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SUMMARY

Recently, an iterative scheme has been introduced to retrieve
the down- and upgoing Green’s functions at an arbitrary level
ΛF inside an acoustic medium as if there were a source at the
surface. This scheme requires as input the reflection response
acquired at the surface and the direct arrival of the transmission
response from the surface to levelΛF . The source locations of
these Green’s functions can be effectively redatumed to level
ΛF by interferometric redatuming, which requires solving a
multidimensional deconvolution problem, essentially being a
Fredholm integral equation of the first kind. We show how
this problem can be simplified by rewriting it as a Fredholm
integral equation of the second kind that can be expanded as
a Neumann series. Redatumed data can be used for multiple-
free true-amplitude imaging at or in the vicinity ofΛF . For
imaging the closest reflector toΛF only, the Neumann series
can be truncated at the first term without losing accuracy.

INTRODUCTION

Broggini et al. (2012) introduced a data-driven scheme to ob-
tain the Green’s function at levelΛF inside a layered acoustic
medium, using reflection data at the surface only. Wapenaar
et al. (2013a) extended this scheme to 3D media, but required
as additional input the direct arrival of the transmission re-
sponse from the surface toΛF . Output of this scheme are the
down- and upgoing Green’s functions as if there were sources
at the surface and virtual receivers atΛF . By multidimen-
sional deconvolution of the retrieved upgoing wavefield with
the downgoing wavefield, these data can be transformed into
data as if there were virtual sources atΛF that radiate down-
wards in a medium that is homogeneous aboveΛF but identi-
cal to the physical medium below this level and of which the
reflection response is recorded by receivers atΛF (Wapenaar
et al., 2011). An alternative multidimensional deconvolution
problem can be formulated to generate upward radiating vir-
tual sources in a medium that is homogeneous belowΛF and
identical to the physical medium above this level. Unfortu-
nately, multidimensional deconvolution is computationally ex-
pensive and not always numerically stable (van der Neut and
Herrmann, 2013). Therefore, we propose a more robust for-
mulation that fits well within the developed framework, since
it utilizes the same operators that are used to initialize the iter-
ative scheme.

AUTOFOCUSING

We start with a brief derivation of the iterative scheme that we
use for autofocusing. We define a reference medium (indicated

with a bar) which is identical to the physical medium above
levelΛF and homogeneous below this level. Both the physical
medium (indicated without bar) and the reference medium do
not have a free surface. Thus, we assume that surface-related
multiples have been removed from the input data, which is
recorded atΛ0, the earth’s surface. All expressions will be
given in the frequency-space domain with superscripts+ and
− representing down- and upgoing fields, respectively. We
define f̄+1 as the inverse of the downgoing field̄G+ in the ref-
erence medium, according to

∫

Λ0

Ḡ+ (x,xA) f̄+1 (xA,xF )d2xA = δ
(

xH −xH,F
)

, (1)

whereδ
(

xH −xH,F
)

is a 2D Dirac delta function withH de-
noting that only the horizontal coordinates are evaluated. In
this expression,xA is located atΛ0, whereasx andxF are at
ΛF . We also definēf−1 by a convolutional integral of̄f+1 with
the reflection responsēR∪ of the reference medium:

f̄−1 (xB,xF ) =

∫

Λ0

R̄∪ (xB,x) f̄+1 (x,xF )d2x. (2)

Starting with reciprocity theorems for one-way wavefields, the
following Green’s function representations can be derived (Wape-
naar et al., 2013b):

G− (xF ,xB) =

∫

Λ0

R∪ (xB,x) f̄+1 (x,xF )d2x− f̄−1 (xB,xF ) ,

(3)

and

G+ (xF ,xB) = f̄+∗

1 (xB,xF )−

∫

Λ0

R∪ (xB,x) f̄−∗

1 (x,xF )d2x.

(4)

HereR∪ is the recorded data at the earth’s surface and super-
script ∗ denotes complex conjugation. According to this ex-
pression, the up- and downgoing fields can be expressed as
functions of the known input dataR∪ and the two functions
f̄+1 and f̄−1 . The goal of autofocusing is to find these func-
tions, such that the Green’s functions can be computed. To
achieve this goal, we will make use of causality principles. We
assume that the downgoing Green’s function can be written as
G+ = G+

d +G+
c , where subscriptd refers to the direct field, ar-

riving at td (xB,xF ). Subscriptc refers to a coda, arriving after
td (xB,xF ). As a consequence,̄f+1 can also be separated into a
direct field and a coda, according tof+1 = f+1,d + f+1,c, where the
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direct field arrives at−td (xB,xF ) and the coda arrives there-
after. Remember that̄f+1 andḠ+ obey equation 1, being a con-
volutional integral. The first event of̄f+1 convolved with the
first event ofḠ+ should produce the first event on the right-
hand side of equation 1, being the delta function. All other
convolutions should arrive after this event and since there is
only one event in the right-hand side, they should cancel each
other. Therefore it can be concluded that

∫

Λ0

G+
d (x,xA) f̄+1,d (xA,xF )d2xA = δ

(

xH −xH,F
)

. (5)

Assuming thatG+
d can be computed from a smooth velocity

model or using Common Focus Point Technology (Thorbecke,
1997), f̄+1,d can be constructed by inversion of equation 5.

Causality is imposed by a window functionwd (xB,xF ), which
acts as a convolutional filter in the frequency domain (indi-
cated by∗

ω
), being equivalent to multiplication in the time do-

main. The time-domain representation of the window function
readswd (xB,xF ) = 1 for t < td (xB,xF ) andwd (xB,xF ) = 0
for t ≥ td (xB,xF ). Since f̄+1,d arrives at−td (xB,xF ) and the
coda arrives thereafter, it follows that

wd(xB,xF ) ∗ω
f̄+∗

1 (xB,xF ) = f̄+∗

1,c (xB,xF ). (6)

With a similar (but slightly more involved) reasoning, we can
show thatf̄−1 ’survives’ the window function, that is

wd(xB,xF ) ∗ω
f̄−1 (xB,xF ) = f̄−1 (xB,xF ). (7)

Due to causality,wd (xB,xF )∗ω
G+ (xF ,xB)=0 andwd (xB,xF )∗ω

G− (xF ,xB) = 0. Substituting equations 3, 4, 6, 7 into these
expressions leads to the coupled 3D Marchenko equations:

f̄+∗

1 (x,xF ) = f̄+∗

1,d (x,xF )+

wd (xB,xF ) ∗ω

∫

Λ0

R∪ (xB,x) f̄−∗

1 (x,xF )d2x, (8)

and

f̄−1 (xB,xF ) = wd (xB,xF ) ∗ω

∫

Λ0

R∪ (xB,x) f̄+1 (x,xF )d2x. (9)

Starting with f̄−1 (xB,xF ) = 0 or f̄+1 (xB,xF ) = f̄+1,d (xB,xF ),
equations 8 and 9 can be solved iteratively, leading to the de-
sired solutionsf̄+1 and f̄−1 . Next, the Green’s functionsG−

andG+ can be computed with equations 3 and 4.

We demonstrate the autofocusing concept with an example. In
Figure 1a, we show the velocity model of a simple layered
medium. In Figure 1b, we show the reflection response of

this medium at the surface without free-surface multiples. To-
gether with the transmission response of the direct field to a fo-
cal pointxF at 2000m depth (indicated by the red dot in Figure
1a), this response is input for the iterative scheme. In Figure 2,
we show the output of the scheme (fieldsf̄+1 , f̄−1 , G+ andG−)
(in red), overlaying the results of direct modeling (in black),
exposing a perfect match.
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Figure 1: a) Synthetic model without a free surface. The fo-
cal point xF is indicated by the red dot at 2000m depth. b)
Reflection response at the surface.
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Figure 2: Retrieved fields̄f+1 , f̄−1 , G+ andG− (in red), over-
laying the result of direct modeling (in black).

ILLUMINATION FROM ABOVE

Once the up- and downgoing Green’s functions at levelΛF are
known, the seismic wavefield can be redatumed by solving the
following Fredholm integral equation of the first kind (Wape-
naar et al., 2011):

G− (xG,xA) =

∫

ΛF

R∪ (xG,x)G+ (x,xA)d2x, (10)

with xG at ΛF , xA at Λ0 andR∪ being the reflection response
as if there were sources and receivers atΛF in a new refer-
ence medium (indicated by the underbar) that is homogeneous
aboveΛF and identical to the physical medium below this
level. One way to go would be to solve equation 10 by least-
squares inversion. However, this problem is ill-posed and addi-
tional regularization is required (van der Neut and Herrmann,
2013). Instead, we can substituteG+ = G+

d +G+
c , convolve
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with f̄+1,d (xA,xF ), and integrate overxA, yielding (with help
of equation 5),

∫

Λ0

G− (xG,xA) f̄+1,d (xA,xF )d2xA =

∫

ΛF

R∪ (xG,x)×

[δ
(

xH −xH,F
)

+

∫

Λ0

G+
c (x,xA) f̄+1,d (xA,xF )d2xA]d

2x
, (11)

being a Fredholm integral equation of the second kind. Three
important observations can be made at this point:

1. The delta function in equation 11 is a bandlimited delta
function (or sinc function) in practice. However, we can re-
place this bandlimited delta function with a synthetic delta
function of infinite spatial and temporal bandwidth. By do-
ing this, we apply natural regularization to the inverse problem
such that additional regularization is no longer required.

2. Alternatively, equation 11 can be expanded with a Neumann
series, yielding a robust solution, as we have seen before in
free-surface multiple elimination (van Borselen et al., 1996).

3. Finally, if we care only about the first reflector ofR∪, the
Neumann series can be truncated at the first term, since this
is the only term that contributes. This observation can be cru-
cial for efficient imaging schemes with image points at or just
below the focusing level.
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Figure 3:R∪ at the focusing level, retrieved by a) regularized
least-squares inversion of equation 10 and b) unregularized in-
version of equation 11 (in red) overlaying the result of direct
modeling (in black).
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Figure 4: Contributions of a) the first term and b) higher-order
terms to the Neumann series expansion of equation 11.

We illustrate these concepts with the synthetic example that
was introduced in the previous section. In Figure 3, we show
the result of regularized least-squares inversion of equation 10
and direct inversion of equation 11 with a synthetic delta func-
tion of infinite bandwidth (in red), overlaying the response of

direct modeling (in black). Both methods retrieve the desired
reflection response within the spatial bandwidth that has prop-
agated through the overburden. However, we emphasize that
regularization was not required in Figure 3b, thus theoretically
preserving the bandwitdh in an optimal way and practically
simplifying the processing flow.

Solving this problem with a Neumann series expansion leads
to a similar result. In Figure 4a, we show the first term of the
series. In Figure 4b, we show the contribution of the higher-
order terms. Note that the higher-order terms cancel the spuri-
ous events that are present in the first-order term for this simple
example with just a single reflector below the focusing level.
Note also that the higher-order terms do not contribute to the
first event and therefore truncating the series after one term is
sufficient to correctly retrieve the first reflector below the fo-
cusing level.

ILLUMINATION FROM BELOW

Alternatively, we can retrieve a reflection response as if there
were sources and receivers atΛF , radiating upwards in the
original reference medium that is homogeneous belowΛF and
identical to the physical medium above this level. This can
be highly beneficial for subsalt imaging, where it is sometimes
more effective to image target reflectors from below rather than
from above (Vasconcelos et al., 2008). We start with a relation
from Wapenaar et al. (2004) to relate the reflection response
from aboveR̄∪ at the surface to the reflection response from
belowR̄∩ at the focusing level:

∫

Λ0

Ḡ+ (x,xB)R̄
∩∗ (xB,xA)d2xB =

−

∫

ΛF

R̄∩ (x,xG) Ḡ+∗ (xG,xA)d2xG.

(12)

We apply f̄+∗

1 (xA,xF ) to this equation and integratexA over
Λ0. Next, we use equations 1 and 2. Multiplying the result
with f̄+1 (xA,x) and integrating overx, we find

f̄−∗

1 (xA,xF ) =−

∫

ΛF

f̄+1 (xA,x) R̄∩ (x,xF )d2x. (13)

Here, we have used the fact that

∫

Λm

f̄+1 (xA,x) Ḡ+ (x,xB)d2x = δ
(

xH,A −xH,B
)

, (14)

as can be verified with equation 1. Similar to what we did
in the previous section, we can separatef̄+1 into a direct field
and a coda. Substitutinḡf+1 = f̄+1,d + f̄+1,c into equation 13,

multiplying with G+
d (xG,xA) and integratingxA over Λ0, it

follows that
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∫

Λ0

G+
d (xG,xA) f̄−∗

1 (xA,xF )d2xA =

∫

ΛF

[δ
(

xH −xH,G
)

+

∫

Λ0

G+
d (xG,xA) f̄+1,c (xA,x)d2xA]R̄

∩ (x,xF )d2x,
(15)

where we used equation 5. The same three observations that
were made in the previous section also hold for this section.
This is illustrated in Figure 5, showing the result of regular-
ized least-squares inversion of equation 13 and direct inversion
of equation 15. The results are of similar quality. However,
regularization is not required for figure 5b, which can be illus-
trated well if we consider the kernels of the inverse problems in
the frequency-wavenumber domain, see Figure 6. Because we
have replaced the bandlimited delta function by a delta func-
tion of infinite bandwidth (corresponding to a flat spectrum),
the use of regularization has been effectively avoided.
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Figure 5: R̄∩ at the focusing level, retrieved by a) regularized
least-squares inversion of equation 13 and b) unregularized in-
version of equation 15.
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Figure 6: Kernels of a) the normal equation of inverse problem
13 and b) the unregularized inverse problem 15.

UTILIZING MULTIPLE REFLECTIONS

Neither equation 13 nor equation 15 uses information from be-
low the focusing level. This can be easily seen, since the focus-
ing operators̄f+1 and f̄−1 depend only on the reference medium
which is homogeneous belowΛF . A different approach was
suggested by van der Neut et al. (2013), by estimating the up-
ward radiating reflection response from multiple reflections.
We evaluate the equations of van der Neut et al. (2013) for the
arraysΛ0 andΛF , yielding

G+ (xG,xA)− Ḡ+ (xG,xA) =

∫

ΛF

R̄∩ (xG,x)G− (x,xA)d2x,

(16)

and

G−∗ (xG,xA)−

∫

Λ0

Ḡ+ (xG,x)R∪∗ (x,xA)d2x =

∫

ΛF

R̄∩ (xG,x)G+∗ (x,xA)d2x.
(17)

On the left-hand sides of these equations, we find internal mul-
tiples in the down- and upgoing wavefield, respectively, that
have contributions from below the focusing level. All fields ex-
cept for the unknown reflection responseR̄∩ can be computed
from the 3D coupled Marchenko equations, whereḠ+ can be
estimated by inversion of̄f+1 (see equation 1). Equations 15,
16 and 17 can be inverted jointly, where each subproblem can
be assigned a weight. By varying these weights, we can choose
to boost the importance of the multiples in the inverse problem.
In the following example, we have normalized each problem
and gave weight 1 to equation 15, and weights 0.5 to equations
16 and 17. In Figure 7a, we show the result of the inversion,
being not much different from figure 5b. However, if we con-
sider the kernel of the joint inverse problem, we see that the
multiples fill in additional parts of the spectrum, compare Fig-
ure 7b with 6b. This indicates that multiples could provide
additional information. However, we must be careful, since
these signals are weaker and therefore boosting them is likely
to bring additional noise into the problem. Future research
on more complex models should show if adding the multiples
to the inverse problem is providing us useful additional illu-
mination. However, with the current set-up, we have created
flexibility in ’raising or lowering the voice of the multiples’.
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Figure 7: a)R̄∩ at the focusing level, retrieved by solving the
joint inverse problem. b) Kernel of this joint inverse problem.

CONCLUSION

Interferometric redatuming of autofocused data requires solv-
ing a Fredholm integral equation of the first kind. We have
shown how this problem can be rewritten as a Fredholm inte-
gral equation of the second kind, using the fields that were used
to initiate the autofocusing scheme. This adapted problem is
computationally more attractive to solve, since it requires no
additional regularization and it can be expanded effectively as
a Neumann series. If it is our aim to image at, just below or
just above the focusing level only, the Neumann series can be
truncated after the first term, being computationally attractive.
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