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Summary

A spatial convolution operator is designed so that it
is stable and accurately matches the exact operator
in the wavenumber domain in a desired wavenumber
range. This can be done by a weighted least-squares
optimization. Several applications require the use of an
asymmetric operator. By introducing an asymmetric
weight function, the properties of the operator can be
inuenced to reach an optimal design.

Introduction

In recent years, several methods have been developed
to transform operators in the (k1; f) domain to a
spatial convolution operator in the (x1; f) domain.
For one-way wave�eld extrapolation, Holberg (1988)
and Thorbecke (1997) constructed spatial operators
which are stable in a recursive extrapolation scheme.
Migration in the (x1; f) domain has the advantage
that laterally varying media can be considered. A short
operator should be designed to restrict computation time.

In most cases the convolution operators are symmet-
ric. However, there are several applications for which
asymmetric operators are preferred. For example, for
applications where only a very small number of data
points is available (in the same order as the number
of operator points), artifacts are introduced for the
greater part of the output points, since the opera-
tor acts outside the array of data points. This can
be resolved by designing asymmetric operators which
act on the total array of data points for each output point.

In this paper we discuss the design of asymmetric
operators. The theory is set up in a general sense,
i.e., for any application in which the use of asymmetric
operators is required. One could think of wave�eld ex-
trapolation in anisotropic media with a tilted symmetry
axis (Zhang et al., 2001), elastic wave�eld decomposi-
tion, etc. The theory then is applied for the design of
asymmetric wave�eld extrapolation operators for imag-
ing obstacles in the soil ahead of a tunnel boring machine.

Theory

Transformation of an operator in the (k1; f) domain to the

(x1; f) domain has to be done in an optimal way so that
it results in a stable spatial convolution operator. Over
a desired wavenumber interval, its wavenumber spectrum
has to be equal or at least close to the exact operator.
This interval depends on the relative lateral position of
the output point for which the convolution result will be
calculated. In discrete form, the forward spatial trans-
form can be written as

~W (n�k1) = �x1

M2X
m=M1

exp(jn�k1m�x1)W (m�x1)

for N1 � n � N2: (1)

The length of the spatial convolution operator is pre-
sented by M1 :::M2 and N1 ::: N2 denotes the length of
the Fourier transform. In matrix notation this becomes

~W = �W (2)

or
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~W is an approximation of the exact phase-shift operator,
while W is the desired short spatial operator. To make
sure that the spatial operator is zero outside its work-
ing length, the number of samples in the (k1; f) domain
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must be greater or equal to the number of receivers. This
means that Eq. 3 has more equations than unknowns and
should be solved using an approximation procedure like
the weighted least-squares method. The solution of the
weighted least-squares operator is given by (Thorbecke,
1997)

W =
h
�
H ~��

i
�1

�
H ~� ~W (5)

in which the weight function ~� is a diagonal matrix de-
�ned as

~�mn = w(n�k1)�mn: (6)

The weight function w(n�k1) should be chosen in such
a way that the desired part of the wavenumber spectrum
gets a weight of one. Outside this interval, the spectrum
is suppressed by a low weight factor to result in a stable
behavior of the operator. The size of the interval is
depending on the angles where the operator should be
close to the exact operator. By changing the parameters
of the weight function, the operator can be designed in
an optimal sense.

Asymmetric wave�eld extrapolation operators

The theory in the previous section applies to any sym-
metric or asymmetric operator (wave�eld decomposition,
(an)isotropic wave �eld extrapolation, etc.). From here
onward, we consider wave�eld extrapolation in isotropic
media. In Thorbecke (1997), the weighted least-squares
approximation is described for symmetric spatial oper-
ators. A short spatial operator for extrapolation in an
isotropic medium is designed to reduce computation time.
Therefore a symmetric operator can easily be determined
around each depth point. In this case, it holds that

M1 = �M2; (7)

W (m�x1) = W (�m�x1); (8)

~W (n�k1) = ~W (�n�k1): (9)

When the spatial operator is designed asymmetric,
the corresponding extrapolation operator in the (k1; f)
domain will become also asymmetric.

The phase-shift operator is a one-way extrapolation op-
erator in the (k1; f) domain that is used for recursive ex-
trapolation schemes. This operator will be used as refer-
ence for the optimization of the operators in the next
section. The phase-shift operator for a 2-dimensional
medium is given by (Gazdag, 1978), (Berkhout, 1985),
(Wapenaar and Berkhout, 1989)

~W (k1;�x3; f) = exp(�jk3�x3); (10)

with

k3 =

(p
k2 � k21 k

2
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2

�j
p
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2
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2 (11)

in which k is de�ned as !=c with c being the propagation
velocity. For wavenumbers larger than k, the wave�eld
becomes evanescent.

Results

One of the applications for which an asymmetric operator
could be used is tunnel boring in soft soils. The tunnel
boring machine is constructed to excavate through sands
and clays and hitting hard obstacles should be avoided.
Therefore a source and receivers are installed on the
cutter wheel of the tunnel boring machine to image
the subsurface in front of the machine (Swinnen et al.,
1999). In this case, the number of receivers that can
be used and their aperture is restricted by the diameter
of the tunnel boring machine. Transformation of the
spatial data to the (k1; f) domain will introduce a lot of
artifacts because of the small number of traces. Therefore
migration should be carried out by a spatial convolution
operator. The length of the operator is determined by
the number of receivers. In an extrapolation step each
point for which the extrapolated wave�eld has to be
calculated, determines the asymmetry of the operator.
The operator should be accurate over a range of angles
which is selected via the weight function w(n�k1) (Eq. 6).

The setup for this discussion can be seen in Fig. 1 where
operators with a 9-point length are designed. For output

depth point x
(0)

1 , the operator will be symmetric. Since
the subsurface is considered to be locally homogeneous,

the operator for output depth point x
(i)
1 will be the

mirror image of the operator for output depth point

x
(�i)
1 . The following parameters are used: �x1 = 0.5

m, �x3 = 0.15 m, f = 50 Hz and c = 150 m/s (typical
shear-wave velocity for soft soils).
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Fig. 1: Setup used for the design of the asymmetric spatial
operators

The spatial convolution operator for output position

x
(�3)

1 is shown in Fig. 2. The shape of the operator is

SEG/San Antonio 2001 Expanded Abstracts Main Menu



Asymmetric Operators

not so smooth. Important in the weighted least-squares
approximation is the k1 - spectrum, plotted in Fig. 3
together with the exact operator. The estimated extrap-
olation operator is really close to the exact situation
in the area of interest, the positive angles and very
small negative angles. The largest error is made at the
transition to the not important negative angles. This
overshoot is suppressed as good as possible but this will
always be at the expense of accuracy in the important
part of the spectrum. Outside this range, the operator is
stable.
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Fig. 2: Spatial convolution operator for output position x
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Fig. 3: Amplitude of the k1 - spectrum of the operator for

output position x
(�3)

1 (solid line is exact operator)

In Fig. 4, a set of operators is shown within a frequency
range from 0 to 200 Hz. All operators are accurate for
positive and small negative angles and stable outside this
range. For frequencies higher than 100 Hz, the larger
negative angles are less suppressed but they still show a
stable behavior.

The relative lateral position of the point for which the
operator has to be designed has a large inuence on the

−6
−4

−2
0

2
4

6

0

50

100

150

200
0

0.2

0.4

0.6

0.8

1

k1 (1/m)f (1/s)

am
pl

itu
de

Fig. 4: Amplitudes of the (k1; f) - spectra of the operators for

output position x
(�3)
1 with frequency ranging from 0 to 200 Hz

accuracy of the operator. Fig. 5 shows the k1 - spectra

of the extrapolation operators for output positions x
(0)

1

(symmetric operator), x
(�2)

1 and x
(�3)

1 , together with
the exact phase shift operator. The symmetric operator
�ts the exact operator accurately for all angles. The
other two curves are accurate over the positive and small

negative angles. The range for output point x
(�2)

1 is

of course a bit larger than for output point x
(�3)

1 . At
negative angles, the asymmetric operator for output

point x
(�3)

1 shows a small overshoot that is harder
to suppress without decreasing the accuracy in the
important range of angles.
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Fig. 5: k1 - spectrum of the operators for output positions

x
(0)

1 , x
(�2)

1 and x
(�3)

1 ; the inuence of the asymmetry of the
operator (dotted line is exact operator)

For positive angles, the amplitude of the di�erence
between the designed operators and the exact opera-

tor (j ~W design � ~W exactj) is plotted in Fig. 6 for the
three curves in Fig. 5. It can be seen that the error of
the complex operators in the (k1; f) domain is very small.
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Fig. 6: Error for the operators for output positions x
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The small e�ect of the overshoot that could be seen
in Fig. 5 is extreme for the outermost points x

(4)

1 and

x
(�4)

1 . The k1 - spectrum for point x
(�4)

1 can be seen
in Fig. 7. The accuracy in the area of positive angles is
not as good as in the case of the operators in Fig. 5 (the
amplitude axis has di�erent scale) and the overshoot is
unacceptable. The overshoot can be suppressed to an
acceptable level, but the error in the important area of
the k1 - spectrum will increase largely. An operator for
these outermost points should be designed using other
methods like non-linear optimization techniques (Zhang
et al., 2001).
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Fig. 7: k1 - spectrum of the operator for output position x
(�4)

1

Conclusions

The design of asymmetric spatial convolution operators
using a weighted least-squares procedure results in a
good approximation of the exact operator in the desired
k1 range. The accuracy highly depends on the relative

lateral position of the output point for which the operator
has to be optimized. When the operator shifts further
from the symmetric case, the accuracy decreases. For
spatial operators where only positive or only negative
angles are considered, the overshoot becomes too large
to suppress with the current method.
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