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Abstract

One-way wavefield extrapolation operators are used to propagate acoustic wavefields
from one depth level to another. Applying the extrapolation in a recursive way, us-
ing small depth steps, demands that the operators do not amplify the wavefield at
every depth step. Previously a weighted least squares technique has been described
to estimate short, stable and accurate forward and inverse wavefield extrapolation
operators. This technique produced accurate extrapolation operators which were
comparable with the results of other known techniques like the Remez exchange and
non-linear optimization method. In this paper the weighted least squares (WLSQ)
technique is refined by using different model functions. In using those functions the
extrapolation operators can be made more accurate and can also be tailored for spe-
cial purposes, such as asymmetric operators. Zero-offset migration impulse responses
are shown in 2D media and the Sigsbee2A data set is used to illustrate the usage of
the extrapolation operators in pre-stack depth migration.

Introduction

Recursive wavefield extrapolation in the frequency domain extrapolates data from
depth level zm to level zm+1, where ∆z = |zm+1 − zm| is small compared to the
operator length. Due to the recursive use of the operators special care must be taken
about the amplitudes. An amplitude larger than 1 can lead to unstable extrapola-
tion results, while an amplitude smaller than 1 will attenuate the wavefield during
extrapolation.
In the kx−ω domain the extrapolation operator for a 2-dimensional medium is given
by the following equation;

W̃ (kx, ω, ∆z) = exp (−jkz∆z), (1)

with kz =
√

k2 − k2
x, k = ω

c , ω the angular frequency and c the propagation velocity.

Wavefield P̃ is extrapolated one depth step by

P̃ (kx, ω, zm+1) = W̃ (kx, ω, zm+1 − zm)P̃ (kx, ω, zm). (2)

The analytical inverse Fourier transform of equation (1) is a scaled Hankel function,
see Berkhout (1984):

W (x, ω, ∆z) = −jk
∆z

2r
H

(2)
1 (kr) (3)

with r =
√

(x2 + ∆z2) and H
(2)
1 (kr) = J1(kr) − jY1(kr) is the first-order Hankel

function of the second kind. The cheapest way to obtain a short operator in the
space domain is by discretization of equation (3) and truncating it to a finite number
of points. The accuracy of the resulting short operator can be assessed by comparing
its spectrum with equation (1).
In Figure 1a the amplitude of the wavenumber spectrum of the operator of equation
(3), truncated to 25 points, is shown together with the amplitude of the phase-shift
operator W̃ (kx, ω, ∆z) (solid line). Note that the wavenumber spectrum of the trun-
cated operator is significantly larger than 1 for |kx| ≤ k. Recursive application of
this operator causes that waves are amplified at every extrapolation step, which in
the end ’blows up’ the extrapolation result. Note that, since extrapolation is always
done for a finite (but large) number of steps, amplitudes slightly larger than 1 are
allowed. We consider an operator to be conditionally stable when its amplitude is
smaller than 1.001 for all wavenumbers. In a homogeneous medium and a single
frequency this leads to, after 500 extrapolation steps, a maximum amplification of
1.65.

Figure 1b shows an operator which has been optimized using the Remez exchange
algorithm (Soubaras, 1996). Figure 1c and 1d are the result of WLSQ optimization
and will be discussed in more detail below.
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a) Spectrum of truncated analytical operator; amplitude (left) and phase error (right).
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b) Remez exchange algorithm; amplitude (left) and phase error (right).
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c) WLSQ using phase shift operator; amplitude (left) and phase error (right).
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d) WLSQ using smooth phase shift operator; amplitude (left) and phase error (right).

Figure 1: Comparison between spectra of different designed wave field extrap-
olation operators. For each operator k = ω

c = kNyq

2 . Since the operators are
symmetric, only the right half is shown. The effect of the truncation of the ana-
lytical operator can be seen in the wavenumber amplitude and phase spectrum
given in a). The result after optimization with the Remez exchange algorithm
is shown in b). Figure c) shows WLSQ optimization with the model function
W̃ being equal to the phase-shift operator and d) using a smooth version of W̃
given by equation (7b). Note the vertical scale difference between Figure a and
Figures b,c and d. For all these figures we have chosen: an operator length of 25
points, ∆x = 10m, ∆z = 2 m, ω = 50π radians/s, N = 512 samples, c = 1000
m/s and the maximum propagation angle at αmax = 75o. The horizontal axis
represents normalized wavenumber cycles ( n

N ).

Weighted Least Squares

The goal in the optimization procedure is to obtain a short spatial convolution oper-

ator, which has a wavenumber spectrum over a desired wavenumber band, equal or
close to the exact formulation in the frequency-wavenumber domain. This problem
can be written as an integral equation

W̃ (kx) =

x1∫
−x1

exp (jkxx)W (x)dx for ‖kx‖ ≤ kN, (4)

where W (x) is the (unknown) convolution operator. In this integral equation, the
integration is carried out over a limited spatial interval, representing the short oper-
ator. Also the frequency-wavenumber domain of the operator is band-limited. The
discrete counterpart of this integral is given by

W̃ = ΓW (5)

The weighted least squares (WLSQ) solution of matrix equation (5) is given by

Wopt =
[
ΓHΛ̃Γ

]−1
ΓHΛ̃W̃ . (6)

ΓHΛ̃Γ is a square M×M matrix, which has to be inverted to solve for the unknown.
For 1-dimensional operators this matrix has a Toeplitz structure and can be inverted
efficiently using the Levinson scheme. If in equation (6) the weight matrix is chosen
identical to the unit matrix Λ = I, then the right hand side of equation (6) is an
inverse Fourier transform of N-points, which is truncated to M-points in the spatial
domain. In this specific case no optimization is carried out.
For accurate extrapolation results the desired operator W̃ must be equal to the phase-
shift operator for the propagating waves, however the behavior outside this part can
differ from the phase-shift operator. A so-called smooth operator has been designed
in such a way that outside the band of interest the amplitude and the phase are
defined by a cubic spline, which goes smoothly to zero:

‖W̃ (kx, ω, ∆z, α)‖ =




1.0 |kx| ≤ k sin(α)
spline |kx| > k sin(α)
0 |kx| = π

∆x

, (7a)

arg (W̃ (kx, ω, ∆z, α)) =



−jkz∆z |kx| ≤ k sin(α)
spline |kx| > k sin(α)
0 |kx| = π

∆x

, (7b)

where α is the maximum propagation angle of interest. The weight function is box-
shaped. By using this smoother objective function the least-squares algorithm can
find a smoother solution and is in turn better constraint.
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Figure 2: Amplitude and phase of phase-shift operator (dotted line) and the
smooth version of the phase-shift operator.

The WLSQ optimized convolution operator, based on an object function equal to the
phase-shift operator, is shown in Figure 1c. The wavenumber spectrum is stable for
all wavenumbers and is accurate within the band of interest. The accuracy of this
operator is the same as the operators of Holberg (1988) and Blacquiere et.al. (1989).
Figure 1d shows the WLSQ optimized operator with the smooth object function. The
operator designed with the smoother version has clearly lower amplitude oscillations.
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Migration examples

To test the accuracy of the extrapolation operators zero-offset migration experiments
are carried out. In these experiment a 19 points extrapolation operator in a ho-
mogeneous medium with a velocity of 2000 m/s, a receiver length of 2000 m and a
maximum extrapolation depth of 1000 m with ∆x = 10, ∆z = 2 m is used. The
zero-offset trace in the middle of the shot record contains three Ricker wavelets at
0.3, 0.6 and 0.9 s, all the other traces are filled with zeros. The source wavelet is
sampled with 4 ms and has a frequency peak at 30 Hz.
Figure 3a shows the impulse responses for a non-recursive reference result. Operators
designed with the equiripple approach of the Remez algorithm are shown in (3b), the
WLSQ operators based on the phase-shift operator in (3c) and WLSQ operators
based on the smooth phase-shift operator in (3d). The smooth operator result has
on average the least numerical artifacts. However, at the higher angles (above 80◦)
the smooth operator has slightly more and stronger artifacts.
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b) Remez operators
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c) WLSQ with phase-shift operators
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d) WLSQ with smooth operators

Figure 3: Migration impulse responses for a non-recursive reference result (a)
and three recursive methods using: Remez exchange optimized operators (b),
WLSQ based on phase-shift operator (c) and WLSQ based on the smooth phase-
shift operator (d). The impulse responses are modeled with a frequency range
of (0-80) Hz, ∆t = 4 ms, ∆x = 10 m, ∆z = 2 m, a velocity of 2000 m/s and an
operator length of 19 points.
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Figure 4: Pre-stack depth migration of Sigsbee2A data set with optimized
WLSQ operators with a fixed length of 25 points. The bottom picture is a zoom
of the area below the salt. The transmission coefficients through the salt are not
taken into account, giving a lower amplitude image below the salt compared to
the surrounding areas. Most events below the salt are imaged, only the turning
waves are not imaged correctly. In the zoomed area along the right side of the
salt bottom there is a large shadow zone. In this shadow zone only the diffracting
point at (60000,25000) is partly imaged.

The Sigsbee2A data set (Glogovsky et al., 2002) is depth migrated using one fixed
operator length of 25 points, but with a search done for the best operator as function
of the weight factor. The pre-stack depth migration result is shown in Figure 4. The
steep faults beside the salt structure are imaged correctly. In the zoom area below
the salt, all events that contain reflection energy are clearly visible. Close to the right
steep bottom of the salt there are no layers visible due to an illumination problem

caused by the salt structure and the chosen acquisition geometry. An internal multi-
ple of the salt body (indicated by an arrow) has been imaged as a steep ghost fault
crossing the layers.
The disadvantage of one-way migration is that it is not possible to handle turn-
ing/bending waves in the recursive migration (for propagation angles larger than
80◦). Also the transmission coefficients are not included, resulting in lower ampli-
tude, but structural still accurate, images below the salt.

Conclusions

In this paper the weighted least squares technique has been further improved by using
a smooth object function in the estimation of extrapolation operators. The presented
results indicate that these improved operators give very accurate extrapolation re-
sults. The WLSQ algorithm used to compute the operators is very fast and multiple
evaluations for different weight functions and operator lengths makes it possible to
search for the best operator with minimum operator length and smallest amplitude
below a certain threshold.
The WLSQ is not only suited for extrapolation operator design, but can also be used
in other filter design problems for an efficient and controlled transformation of the
(smoothed) operator in the Fourier domain back to a convolution operator in the
original domain.
The extension of the WLSQ technique for 2 dimensional operators, to be used in 3 di-
mensional media is straightforward as discussed by Thorbecke and Berkhout (1994).

Acknowledgments

We would like to thank the research school ISES and the Atlass project of the Euro-
pean Union for supporting this research.

References

Berkhout, A. J. (1984). Seismic resolution: resolving power of acoustic echo
techniques. Geophysical Press Ltd.

Blacquiere, G., Debeye, H. W. J., Wapenaar, C. P. A., and Berkhout, A. J. (1989).
3D table-driven migration. Geophys. Prosp., 37(08):925–958.

Glogovsky, V., Landa, E., and Paffenholz, J. (2002). Integrated approach to subsalt
depth imaging: Synthetic case study. volume 21, pages 1217–1223.

Holberg, O. (1988). Towards optimum one-way wave propagation. Geophys. Prosp.,
36(02):99–114.

Soubaras, R. (1996). Explicit 3-D migration using equiripple polynomial expansion
and Laplacian synthesis. Geophysics, 61(05):1386–1393.

Thorbecke, J. W. and Berkhout, A. J. (1994). 3-D recursive extrapolation operators:
An overview. In 64th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, pages 1262–1265. Soc. Expl. Geophys.


	SEG2003poster1.pdf
	SEG2003poster2.pdf

