
Green’s function retrieval with Marchenko equations: a sensitivity analysis.
Jan Thorbecke∗, Joost van der Neut † and Kees Wapenaar ‡, Delft University of Technology, Department of Geoscience

and Engineering, Section of Applied Geophysics, The Netherlands

SUMMARY

Recent research showed that the Marchenko equation can be

used to construct the Green’s function for a virtual source po-

sition in the subsurface. The method requires the reflection

response at the surface and an estimate of the direct arrival of

the wavefield, traveling from the virtual source location to the

acquisition surface. In this paper, we investigate the sensitivity

of this method. We demonstrate its robustness with respect to

significant amplitude and phase errors in the direct arrival. The

erroneous operators introduce low amplitude artefacts. The

main reflections and internal multiples are still presents and

disturbing ghost events are not introduced. In case the reflec-

tion data is modeled in a medium with losses, ghost events

seem to be visible in the upgoing wavefield, but not in the

downgoing wavefield.

Introduction

A new approach to retrieve the Green’s function for a virtual

source in the subsurface, from measured data at the surface,

is introduced by Broggini et al. (2012a,b); Wapenaar et al.

(2012a). The method is based on Marchenko-type equations

and the virtual wavefield is constructed by an iterative scheme.

The reconstructed wavefield contains all internal multiples and

is equal to the complete Green’s function of a virtual source in

the subsurface. Using reciprocity, from here onward we treat

the virtual source as a virtual receiver. The up- and down-

going wavefields at the virtual receiver position can be con-

structed by combining different results of the iterative scheme.

These up- and downgoing fields are the input for algorithms

that allow imaging without artefacts from internal multiples.

The underlying theory has been derived for the 3D situa-

tion by Wapenaar et al. (2013) and more applications of the

method are now rapidly being developed (Slob et al., 2013;

van der Neut et al., 2013; Behura et al., 2012).

To start the iterations, the method requires, besides the mea-

sured data at the surface, an estimate of the direct arrival at the

surface from the virtual position in the subsurface. The mea-

sured data at the surface has to be free of free-surface multiples

and it is assumed that the medium is lossless. In this paper we

investigate the robustness of the method with respect to errors

in the estimate of the direct arrival, and the influence of in-

trinsic losses in the medium. The influence is analyzed in the

retrieved up- and down-going wavefields at the virtual receiver

position. The following numerical studies are carried out:

• amplitude and phase errors of the direct arrival due to

a velocity error in the model,

• amplitude errors of the direct arrival,

• with a reflection response for a medium with losses.

These sensitivity studies are a first step towards applying the

method on real data. Using real data we expect to have esti-

mates of direct arrivals, which can deviate significantly from

a correct operator. By having an idea what the influence is of

an erroneous direct arrival, we expect to take these effects into

account in further processing steps.

Theory

In the brief theoretical background given in this section, we

follow Wapenaar et al. (2012a) and only present the final out-

come of the scheme for 2-dimensional media. The iterative

scheme starts with an estimate of the direct arrival between the

surface (x0), and the virtual receiver position xF = (xF ,zF )
in the subsurface. The time-reversal of this direct arrival is

the downgoing p+0 (x0,xF , t). Convolved with the reflection

response of the medium R(x0,x, t), this results in an upgoing

field at the surface:

p−0 (x0,xF , t) =

∫
x

∫
t ′

R(x0,x, t − t ′)p+0 (x,xF , t
′)dt ′dx (1)

where R(x0,x, t) is the measured reflection response with-

out surface-related multiples and deconvolved for the source

wavelet. In the iterative scheme, the downgoing field

is updated with a time-reversed and windowed version of

p−
k−1

(x0,xF , t), according to:

p+
k
(x0,xF , t) = p+0 (x0,xF , t)−w(x0, t)p−

k−1
(x0,xF ,−t) (2)

where w(x0, t) is a window function as explained in

Wapenaar et al. (2012a) and k the iteration number. After

several iterations (in the examples shown in this paper, 10-

15 iterations are sufficient), using construction equation (1)

and (with subscript 0 replaced by k) update equation (2), the

wavefield converges. The summation of the time-reversed fi-

nal downgoing field and the final upgoing field is proportional

to the Green’s function at a virtual receiver at position xF

(Wapenaar et al., 2013).

Based on the same equations, but with a change in the sign,

a slightly different scheme is carried out as well. The update

equation in this scheme is

q+
k
(x0,xF , t) = p+0 (x0,xF , t)+w(x0, t)q

−
k−1(x0,xF ,−t) (3)

where q+
k
(x0,xF , t) is the so-called symmetric counterpart of

equation (2). The final outcome of equations (2) and (3) are

combined to create down- and upgoing Green’s functions:

G+,+(xF ,x0, t) =
1
2{p−(x0,xF , t)+ p+(x0,xF ,−t)}

+ 1
2{−q−(x0,xF , t)+q+(x0,xF ,−t)} (4)

G−,+(xF ,x0, t) =
1
2{p−(x0,xF , t)+ p+(x0,xF ,−t)}

− 1
2{−q−(x0,xF , t)+q+(x0,xF ,−t)} (5)

In the examples below, these up- and downgoing wavefields

are computed for different approximations of the initial down-

going wavefield p+0 (x0,xF, t), and with a reflection response
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R(x0,x, t) modeled in a medium with losses. The obtained

up- and downgoing Green’s functions can be the input for a

migration scheme (Wapenaar et al., 2012b; van der Neut et al.,

2013), where internal multiples are included.

Modeling experiments

A simple model, shown in Figure 1, is created to illustrate the

method. In this model, the density contrast between the layers

is chosen very high to generate strong internal multiples. In

Figure 2, the reflection response of the medium, for a source

at the surface at x = 0, is shown.
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Figure 1: Velocity model for finite difference modeling of the

input data set of the Marchenko iterations. Sources and re-

ceivers are placed at the surface x[-2250, 2250] with a 10 m

distance. A virtual receiver is placed at x=0, z=1100 m. The

density of the layers is alternating between 1000 and 5000

kg/m3.
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Figure 2: The input reflection data R(x0,x, t) convolved with a

Ricker wavelet. Free surface multiples are not included. Note

the strong internal multiples.

Figure 3 shows the result obtained under ideal conditions. In

this case, the direct arrival is computed, with finite differ-

ence in the correct medium, to construct the initial downgoing

p+0 (x0,xF , t). The left panel shows the downgoing field, with

on top the maximum amplitude at the first arrival time. The

middle panel shows the computed downgoing Green’s func-

tion and the right panel the upgoing Green’s function, after 15

iterations.

The next experiment is carried out with a velocity error of

+15% in the first layer of the model. Due to this velocity er-

ror, the operator p+0 does not focus to a band-limited point, but

to a blurred focal area. The computed wavefields, shown in

Figure 4b,c, contains the same events as in Figure 3b,c, and

the only differences are some more pronounced artefacts and a

time delay due to the velocity error.

The results in Figure 5 are based on the correct velocity model

to calculate the direct arrival in p+0 , but the amplitude along the

first arrival time is made constant (top of Figure 5a). The effect

of this amplitude error is barely visible in the downgoing G+,+

in Figure 5b, but introduces a few errors in the upgoing G−,+

in Figure 5c. Note that the construction equation (1) includes

an integration over the (limited) receiver array at the surface.

In the examples above we have not used any tapers at the edges

of the acquisition domain. It is expected that tapering the edges

of the acquisition domain will reduce some of the artifacts in

the results (for example the indicated event in Figure 5c).

For the last experiment in this paper, the correct direct arrival

time and amplitude are used for p+0 , but the reflection response

R is modeled in a medium with losses (Q=50). In the the-

oretical derivation of the iterative scheme, it is assumed the

the medium is lossless and it is expected that in this case the

method will not give correct results. However, Figure 6 shows

that the downgoing Green’s function does not have any visible

extra ghost events and only in the upgoing field ghost events

are introduced (indicated with an arrow in Figure 6c). We ex-

pect that these can be reduced by applying a Q compensation

to the reflection data prior to running the iterative scheme.

Conclusion and discussion

The experiments in this paper indicate that the introduced

scheme to calculate the up- an downgoing Green’s functions

at a virtual receiver in the subsurface, from reflection data and

the direct arrival is robust. The scheme does not diverge and

remains stable in case the focusing operator has errors in phase

and amplitude. In case the reflection data is modeled in a

medium with losses, ghost events are visible in the retrieved

upgoing field only, but not in the retrieved downgoing field.

These ghost events can probably be reduced by applying Q-

compensation.
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Figure 3: Up- and downgoing wavefields after 15 iterations.This is the reference result with the correct direct propagating field (p+0
(a)) and R computed for a medium without losses. The edges of the lateral integration (over x) are not tapered and introduces small

truncation artifacts visible before the first arrival in the upgoing Green’s function G−,+ (c).
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Figure 4: Up- and downgoing wavefields after 15 iterations with an error in the velocity model to calculate p+0 . The velocity in

the top layer of the model has been increased from 2000 to 2300 m/s. In comparison with the reference results a few artefacts are

introduced, which are indicated with an arrow in the upgoing field (c).
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Figure 5: Up- and downgoing wavefields after 15 iterations with an amplitude error in p+0 . The amplitude along the wavefield is

flat for all offsets as shown in the amplitude plot in (a). In the upgoing Green’s function (c) only a few ghosts events, with a low

amplitude and indicated with an arrow, are introduced.
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Figure 6: Up- and downgoing wavefields after 15 iterations. The reflection data is modeled in a medium with losses (Q=50). This

violation of the theoretical assumption of a lossless medium introduces extra ghosts events (indicated with an arrow), which are

visible in the upgoing wavefield (c), but not in the downgoing wavefield (b).
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