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Introduction
In homogeneous media the one-way extrapolation operator in the k,-w (wavenumber-frequency) domain is
a simple analytical function. The advantage of computation in the k,-w domain is that the desired result
is obtained by multiplication of the data with the operator. To allow laterally varying medium functions a
convolutional operator in the z-w (space-frequency) domain should be used. When the spatial extrapolation
operator is used in an explicit recursive depth migration algorithm it must be calculated in an optimum way
to obtain reliable and stable results (Berkhout, 1982).
There are several ways to obtain a spatial convolution operator. For homogeneous media one usually starts
with the exact analytical expression in the k,-w domain and transforms this operator back to the spatial
domain. In recent years many methods have been developed to do this transformation in an efficient and
optimum way. For the one-way extrapolation operator Holberg (1988), Blacquiere (1989), Hale (1990) and
Nautiyal et al. (1993) have proposed methods to arrive at spatial operators which are unconditionally
stable in a recursive extrapolation scheme. In this paper an alternative method is presented for an efficient
and controlled transformation back to the spatial domain. The proposed method is compared with other
numerical optimization methods and in the poster presentation some results of recursive depth migration,
in inhomogeneous acoustic media with the different optimized extrapolation operators, are given.

Weighted least squares optimization
The most simple way to obtain space-frequency operators is to transform the exact operators in the wave-
number-frequency domain numerically back to the space-frequency domain. But this simple solution is not
very efficient because the spatial convolution operator obtained in this way must be very long to give stable
and accurate results. What we are looking for is a short extrapolation operator with a wavenumber-frequency
spectrum which is, over a desired wavenumber band, equal or close to the exact formulation in the k,-w
domain. This problem can be written as a matrix equation which is given by

M2
Y =FY ,or Y(nAk,) = Az ZY(mA:p) exp (j mAz nAk,) (1)
My
withm = My, ...... , M5 the length of the desired short operator and n = Ny, ...... , N5 the length of the Fourier

transformation and (Mz — M;) < (N2 — Np). A weighted error function € is defined by
E=FE'AE and E=F <Y >-Y (2)

with A a diagonal matrix containing a weighting function on its diagonal. By introducing this weighting
function we have a good control over the desired functionality of the space-frequency operators. The least
squares solution of equation (2) is given by
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The matrix F" A F can be inverted fast because of its Toeplitz structure.

Comparison
Five methods for obtaining extrapolation operators wil be compared with each other (1) Truncation (inverse
FFT) (2) Gaussian filtering (Nautiyal et al.;1993) (3) Smoothed Phase (Blacquiere,1989) (4) Constrained
Non-linear Optimization (Holberg, 1988) (5) Weighted Least Squares (this paper). To compare the different
methods homogeneous shot record migration experiments are carried out in a medium with a velocity of
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up to 60 Hz. In Figure 1 ten depth sections are shown for the five different extrapolation operators and

two different operator lengths. The truncation method is unstable due to wavenumber amplitudes greater

than one. Gaussian filtering is stable but has an unacceptable amplitude decay at high propagation angles.

The smoothed phase method is stable but contains artefacts at the higher wavenumbers. The non-linear

optimization method is accurate and stable but it takes a very long time to compute the operators. Finally

the weighted least squares method is stable, accurate and it takes only a short time to compute the operators.
Conclusions

The operators obtained with the weighted least squares optimization procedure are economic, stable and

accurate. Comparing the weighted least squares operators with the computationally intensive non-linear

optimized operators, it may be concluded that only a small difference occurs at the high angles: the weighted

least squares operator decays a little in amplitude whereas the non-linear operators give rise to small artefacts.
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Figurel: Imulse response for five different extrapolation operators. The left picture shows the result for an
operator with 19 points and a maximum design angle of 65° and the right picture shows an operator of 39
points with a mazimum design angle of 85°.



