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Summary

Using the reciprocity theorem of the correlation type an implicit relation between seismic reflection and
transmission data has previously been derived. In this paper this relation is used to calculate the transmission
coda from reflection data measured at the surface. The transmission response is represented by a generalized
propagator consisting of a primary propagator and a coda operator. Using this representation it is possible to
solve the implicit relation for the coda operator, using an eigenvalue decomposition on the correlation of the
reflection response. The calculated coda response may be used in seismic reflection imaging to obtain an
image in which the internal multiple scattering effects are suppressed. A simple example for the estimation
of the transmission coda illustrates the discussed procedure.

Introduction

The one-way reciprocity relation of the correlation type in the frequency domain, introduced by Wapenaar
and Grimbergen (1996):

∫
∂D0

{(P+
A )∗P+

B − (P−
A )∗P−

B }d2xH =
∫

∂Dm

{(P+
A )∗P+

B − (P−
A )∗P−

B }d2xH (1)

is the starting point to derive a relation between reflection and transmission data. The medium parameters in
both statesA andB are assumed to be identical, lossless and 3-D inhomogeneous and the domainD is source
free. ∂D0 and∂Dm are two horizontal boundaries atx3,0 andx3,m, respectively, enclosing the domainD

(see figure (1)).xH denotes the horizontal coordinates(x1, x2) and∗ denotes complex conjugation. Both
states, and the related flux-normalized up- and down-going fieldsP− andP+ respectively, are shown in the
table of figure (1). Substituting the two states in the table of figure (1) into equation (1) results in:

δ(xH,A − xH,B) −
∫

∂D0

R∗
0(x,xA)R0(x,xB)d2xH =

∫
∂Dm

T ∗
0 (x,xA)T0(x,xB)d2xH . (2)

HereR0(x,xA) is the reflection response of the inhomogeneous medium inD, including all internal mul-
tiples, for a source atxA = (xH,A, x3,0) and a receiver atx. T0(x,xA) is the transmission response of the
inhomogeneous medium inD. The subscript0 denotes that no free surface multiples are included. There
is no unique way to solve the full transmission response from equation (2). However, by using a suitable
representation of the transmission operator there is a way to solve the transmission coda.

Transmission coda calculated from eigenvalues of correlated reflection data

Equation (2) is rewritten in matrix notation:

THT = I − RHR, (3)

where superscriptH denotes complex-conjugate transpose. A column of matrixR contains the discretized
version ofR0(x,xA) for a fixed source position atxA and a range of receiver positionsx atx3,0 (Berkhout
(1982)). I is an identity matrix. For a fixed spread geometryR is symmetric (but not Hermitian) due to the

EAGE 65rd Conference & Technical Exhibition — Stavanger, Norway, 2 - 5 June 2003



State A

∆x3

D

∂D0

∂Dm

x xA

x

R0(x,xA)

T0(x,xA)

x3,0

x3,m

Surface∂D0

Field State A State B
P+ δ(xH − xH,A)sA(ω) δ(xH − xH,B)sB(ω)
P− R0(x,xA, ω)sA(ω) R0(x,xB , ω)sB(ω)

Surface∂Dm

P+ T0(x,xA, ω)sA(ω) T0(x,xB , ω)sB(ω)
P− 0 0

Figure 1:At xA (state A) orxB (state B; not shown) just above∂D0 there is a source for downgoing waves.
The half-spaces above∂D0 and below∂Dm are homogeneous. The half-space below∂Dm is source free.
The wave fields of both states are shown in the table.

reciprocity relation between source and receiver positions. The transmission response is written as:

T = WpC, (4)

whereWp is the primary propagator for downgoing waves between depth levelsx3,0 andx3,m and where
C accounts for the coda due to multiple scattering caused by the inhomogeneities between the two depth
levels. Substituting equation (4) into equation (3) and making use of the fact that for the primary propagator
we can writeWH

p Wp = I, gives

CHC = I − RHR. (5)

This equation states that the auto-correlation of the transmission coda matrix can be obtained from the auto-
correlation of the reflection matrix. To resolveC from CHC the assumption is made that it is possible to
decomposeC in its eigenvalues;

C = LΛcLH (6)

with

Λc = exp {A∆x3} =




e−A1∆x3 0 . . . 0
0 e−A2∆x3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . e−AN∆x3


 (7)

andA1,A2, . . . ,AN being the temporal Fourier transforms of causal filters. Using the assumption of equa-
tion (6) the correlation of the coda matrix of equation (5) can be written as:

CHC = LΛH
c ΛcLH (8)

ΛH
c Λc = exp {−2R{A}∆x3} (9)

ΛH
c Λc =




e−2R{A1}∆x3 0 . . . 0
0 e−2R{A2}∆x3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . e−2R{AN }∆x3


 . (10)

Note that for plane waves in 1D mediaC is a circulant matrix, which eigenvalues can be found by using the
Fourier transform:C = FHΛcF. Furthermore, O’Doherty and Anstey (1971) showed that for 1D media the
coda operatorC is related to the exponent of the power spectrum of the reflection coefficient. The elements
Al of A are the Fourier transforms of causal filters in the time domain. This statement is true for 1D media,
since in that caseA is the spatial Fourier transform ofC, soAl = Ã(kx,l, ω). Note that before the temporal
Fourier transforms yields the causal filters, the diagonal elements must be scaled from wavenumberkx,
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Figure 2: Reflection and transmission data and correlation of transmission and reflection data inx1 − t
(i.e., one column of the data matrix, transformed back to time). The internal multiple train is clearly visible
on the correlation of the transmission and reflection data.

which corresponds to a certain eigenvalue numberl, to ray parameterp with 1
ω (kx = pω). The scaling of

the eigenvalues for 3D media remains to be investigated.

From equation (10)R{Ai} can be calculated using:2R{Ai} = − ln(ΛH
c,iΛc,i). Reconstruction ofAi from

its real part is possible becauseAi is a causal function and with the definition of the analytic signal it can
be reconstructed (see Bracewell (1986) for more details). To summarize the procedure, the following steps
must be taken to compute the transmission coda from reflection data:

R RHR LΛrLH ΛH
c Λc A exp {−A∆x3} C

whereΛr contains the eigenvalues ofRHR andI − Λr = ΛH
c Λc.

The inverse of the transmission coda (see also Herman (1992), Wapenaar and Hermann (1993)), in combi-
nation with an inverse primary propagator, may be used in seismic reflection imaging to obtain an image in
which the internal multiple scattering effects are suppressed. In this approach the inverse primary propaga-
tor is estimated from the traveltime data (as usual), whereas the inverse transmission coda is obtained from
the cross-correlation of the reflection measurements.

For comparison, in the imaging scheme proposed by Weglein et al. (2000), the full inverse operator (pri-
maries as well as internal multiples) is estimated directly from the reflection measurements. The advantages
and disadvantages of both methods with respect to accuracy, stability, etc. remain to be investigated.

Results for point source in 1D medium

For point sources in 1D mediaRHR is Hermitian and Toeplitz. Using the Toeplitz matrix as a basis to con-
struct a circulant matrix, an approximation of its eigenvalues can be obtained by using the Fourier transform.

A 1D 3 layer medium is chosen with layer velocities 1000,4000 and 1000 m/s and interface depths 0,200,400
m. The middle layer, thickness of 200 m, will give internal multiples which are0.1 s. apart on the zero-offset
trace. The reflection and transmission data, together with their correlation, are shown in figure(2).

The eigenvalues ofTHT = I − RHR as function of the ray parameterp are shown in figure (3a,b and c).
The eigenvalues were computed in different ways. The Hermitian Toeplitz matrix can be transformed into
a circulant matrix and the Fourier transform can then be used to calculate the eigenvalues (result shown in
figure (3a)). The Lapack routine zheevx is also used to calculate the eigenvalues of the circulant matrix
and give, as expected, the same results (figure (3b)) as obtained with the Fourier transform. However, after
the eigenvalue decomposition the eigenvalues must be mapped to corresponding wavenumbers to be able to
transform the results to the ray-parameter domain. The mapping from eigenvalues to wavenumber requires
a sorting of the eigenvalues. The sorting used to obtain figure (3b) is based on the frequency content of the
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Figure 3: Eigenvalues (Λt) of correlation of transmission response inτ − p domain using FFT’s (a) and
Lapack routines (b) for a circulant matrix based on the Toeplitz matrixTHT. The eigenvalue decomposition
of the Hermitian matrix (c) is done with Lapack. The coda operator (d) is calculated from the eigenvalue
decomposition based on the circulant matrix.

eigenvectors.

The third way of computing eigenvalues of Hermitian matrix are computed with the same Lapack routine
zheevx and the results are shown in figure (3c). Note the effects of the edges of the matrix on the eigenvalue
result.

Figure (3d) shows the computed coda operator from the eigenvalues of the circulant matrix. To compute
the coda the logarithm of the eigenvalues, the diagonal ofΛH

c Λc, is taken yielding−2R{Ai}. From the
real part ofAi the causal function is calculated using the Hilbert transform and the result is inserted into
equations (6) and (7) to calculate the coda.

Conclusions

The implicit relation between correlated reflection and correlated transmission data can be used to estimate
the transmission coda for 3D inhomogeneous media. The used assumptions on the transmission operator led
to an eigenvalue problem. We demonstrated the solution of this general formulation for 1D media. Further
investigation is needed in order to understand the eigenvalue decomposition in laterally varying media and
the influence of the acquisition geometry.
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