Thread 0:
for (i = 0; i < 500; i++) a[i] = foo(i);

Thread 1:
for (i = 500; i < 1000; i++) a[i] = foo(i);

Domain Decomposition

Sequential Code:

int a[1000], i;
for (i = 0; i < 1000; i++) a[i] = foo(i);

Thread 0:
for (i = 0; i < 500; i++) a[i] = foo(i);

Thread 1:
for (i = 500; i < 1000; i++) a[i] = foo(i);

SharedPrivate

Task Decomposition
int e;

main () {
 int x[10], j, k, m; j = f(k); m = g(k); ...
}

int f(int *x, int k)
{
 int a; a = e * x[k] * x[k]; return a;
}

int g(int *x, int k)
{
 int a; k = k-1; a = e / x[k]; return a;
}

Task Decomposition
int e;

main () {
 int x[10], j, k, m; j = f(k); m = g(k);
}

int f(int *x, int k)
{
 int a; a = e * x[k] * x[k]; return a;
}

int g(int *x, int k)
{
 int a; k = k-1; a = e / x[k]; return a;
}

Thread 0

Thread 1

Task Decomposition
int e;

main () {
 int x[10], j, k, m; j = f(k); m = g(k);
}

int f(int *x, int k)
{
 int a; a = e * x[k] * x[k]; return a;
}

int g(int *x, int k)
{
 int a; k = k-1; a = e / x[k]; return a;
}

Thread 0

Thread 1

Static variable: Shared

Task Decomposition
int e;

main () {
 int x[10], j, k, m; j = f(x, k); m = g(x, k);
}

int f(int *x, int k)
{
 int a; a = e * x[k] * x[k]; return a;
}

int g(int *x, int k)
{
 int a; k = k-1; a = e / x[k]; return a;
}

Thread 0

Thread 1

Heap variable: Shared

Task Decomposition
int e;

main () {
 int x[10], j, k, m; j = f(k); m = g(k);
}

int f(int *x, int k)
{
 int a; a = e * x[k] * x[k]; return a;
}

int g(int *x, int k)
{
 int a; k = k-1; a = e / x[k]; return a;
}

Thread 0

Thread 1

Function’s local variables: Private

Shared and Private Variables

• Shared variables
• Static variables
• Heap variables
• Contents of run-time stack at time of call

• Private variables
• Loop index variables
• Run-time stack of functions invoked by thread

!26

3

What Is OpenMP?

• Compiler directives for multithreaded programming

• Easy to create threaded Fortran and C/C++ codes

• Supports data parallelism model

• Portable and Standard

• Incremental parallelism
➡Combines serial and parallel code in single source

OpenMP is not ...

Not Automatic parallelization

– User explicitly specifies parallel execution

– Compiler does not ignore user directives even if wrong

Not just loop level parallelism

– Functionality to enable general parallel parallelism

Not a new language

– Structured as extensions to the base

– Minimal functionality with opportunities for extension

!28

Directive based

• Directives are special comments in the language

– Fortran fixed form: !OMP, COMP, *$OMP

– Fortran free form: !$OMP

Special comments are interpreted by OpenMP

compilers

 w = 1.0/n
 sum = 0.0
!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:sum)
 do I=1,n

 x = w*(I-0.5)
 sum = sum + f(x)
 end do
 pi = w*sum

 print *,pi
 end

!29

Comment in
Fortran
but interpreted by
OpenMP compilers

C example

#pragma omp directives in C

– Ignored by non-OpenMP compilers

 w = 1.0/n;
 sum = 0.0;
#pragma omp parallel for private(x) reduction(+:sum)

 for(i=0, i<n, i++) {
 x = w*((double)i+0.5);
 sum += f(x);
 }

 pi = w*sum;
 printf(“pi=%g\n”, pi);
}

!30

• Control runtime
• schedule type
• max threads
• nested parallelism
• throughput mode

Architecture of OpenMP

• Control structures
• Work sharing
• Synchronization
• Data scope attributes

• private
• shared
• reduction

• Orphaning

!31

• Control & query routines
• number of threads
• throughput mode
• nested parallism

• Lock API

Directives,
Pragmas

Runtime library
routines

Environment
variables

Programming Model

• Fork-join parallelism:
‣ Master thread spawns a team of threads as needed

‣ Parallelism is added incrementally: the sequential program  
 evolves into a parallel program

Parallel Regions

Master
Thread

�32

Threads are assigned an independent
set of iterations

Threads must wait at the end of work-
sharing construct

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

Work-sharing Construct

T
#pragma omp parallel

T

T

#pragma omp for

Implicit barrier

#pragma omp parallel
#pragma omp for
 for(i = 0; i < 12; i++)
 c[i] = a[i] + b[i]

�33

Combining pragmas

These two code segments are equivalent

#pragma omp parallel
{
 #pragma omp for
 for (i=0; i< MAX; i++) {
 res[i] = huge();
 }
}

#pragma omp parallel for
 for (i=0; i< MAX; i++) {
 res[i] = huge();
 }

�34

18

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum
sum = Σ b[i=0][j]*c[j] sum = Σ b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum
sum = Σ b[i=1][j]*c[j] sum = Σ b[i=6][j]*c[j]

... etc ...

��������	��
�	����
�
������������	
�����������	��
�	����
������������������������	
�������������	

���

�������������������������� �����!������"
����������������#�!���$�$�����%��� ��$�$�$�$�

= *

j

i

Matrix-vector example

!35

19

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

� �� ��� ���� ����� ������ �������

�

���

����

����

����

����

�����	
�

�����	
��

����	
��

OpenMP Performance Example

Memory Footprint (KByte)

Pe
rfo

rm
an

ce
 (M

flo
p/

s)

Matrix too
small *

*) With the IF-clause in OpenMP this performance degradation can be avoided

scales

Performance is matrix size dependent

!36

OpenMP parallelization

• OpenMP Team := Master + Workers
• A Parallel Region is a block of code executed by all

threads simultaneously
• The master thread always has thread ID 0
• Thread adjustment (if enabled) is only done before entering a parallel

region
• Parallel regions can be nested, but support for this is implementation

dependent
• An "if" clause can be used to guard the parallel region; in case the

condition evaluates to "false", the code is executed serially
• A work-sharing construct divides the execution of the enclosed

code region among the members of the team; in other words:
they split the work

!37

Data Environment

• OpenMP uses a shared-memory programming model  

• Most variables are shared by default. 

• Global variables are shared among threads 
 C/C++: File scope variables, static

• Not everything is shared, there is often a need for “local” data as
well

�38

... not everything is shared...

• Stack variables in functions called from parallel regions are PRIVATE  

• Automatic variables within a statement block are PRIVATE 

• Loop index variables are private (with exceptions)
• C/C+: The first loop index variable in nested loops following a  

#pragma omp for

Data Environment

�39

About Variables in SMP

• Shared variables  
Can be accessed by every thread thread. Independent read/write
operations can take place.

• Private variables  
Every thread has it’s own copy of the variables that are created/
destroyed upon entering/leaving the procedure. They are not
visible to other threads.

!40

serial code
global
auto local
static
dynamic

parallel code
shared
local
use with care
use with care

attribute clauses

•default(shared)

•shared(varname,…)

private(varname,…)

Data Scope clauses

�41

The Private Clause

Reproduces the variable for each thread
• Variables are un-initialised; C++ object is default constructed
• Any value external to the parallel region is undefined

void* work(float* c, float *a, float
*x, int N)
{
 float x, y; int i;
 #pragma omp parallel for private(x,y)
 for(i=0; i<N; i++) {
 x = a[i]; y = b[i];
 c[i] = x + y;
 }
}

�42

Synchronization

• Barriers

• Critical sections

• Lock library routines

!43

#pragma omp barrier

#pragma omp critical()

omp_set_lock(omp_lock_t *lock)

omp_unset_lock(omp_lock_t *lock)

....

#pragma omp critical [(lock_name)]

Defines a critical region on a structured block

OpenMP Critical Construct

float R1, R2;
#pragma omp parallel
{ float A, B;
#pragma omp for  
 for(int i=0; i<niters; i++){
 B = big_job(i);
#pragma omp critical  
 consum (B, &R1);
 A = bigger_job(i);
#pragma omp critical  
 consum (A, &R2);
 }  
}

All threads execute the
code, but only one at a
time. Only one calls
consum() thereby
protecting R1 and R2
from race conditions.

Naming the critical
constructs is optional,
but may increase
performance.

(R1_lock)

(R2_lock)

�44

OpenMP Critical

!45

Day 3: OpenMP
2010 – Course MT1

OpenMP critical directive:
Explicit Synchronization

• Race conditions can be avoided by controlling access to shared variables by
allowing threads to have exclusive access to the variables

• Exclusive access to shared variables allows the thread to atomically perform
read, modify and update operations on the variable.

• Mutual exclusion synchronization is provided by the critical directive of
OpenMP

• Code block within the critical region defined by critical /end critical directives
can be executed only by one thread at a time.

• Other threads in the group must wait until the current thread exits the critical
region. Thus only one thread can manipulate values in the critical region.

29

fork

join

- critical region

int x
x=0;
#pragma omp parallel shared(x)
{
 #pragma omp critical
 x = 2*x + 1;
} /* omp end parallel */

All threads execute the code, but only one at a time.
Other threads in the group must wait until the current
thread exits the critical region. Thus only one thread can
manipulate values in the critical region.

Day 3: OpenMP
2010 – Course MT1

Simple Example: critical

30

cnt = 0;
f = 7;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i<20;i++){
 if(b[i] == 0){

 #pragma omp critical
 cnt ++;
 } /* end if */
 a[i]=b[i]+f*(i+1);
 } /* end for */
} /* omp end parallel */

cnt=0
f=7

i =0,4 i=5,9 i= 20,24 i= 10,14

if …
if …

if … i= 20,24

cnt++

cnt++

cnt++
cnt++ a[i]=b[

i]+…

a[i]=b[
i]+…

a[i]=b[i]
+…

a[i]=b[i]
+…

Critical Example 1

!46

Critical Example 2

int i;

#pragma omp parallel for
for (i = 0; i < 100; i++) {

s = s + a[i]; }

!47 RZ: Christian Terboven Folie 12

Synchronization (2/4)

do i = 0, 24
 s = s + a(i)
end do

do i = 25, 49
 s = s + a(i)
end do

do i = 50, 74
 s = s + a(i)
end do

do i = 75, 99
 s = s + a(i)
end do

A(0)
.
.
.

A(99)

S

Pseudo-Code
Here: 4 Threads

Memory

do i = 0, 99
 s = s + a(i)
end do

Critical Example 2

!48

OpenMP Single Construct

• Only one thread in the team executes the enclosed code

• The Format is:

• The supported clauses on the single directive are:

!49

#pragma omp single [nowait][clause, ..]{
 “block”
}

private (list)
firstprivate (list)

NOWAIT:
the other threads
will not wait at the
end single directive

OpenMP Master directive

• All threads but the master, skip the enclosed section of code and
continue

• There is no implicit barrier on entry or exit !

• Each thread waits until all others in the team have reached this
point.

!50

#pragma omp master {
 “code”
}

#pragma omp barrier

#pragma omp parallel
{

#pragma omp single [nowait]
{

}
#pragma omp master
{

}

#pragma omp barrier
}

Work Sharing: Single Master

!51

Single processor

!52

62

Tutorial IWOMP 2011 - Chicago, IL, USA June 13, 2011An Overview of OpenMP

Single processor region/2

time

single processor
region

Other threads
wait if there is
a barrier here

Work Sharing: Orphaning

• Worksharing constructs may be outside lexical scope of the
parallel region

!53

#pragma omp parallel
{

 dowork()

}

void dowork()
{
 #pragma omp for
 for (i=0; i<n; i++) {

 }
}

Scheduling the work

• schedule (static | dynamic | guided | auto [, chunk]) schedule
(runtime)

static [, chunk]
• Distribute iterations in blocks of size "chunk" over the threads in a

round-robin fashion
• In absence of "chunk", each thread executes approx. N/P chunks for

a loop of length N and P threads

!54

66

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The schedule clause/2

Thread 0 1 2 3
���	�
�� *-K L-M N-*7 *F-*O

	�
���!�� *-7 F-K L-O P-M
N-*� **-*7 *F-*K *L-*O

Example static schedule
Loop of length 16, 4 threads:

*) The precise distribution is implementation defined

!55

• dynamic [, chunk]
• Fixed portions of work; size is controlled by the value of chunk
• When a thread finishes, it starts on the next portion of work

• guided [, chunk]
• Same dynamic behavior as "dynamic", but size of the portion of work

decreases exponentially

runtime
• Iteration scheduling scheme is set at runtime through environment

variable OMP_SCHEDULE

68

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The experiment

0 100 200 300 400 500 600

3
2
1
0

3
2
1
0

3
2
1
0

static

dynamic, 5

guided, 5

Iteration Number

Th
re

ad
 ID

500 iterations on 4 threads
Example scheduling

!56

Environment Variables

• The names of the OpenMP environment variables must be
UPPERCASE

• The values assigned to them are case insensitive

!57

OMP_NUM_THREADS

OMP_SCHEDULE “schedule [chunk]”

OMP_NESTED { TRUE | FALSE }

Exercise: OpenMP scheduling

• Download code from:
http://www.xs4all.nl/~janth/HPCourse/OMP_schedule.tar

• Two loops
• Parallel code with omp sections
• Check what the auto-parallelisation of the compiler has done
• Insert OpenMP directives to try out different scheduling

strategies
• c$omp& schedule(runtime)
• export OMP_SCHEDULE=“static,10"
• export OMP_SCHEDULE=“guided,100"
• export OMP_SCHEDULE=“dynamic,1”

!58

reduction (op : list)

The variables in “list” must be shared in the enclosing parallel
region

Inside parallel or work-sharing construct:
‣ A PRIVATE copy of each list variable is created and initialized depending on

the “op”  
‣ These copies are updated locally by threads  
‣ At end of construct, local copies are combined through “op” into a single value

and combined with the value in the original SHARED variable

13

OpenMP Reduction Clause

Day 3: OpenMP
2010 – Course MT1

OpenMP: Reduction

• performs reduction on shared variables in list based on the operator provided.
• for C/C++ operator can be any one of :

– +, *, -, ^, |, ||, & or &&
– At the end of a reduction, the shared variable contains the result obtained upon

combination of the list of variables processed using the operator specified.

32

sum = 0.0
#pragma omp parallel for reduction(+:sum)
 for (i=0; i < 20; i++)
 sum = sum + (a[i] * b[i]);

sum=0

i=0,4 i=5,9 i=10,14 i=15,19

sum=.. sum=.. sum=.. sum=..

∑sum

sum=0

Local copy of sum for each thread
All local copies of sum added together
and stored in “global” variable

Reduction Example

#pragma omp parallel for
reduction(+:sum)
 for(i=0; i<N; i++) {
 sum += a[i] * b[i];
 }

�60

A range of associative and commutative operators can be used with
reduction
Initial values are the ones that make sense

C/C++ Reduction Operations

Operator Initial Value

+ 0

* 1

- 0

^ 0

Operator Initial Value

& ~0

| 0

&& 1

|| 0

FORTRAN:
intrinsic is one of MAX, MIN, IAND, IOR, IEOR
operator is one of +, *, -, .AND., .OR., .EQV., .NEQV.

�61

Numerical Integration Example

TTTT

4.0

2.0

1.00.0 X

� 1

0

4
1 + x2

dx = �
static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x, sum = 0.0;

 step = 1.0/(double) num_steps;
 for (i=0; i<num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

�62

static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x, sum = 0.0;

 step = 1.0/(double) num_steps;
 for (i=0; i<num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

Numerical Integration to Compute Pi

Parallelize the numerical
integration code using
OpenMP

What variables can be shared?

What variables need to be
private?

What variables should be set
up for reductions?

step, num_steps

x, i

sum

�63

Solution to Computing Pi

static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x, sum = 0.0;
 step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)
 for (i=0; i<num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

�64

Let’s try it out

• Go to example MPI_pi.tar and work with openmp_pi2.c

!65

Exercise: PI with MPI and OpenMP

!66

cores OpenMP

1 9.617728

2 4.874539

4 2.455036

6 1.627149

8 1.214713

12 0.820746

16 0.616482

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 6 12 16

sp
ee

d
up

number of CPUs

Pi Scaling

Amdahl 1.0
OpenMP Barcelona 2.2 GHz

Exercise: PI with MPI and OpenMP

!67 © 2007 IBM Corporation

Multi-PF Solutions

CUDA: computing PI
Cuda Computing PI

!68

Exercise: Shared Cache Trashing

• Let’s do the exercise: CacheTrash

!69

About local and shared data

• Consider the following example:

• Let’s assume we run this on 2 processors:

• processor 1 for i=0,2,4,6,8
• processor 2 for i=1,3,5,7,9

!70

for (i=0; i<10; i++){
 a[i] = b[i] + c[i];
}

i1

About local and shared data

!71

for (i1=0,2,4,6,8){
 a[i1] = b[i1] + c[i1];
}

for (i2=1,3,5,7,9){
 a[i2] = b[i2] + c[i2];
}

i2A B C

P1 P2

private area private areashared area

Processor 1 Processor 2

About local and shared data

processor 1 for i=0,2,4,6,8
processor 2 for i=1,3,5,7,9

• This is not an efficient way to do this!

Why?

!72

Doing it the bad way

• Because of cache line usage

• b[] and c[]: we use half of the data

• a[]: false sharing

!73

for (i=0; i<10; i++){
 a[i] = b[i] + c[i];
}

False sharing and scalability

• The Cause: 
 Updates on independent data elements that happen to be  
 part of the same cache line.

• The Impact: 
 Non-scalable parallel applications

• The Remedy: 
 False sharing is often quite simple to solve

!74

Poor cache line utilization

!75

Processor 1 Processor 2

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9)

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9) The same holds for array C

cache line

Both processors read
the same cache lines

used data
not used data

False Sharing

!76

Processor 1 Processor 2

a[1] = b[1] + c[0];
a[0] = b[0] + c[0];
Write into the line containing a[0]
This marks the cache line
containing a[0] as ‘dirty’

Detects the line with a[0] is ‘dirty’

Get a fresh copy (from processor 1)
Write into the line containing a[1]
This marks the cache line
containing a[1] as ‘dirty’

a[2] = b[2] + c[2];

time

a[3] = b[3] + c[3];
Detects the line with a[3] is ‘dirty’

Detects the line with a[2] is ‘dirty’

Get a fresh copy (from processor 2)
Write into the line containing a[2]
This marks the cache line
containing a[2] as ‘dirty’

False Sharing results

!77

Iterations per thread

T
h
re

a
d
s

1 4 16 64 256 1K 4K 16K 64K 256K
1

2

3

4

5

6

7

8

9

10

3

4

5

6

7

8

9

10

time in seconds

OpenMP tasks

• What are tasks
• Tasks are independent units of work
• Threads are assigned to perform the work of each task.

- Tasks may be deferred
- Tasks may be executed immediately
- The runtime system decides which of the above

• Why tasks?
• The basic idea is to set up a task queue: when a thread

encounters a task directive, it arranges for some thread to
execute the associated block at some time. The first thread
can continue.

!78

OpenMP 3.0 and Tasks

• What are tasks?
– Tasks are independent units of work
– Threads are assigned to perform the work

of each task.
• Tasks may be deferred
• Tasks may be executed immediately
• The runtime system decides which of the

above
• Why task?

– The basic idea is to set up a task queue:
when a thread encounters a task directive,
it arranges for some thread to execute the
associated block – at some time. The first
thread can continue.

4

!79

122

Tutorial IWOMP 2011 - Chicago, IL, USA June 13, 2011An Overview of OpenMP

The Tasking Example

Developer specifies tasks in application
Run-time system executes tasks

Encountering
thread adds

task(s) to
pool

Threads execute
tasks in the pool

OpenMP tasks

Tasks allow to parallelize irregular problems
– Unbounded loops  
– Recursive algorithms  
– Manger/work schemes

A task has
– Code to execute  
– Data environment (It owns its data) 
– Internal control variables  
– An assigned thread that executes the code and the data

!80

OpenMP has always had tasks, but they were not called “task”.
 
– A thread encountering a parallel construct, e.g., “for”, packages up
a set of implicit tasks, one per thread.
– A team of threads is created.
– Each thread is assigned to one of the tasks.  
– Barrier holds master thread till all implicit tasks are finished.

 

!81

OpenMP tasks

#pragma	omp	parallel	
#pragma	omp	single	
{	
		...	
#pragma	omp	task	
		{	...	}	
		…	
#pragma	omp	taskwait	
}

!82

-> A parallel region creates a team of threads;

-> One thread enters the execution

-> the other threads wait at the end of the single

-> pick up threads „from the work queue“

Summary

• First tune single-processor performance

• Tuning parallel programs
• Has the program been properly parallelized?

• Is enough of the program parallelized (Amdahl’s law)?
• Is the load well-balanced?

• location of memory
• Cache friendly programs: no special placement needed
• Non-cache friendly programs

• False sharing?

• Use of OpenMP
• try to avoid synchronization (barrier, critical, single, ordered)

!83 19

Plenty of Other OpenMP Stuff

Scheduling clauses

Atomic

Barrier

Master & Single

Sections

Tasks (OpenMP 3.0)

API routines

Compiling and running OpenMP

• Compile with -openmp flag (intel compiler) or -fopenmp (GNU)

• Run program with variable:

export OMP_NUM_THREADS=4

!85

OpenACC

• New set of directives to support accelerators
• GPU’s
• Intel’s MIC
• AMD Fusions processors

!86

OpenACC example
void	convolution_SM_N(typeToUse	A[M][N],	typeToUse	B[M][N]) {

		int	i,	j,	k;
		int	m=M,	n=N;
		//	OpenACC	kernel	region
		//	Define	a	region	of	the	program	to	be	compiled	into	a	sequence	of	kernels
		//	for	execution	on	the	accelerator	device
		#pragma	acc	kernels	pcopyin(A[0:m])	pcopy(B[0:m])
		{
				typeToUse	c11,	c12,	c13,	c21,	c22,	c23,	c31,	c32,	c33;
	
				c11	=	+2.0f;		c21	=	+5.0f;		c31	=	-8.0f;
				c12	=	-3.0f;		c22	=	+6.0f;		c32	=	-9.0f;
				c13	=	+4.0f;		c23	=	+7.0f;		c33	=	+10.0f;
	
				//	The	OpenACC	loop	gang	clause	tells	the	compiler	that	the	iterations	of	the	loops
				//	are	to	be	executed	in	parallel	across	the	gangs.
				//	The	argument	specifies	how	many	gangs	to	use	to	execute	the	iterations	of	this	loop.
				#pragma	acc	loop	gang(64)
				for	(int	i	=	1;	i	<	M	-	1;	++i)	{
	
				//	The	OpenACC	loop	worker	clause	specifies	that	the	iteration	of	the	associated	loop	are	
to	be
				//	executed	in	parallel	across	the	workers	within	the	gangs	created.
				//	The	argument	specifies	how	many	workers	to	use	to	execute	the	iterations	of	this	loop.
								#pragma	acc	loop	worker(128)
								for	(int	j	=	1;	j	<	N	-	1;	++j) {
												B[i][j]	=	c11	*	A[i	-	1][j	-	1]		+		c12	*	A[i	+	0][j	-	1]		+		c13	*	A[i	+	1][j	-	1]
														+							c21	*	A[i	-	1][j	+	0]		+		c22	*	A[i	+	0][j	+	0]		+		c23	*	A[i	+	1][j	+	0]
														+							c31	*	A[i	-	1][j	+	1]		+		c32	*	A[i	+	0][j	+	1]		+		c33	*	A[i	+	1][j	+	
1];
										}
						}
			}//kernels	region
}

!87

