
your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=;

:+.+" >,6?,+*5+@ A/0#*3 B#0 :+*.

!ACD &'(
:#"#**+*,-#.,/0 /1 2",3!4#5+3

#))*,6#.,/05

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E

! Numerical solution of the Laplace equation
(serial)

! Numerical solution of the Laplace equation
(parallel)

! Intermezzo on Cray T3E hardware

! Parallel implementation

C2+03#

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<='

The Laplace equation
The Laplace equation in two dimensions:

! "u = f   on     # = (0,1) x (0,1)

 u     = g  on     d#    (Dirichlet)

Approximate solution required:

* Define a mesh or grid consisting of points (xi, yj)

* Compute the (approximate) solution in these grid
   points

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F

Discretization
Discretization on the computational domain by means
of finite differences:

i+1i!1 i

j!1
j

j+1

x

y

Several approaches to compute u(i,j) based on its
neighbouring points. This is called a stencil.

Note that the distances in x! and y!direction do not
need to be equal (non!equidistant).



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=G

Stencil
The stencil we will use is the following (5!point):

i,j i+1,j

i,j+1

i,j!1

i!1,j

The solution method we will use is iterative.
Its general form is:

u(i,j) = F(u(i,j),u(i!1,j),u(i+1,j),u(i,j!1),u(i,j+1),f,hx,hy)

In words: the new value of u(i,j) is computed from the old
and new values from itself and its neighbours

For simplicity, assume: hx = hy = h

hy
hx

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=H

Discretization
" = $ u/$x   +  $ u/$y2 222

$ u/$x  !!!!>  u(i+1,j) ! 2u(i,j) + u(i!1,j)

                                       h

22

$ u/$y  !!!!>  u(i,j+1) ! 2u(i,j) + u(i,j!1)

                                       h

22

2

2

Then:

!u(i+1,j) + 2u(i,j) ! u(i!1,j) ! u(i,j+1) + 2u(i,j) ! u(i,j!1) = h*h*f(i,j)

u(i,j) = 0.25*h*h*f(i,j) + 0.25*(u(i!1,j)+u(i+1,j)+u(i,j!1)+u(i,j+1))

$u/$x = u(i+1/2) ! u(i!1/2)
                          h

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=I

Example iterative methods
Point Jacobi: 

unew(i,j) = 0.25*(h*h*f(i,j) + uold(i!1,j) + uold(i+1,j) +
                                    uold(i,j!1) + uold(i,j+1))

Point Gauss!Seidel:
unew(i,j) = 0.25*(h*h*f(i,j) + unew(i!1,j) + uold(i+1,j) +

                                    unew(i,j!1) + uold(i,j+1))

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<==

Example iterative methods
Red!Black Gauss!Seidel:

unew(i,j) = 0.25*(h*h*f(i,j) + unew(i!1,j) + uold(i+1,j) +
                                    unew(i,j!1) + uold(i,j+1))

Two sweeps:
red sweep: all red points
black sweep: all black points



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=<

Treatment of boundaries
Dirichlet boundary conditions:

u = g    on   d#

Suppose, the number of internal grid points is N*N
Then, including the boundaries, the total number
of points is  (N+2)*(N+2)

Then, the distance between two neighbouring
points is  h = 1/(N+1)

Internal points range: i = 1, ...., N
                                   j = 1, ...., N

Before start of iteration process, initialize the
boundary point solution to g, and use it in the
stencil calculations

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; J

Basic serial algorithm
The basic serial algorithm looks as follows:

Input

Initialize grid
Initialize boundary values

while ((no convergence) .and. (no_max_iter))

Sweep over red points
Sweep over black points
Determine convergence
uold = unew

end while

Output

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; ;

Detailed serial algorithm
"Initialize grid"

Remember:     
!"u  = f    on   # = (0,1) x (0,1)
u      = g    on  d#

      do 40 j = nystart!1,nyend+1
         do 40 i = nxstart!1,nxend+1
            x(i,j)      = dble(i)/dble(nx+1)
            y(i,j)      = dble(j)/dble(ny+1)
            f(i,j)      = funcf(x(i,j),y(i,j),itype)
            uexact(i,j) = uexactf(x(i,j),y(i,j),itype)
            uold(i,j)   = 0.0d0
 40   continue

itype denotes the kind of testproblem 

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; E

Detailed serial algorithm
"Initialize boundary values"

c
c  south boundary
c
         if (south .eq. !1) then

            j = 0
            do 51 i = 0,nx+1
               xx     = x(i,j)
               yy     = y(i,j)
               u(i,j) = exp(!(xx!yy)*(xx!yy))
 51         continue
         endif
c
c  north boundary
c
         if (north .eq. !1) then

            j = ny+1
            do 61 i = 0,nx+1
               xx     = x(i,j)
               yy     = y(i,j)
               u(i,j) = exp(!(xx!yy)*(xx!yy))
 61         continue
         endif
c
c  west boundary   ...............................



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; '

"Sweep over red points"

     do 20 j = nystart,nyend
         do 10 i = istart,nxend,2

            unew(i,j) = 0.25d0*h*h*f(i,j) +
     &              0.25d0*
     &              (uold(i!1,j)+uold(i+1,j)+uold(i,j!1)+uold(i,j+1))

 10      continue

         if (istart .eq. nxstart) then
            istart = nxstart + 1
         else
            istart = nxstart
         endif

 20   continue

Detailed serial algorithm
your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; F

Detailed serial algorithm
"Sweep over black points"

      do 60 j = nystart,nyend
         do 50 i = istart,nxend,2

            unew(i,j) = 0.25d0*h*h*f(i,j) +
     &               0.25d0*
     &               (unew(i!1,j)+unew(i+1,j)+unew(i,j!1)+unew(i,j+1))

 50    continue

         if (istart .eq. nxstart) then
            istart = nxstart + 1
         else
            istart = nxstart
         endif

 60   continue

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; G

Detailed serial algorithm
"Determine convergence"

        rmax = !100000.0

         do 20 j = nystart!1,nyend+1
            do 20 i = nxstart!1,nxend+1
               if (abs(uold(i,j) ! unew(i,j)) .gt. rmax) then
                  rmax = abs(uold(i,j) ! unew(i,j))
                  ico  = i
                  jco  = j
               endif
 20    continue

         if (rmax .lt. eps) conv = .true.

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; H

How to parallelize ?

         do 10 i = istart,nxend,2
            unew(i,j) = 0.25d0*h*h*f(i,j) +
     &              0.25d0*
     &              (uold(i!1,j)+uold(i+1,j)+uold(i,j!1)+uold(i,j+1))
 10      continue

Most work in the red (and also black) sweep:

On a shared!memory parallel machine, the compiler 
should automatically parallelize this loop:

Fine!grained parallelism

Appropriate for the T3E ?



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; I

Coarse!grained parallelism
So, let’s go for coarser!grained parallelism:

! less synchronization points
! less communication (when implemented on
   a distributed memory machine)

Typically, domain decomposition is used to accomplish
coarse!grained parallelism

Note that domain decomposition parallelism can be 
applied on both shared memory and distributed
memory machines

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; =

Domain decomposition
Domain decomposition splits the computational domain
in a number of subdomains:

or

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=; <

Domain decomposition
Each subdomain is devoted to a processor

The processor executes the numerical algorithm
for the points in its subdomain:

        do 10 i = istart,nxend,2
            unew(i,j) = 0.25d0*h*h*f(i,j) +
     &              0.25d0*
     &              (uold(i!1,j)+uold(i+1,j)+uold(i,j!1)+uold(i,j+1))
 10      continue

Immediately, it becomes clear where the problems are:

subdomain
boundary

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E J

Domain decomposition

north

east

south

west subdomain

So, each subdomain computes the solution in its internal
area. For the points at the internal boundary, it needs
input from neighbouring subdomains



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E ;

Grid points numbering
Global domain: Global numbering is kept in

subdomains:

0 n+1
0

n+1

0 n+1
0

n+1

i

nxb(i) nxe(i)

nyb(i)

nye(i)

i

So, arrays in subdomains run from nxb(i)!1 to nxe(i)+1,
and from nyb(i)!1 to nyb(i)+1

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E E

Implementation aspects
For the remainder, we make a few assumptions on
the parallel implementation:

! Distributed memory model
! Each processor only knows the subdomain it is
   responsible for
! T3E in mind: SPMD (= Single Program
   Multiple Data)
! MPI
! One of the MPI instances takes care of the
   administrational issues (and also of its own
   subdomain)
! General subdomain configurations (nx blocks
   in x!direction, ny blocks in y!direction)
! In MPI, the processor id’s range from 0 to nprocs!1
! We assume the processor with id = 0 to do the
   global administration issues

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E '

Basic parallel algorithm
MPI initialization
Input, and communication of input
Initialize (sub)grid, determine neighbours
Initialize boundary values

while ((no convergence) .and. (no_max_iter))

Sweep over red points
Communicate red values at internal boundaries
Sweep over black points
Communicate black values at internal boundaries

Determine convergence (in subdomain)
Communicate to single PE (my_id = 0)
Determine global convergence (one PE)
Communicate convergence result

end while

Output
Note that each processor
runs the same program !

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E F

Detailed parallel algorithm
"MPI initialization"

      call MPI_INIT(ierr)
      call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
      call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

numprocs comes from:
mpirun !np numprocs executable

myid is the id of the process/processor



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E G

Detailed parallel algorithm
"Input, and communication of input"
      if (myid .eq. 0) then

         ibuffer(1) = isubs
         ibuffer(2) = kbx              blocks in x−direction
         ibuffer(3) = kby              blocks in y−direction
         ibuffer(4) = nmax           max. iterations

         itag = 1

         do id = 1,numprocs!1
            call MPI_SEND(ibuffer,4,MPI_INTEGER,id,itag,
     &                    MPI_COMM_WORLD,ierr)
         enddo

         rbuffer(1) = omega        relaxation parameter, assume 1.0
         rbuffer(2) = eps             relative accuracy

         itag = 2

         do id = 1,numprocs!1
            call MPI_SEND(rbuffer,2,MPI_DOUBLE_PRECISION,id,itag,
     &                    MPI_COMM_WORLD,ierr)
         enddo

      else
           ...........  next page ..........

id=0

1   2  ........... numprocs!1

id=0

1   2  ........... numprocs!1

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E H

"Input, and communication of input"

      ....  previous page .....

   else

c
c  Slaves receive data and compute related parameters
c

         call MPI_RECV(ibuffer,4,MPI_INTEGER,0,1,
     &                 MPI_COMM_WORLD,istat,ierr)

         isubs   = ibuffer(1)
         kbx      = ibuffer(2)
         kby      = ibuffer(3)
         nmax   = ibuffer(4)

         kblock = kbx*kby

         call MPI_RECV(rbuffer,2,MPI_DOUBLE_PRECISION,0,2,
     &                 MPI_COMM_WORLD,istat,ierr)

         omega = rbuffer(1)
         eps   = rbuffer(2)

      endif

Detailed parallel algorithm

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E I

Detailed parallel algorithm
"Initialize (sub)grid, determine neighbours"

         do 201 ky = 1,kby
            do 201 kx = 0,kbx!1

               ibls((ky!1)*kbx+kx) = nint(dble(       kx*nx)/dble(kbx))+1
               ible((ky!1)*kbx+kx) = nint(dble((kx+1)*nx)/dble(kbx))
               jbls((ky!1)*kbx+kx) = nint(dble((ky!1)*ny)/dble(kby))+1
               jble((ky!1)*kbx+kx) = nint(dble(      ky*ny)/dble(kby))

 201     continue
c
c  Now, slave myid is responsible for the global points:
c
c                     ibls(myid) to ible(myid) in X!direction
c                     jbls(myid) to jble(myid) in Y!direction

Note:

! kbx and kby were input values, and have been communicated to each id
! Each processor (id) runs this code !
! Each processor knows on which grid points every other processor works on

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E =

c
c  Next, determine neighbours of myid
c

         myid_div = myid/kbx
         myid_mod = mod(myid,kbx)

         south = myid ! kbx
         if (myid_div .eq. 0) south = !1

         north = myid + kbx
         if (myid_div .eq. kby!1) north = !1

         west = myid ! 1
         if (myid_mod .eq. 0) west = !1

         east = myid + 1
         if (myid_mod .eq. kbx!1) east = !1

         neighbours(1) = north
         neighbours(2) = south
         neighbours(3) = west
         neighbours(4) = east

"Initialize (sub)grid, determine neighbours"

Detailed parallel algorithm

0         1        2

3         4         5

6         7         8

9        10       11

So, each processor (id)
knows the id’s of its 
(max. 4) neighbours



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=E <

Detailed parallel algorithm
Basically, the administration is ready now:

! Each processor knows on which part of the
   global domain it works
! Each processor knows the lower and upper
   bounds of its arrays, and can allocate them
! Each processor knows its own id, and knows
   the id’s of its neighbours
! Furthermore, each processor knows which of its
   neighbours is north, south, east or west
! If there is no neighbour on either of the 4 sides 
   (subdomain has a global boundary), the neighbour
   is set to !1

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' J

Detailed parallel algorithm
"Initialize boundary values"

c
c  south boundary
c
         if (south .eq. !1) then

            j = 0
            do 51 i = nxstart!1,nxend+1
               xx     = x(i,j)
               yy     = y(i,j)
               u(i,j) = exp(!(xx!yy)*(xx!yy))
 51         continue
         endif
c
c  north boundary
c
         if (north .eq. !1) then

            j = ny+1
            do 61 i = nxstart!1,nxend+1
               xx     = x(i,j)
               yy     = y(i,j)
               u(i,j) = exp(!(xx!yy)*(xx!yy))
 61         continue
         endif
c
c  west boundary    .....................

j=0

nxstart!1       nxend+1

j=ny+1

nxstart!1       nxend+1

So, basically no changes compared to
serial algorithm

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' ;

Detailed parallel algorithm
"Sweep over red points"
     do 20 j = nystart,nyend
         do 10 i = istart,nxend,2

            unew(i,j) = 0.25d0*h*h*f(i,j) +
     &              0.25d0*
     &              (uold(i!1,j)+uold(i+1,j)+uold(i,j!1)+uold(i,j+1))

 10      continue

         if (istart .eq. nxstart) then
            istart = nxstart + 1
         else
            istart = nxstart
         endif

 20   continue

So, no changes compared to serial algorithm,
provided that:

! input for internal boundary points is up!to!date
   (must have come from neighbouring subdomains) 

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' E

Detailed parallel algorithm
"Sweep over black points"
      do 60 j = nystart,nyend
         do 50 i = istart,nxend,2

            unew(i,j) = 0.25d0*h*h*f(i,j) +
     &               0.25d0*
     &               (unew(i!1,j)+unew(i+1,j)+unew(i,j!1)+unew(i,j+1))

 50    continue

         if (istart .eq. nxstart) then
            istart = nxstart + 1
         else
            istart = nxstart
         endif

 60   continue

The same holds here:
No changes compared to serial algorithm, provided
that input for internal boundary points is available



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' '

"Communicate red values at internal boundaries"

Detailed parallel algorithm

Several issues to take care of:

! What to communicate ?
   which values

! How to communicate ?
   which order or strategy

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' F

"Communicate red values at internal boundaries"

Detailed parallel algorithm

Which values to communicate ?

red values needed as input for south
red values needed as input for north

So, at each internal boundary, you need
to find out which the red values are:
find the first (in this case leftmost), and 
then increment by 2

north

south

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' G

"Communicate red values at internal boundaries"

Detailed parallel algorithm

nyend in "south" = nystart!1 in "north"

nystart in "north" = nyend+1 in "south"

north

south

In order to understand the concept,
assume the south subdomain sends
to the north subdomain

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' H

Detailed parallel algorithm
"Communicate red values at internal boundaries"

      if (nnorth .ge. 0) then                      determine *if* there is a north neighhbour

         if (color .eq. 1) then                      color=1 (communicate red), color=0 (communicate black) 
c
c  Red
c
            if (mod(nyend,2) .eq. 1) then                          red    points: (even,even) and (odd,odd)
               if (mod(nxstart,2) .eq. 1) then                      black points: (even,odd) and (odd,even)
                  istart = nxstart
               else
                  istart = nxstart + 1
               endif
            else
               if (mod(nxstart,2) .eq. 1) then
                  istart = nxstart + 1
               else
                  istart = nxstart
               endif
            endif

         else
c
c  Black    ..........
c
             ......
         endif
      endif

Note: this code is executed in
          the south subdomain



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' I

"Communicate red values at internal boundaries"

Detailed parallel algorithm

         nnorth = neighbours(1)                       id of MPI!instance that takes care of north
                                                                    neighbour
         do i = istart,nxend,2
            rbufnorth(i) = unew(i,nyend)            fill a buffer array to use in MPI_SEND
         enddo

         length = nxend+1!(nxstart!1)+1        determine number of values to send
         itag   = 4*(niter!1)+103

         call MPI_SEND(rbufnorth,length,MPI_DOUBLE_PRECISION,nnorth,itag,
     &                 MPI_COMM_WORLD,ierr)

                            itag characterizes this specific message. It is important to have
                            each different message to have a different tag value;

                            nnorth is the destination of the message

Note: this code is executed in 
          the south subdomain

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' =

"Communicate red values at internal boundaries"

Detailed parallel algorithm

      if (nsouth .ge. 0) then                  determine *if* there is a south neighbour

         if (color .eq. 1) then                  color=1 (communicate red), color=0 (communicate black)
c
c  Red
c
            if (mod(nystart!1,2) .eq. 1) then        red    points: (even,even) and (odd,odd)
               if (mod(nxstart,2) .eq. 1) then         black points: (even,odd) and (odd,even)
                  istart = nxstart
               else
                  istart = nxstart + 1
               endif
            else
               if (mod(nxstart,2) .eq. 1) then
                  istart = nxstart + 1
               else
                  istart = nxstart
               endif
            endif

         else
c
c  Black
c
            ........
         endif
      endif

Note: this code is executed in
          the north subdomain

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=' <

Detailed parallel algorithm
"Communicate red values at internal boundaries"
         nsouth = neighbours(2)                     id of MPI!instance that takes care of south
                                                                   neighbour

         length = nxend+1!(nxstart!1)+1       determine number of values to receive
         itag   = 4*(niter!1)+103

         call MPI_RECV(rbufsouth,length,MPI_DOUBLE_PRECISION,nsouth,itag,
     &                 MPI_COMM_WORLD,istat,ierr)

         do i = istart,nxend,2                           store the received values in the appropriate
            unew(i,nystart!1) = rbufsouth(i)     array
         enddo

Note that the value of itag should correspond with the value in the
corresponding MPI_send message

nsouth is the source of the message

Note: this code is executed in the north subdomain

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F J

Detailed parallel algorithm
"Communicate red values at internal boundaries"
Which communication strategy ?

So, exchange of 
8 messages between 
a subdomain and its
neighbours



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F ;

Detailed parallel algorithm
A safe strategy is the following:

! Each subdomain sends its north boundary to its north neighbour (if any)
   Then, each subdomain receives from its south neighbour (if any)

! Next, each subdomain sends its south boundary to its south neighbour (if any)
   Then, each subdomain receives from its north neighbour (if any)

! Next, each subdomain sends its west boundary to its west neighbour (if any)
   Then, each subdomain receives from its east neighbour (if any)

! Next, each subdomain sends its east boundary to its east neighbour (if any)
   Then, each subdomain receives from its west neighbour (if any)

1

2

3

4

5

6

7
8

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F E

"Sweep over black points"

Basically equivalent to the "sweep over red points"

"Communicate black values at internal boundaries"

Basically equivalent to the "communication of red
values at internal boundaries"

Detailed parallel algorithm

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F '

Detailed parallel algorithm
"Determine convergence (in subdomain)"

        rmax = !100000.0

         do 20 j = nystart!1,nyend+1
            do 20 i = nxstart!1,nxend+1
               if (abs(uold(i,j) ! unew(i,j)) .gt. rmax) then
                  rmax = abs(uold(i,j) ! unew(i,j))
                  ico  = i
                  jco  = j
               endif
 20    continue

So, no changes compared to serial version, except that
no global decision on convergence can be taken yet

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F F

Detailed parallel algorithm
"Communicate to single PE (my_id = 0)"

c
c  Send convergence results to master
c
            if (myid .ne. 0) then
               rbuffer(1) = rmax
               itag = 100000 + 2*(n!1) + 1
               call MPI_SEND(rbuffer,1,MPI_DOUBLE_PRECISION,0,itag,
     &                       MPI_COMM_WORLD,ierr)
c
c  Wait for message of master to continue or not
c
            ........

So, each processor (except 0) sends its maximum difference
to processor 0, and then starts waiting for a message from
processor 0 on what to do further



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F G

Detailed parallel algorithm
"Determine global convergence"

          if (myid .ne. 0) then
               "subdomains send to processor 0"           see previous slide
          else
c
c  Master receives local convergence results and decides whether
c  to continue or not

               rmax_ar(0) = rmax

               itag = 100000 + 2*(n!1) + 1
               do id = 1,numprocs!1
                  call MPI_RECV(rbuffer,1,MPI_DOUBLE_PRECISION,id,itag,       source could be !1
     &                          MPI_COMM_WORLD,istat,ierr)
                  rmax_ar(id) = rbuffer(1)
                  if (rmax_ar(id) .gt. rmax) rmax = rmax_ar(id)
               enddo

               signal = 0
               if (rmax .lt. eps) then
                  conv = .true.
                  signal = 1
               endif

           endif

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F H

Detailed parallel algorithm
"Communicate convergence result"

            if (myid .eq. 0) then
c
c  Master send slaves message to continue or not
c
               itag = 100000 + 2*(n!1) + 2
               do id = 1,numprocs!1
                  call MPI_SEND(signal,1,MPI_INTEGER,id,itag,
     &                           MPI_COMM_WORLD,ierr)
               enddo

            endif

So, each subdomain receives one integer ("signal"):

* signal = 1:   global convergence, stop
* signal = 0:   no global convergence yet, continue

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F I

Detailed parallel algorithm
"Communicate convergence result"

c
c  Wait for message of master to continue or not
c
               signal = !1
               itag   = 100000 + 2*(n!1) + 2

               call MPI_RECV(signal,1,MPI_INTEGER,0,itag,
     &                       MPI_COMM_WORLD,istat,ierr)

Message received from processor 0
Depending on signal (0 or 1), continue or not

your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F =

Exercise 1
Write an MPI program for nprocs processors which splits
a square computational domain into a number of subdomains.
The number of subdomains in the x!direction is kbx, in the
y!direction kby. Assume that nprocs = kbx*kby.

kbx and kby are input to process 0. Assume the subdomain
numbers range from 0 to nprocs!1.

Desired output: for each subdomain, print its north, south,
east and west neighbour. If a subdomain does not have a
neighbour in a certain direction, print !1.



your logo here

!"#$ &'( )#"#**+*,-#.,/0 /1 2",3!4#5+3 #))*,6#.,/05 6/7"5+ ! 8 9:!! ;<<=F <

Exercise 2
Copy the directory with the example red!black solver to
your own directory. In subroutine "rbcomm", the communication
between the subdomains takes place, as described earlier.

As you can see, this is the safe strategy. 

Change the strategy to, e.g., a less safe strategy by having
each subdomain sending to all its neighbours, and then
receiving from all its neighbours.

Determine whether this influences the elapsed execution time.


