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SUMMARY

Through the multidimensional Marchenko equation, seismic

redatuming can be expressed as a series. Unlike in conven-

tional redatuming, where only the first term of these series is

evaluated, not only primary reflections, but all orders of in-

ternal multiples are taken into account by this approach. By

crosscorrelation of the redatumed wavefields with their corre-

sponding (direct) source wavefields, as computed in a macro

velocity model, a seismic image can be obtained without arti-

facts from internal multiples. Unfortunately, this approach re-

quires accurate knowledge of the source signature, which is not

always available. Moreover, the method is sensitive for source

/ receiver ghosts, coupling effects, attenuation and other noise.

In practice, the individual terms in the series can also be added

adaptively. This procedure is successful if internal multiples

don’t interfere with primary reflections, but has its limitations

in more complex media. In this contribution, we analyze the

feasibility of adaptive addition, using only the first two terms in

the series. The result appears useful for internal multiple sup-

pression, as we illustrate on synthetic data with severe event

interfererence and on field data.

INTRODUCTION

In Reverse Time Migration (RTM), seismic data are propa-

gated backwards in time from the Earth’s surface to image

points in the subsurface, using finite-difference computations

in a smooth macro velocity model. An image is created by

crosscorrelation of these backpropagated receiver wavefields

with their associated source wavefields, which are propagated

forwards in time from the source locations. An equivalent re-

sult can be obtained by redatuming the recorded data to ev-

ery image point in the subsurface using pre-computed Green’s

functions and crosscorrelating these redatumed data with their

associated source wavefields (Esmersoy and Oristaglio, 1988;

Schuster, 2002). Although RTM has been very successful in

imaging primary reflections, it is not able to handle internal

multiples, given that the macro model is generally smooth and

does not contain information on the subsurface reflectivity. As

a consequence, internal multiples are imaged at erroneous lo-

cations, causing artifacts in the RTM image.

Recently, it was shown how up- and downgoing wavefields

inside the subsurface can be computed through the multidi-

mensional Marchenko equation, using seismic reflection data

and a macro velocity model (Wapenaar et al., 2014). By mul-

tidimensional deconvolution of the retrieved upgoing wave-

fields with the downgoing wavefields at each depth level, an

image can be obtained, where not only primary reflections,

but also all orders of internal multiples contribute to the re-

trieved reflectivity (Behura et al., 2014; Broggini et al., 2014).

Meles et al. (2015) showed how internal multiples can also

be predicted and removed by combining the Marchenko equa-

tion with seismic interferometry. Alternatively, we can use

the Marchenko framework to replace the receiver wavefields

in conventional RTM. By retrieving the upgoing wavefields at

each image point through the Marchenko equation and cross-

correlating these with their associated (direct) source wave-

fields, an image can be constructed, which is similar to the

RTM result, but lacks the artifacts caused by internal multi-

ples.

MARCHENKO REDATUMING

Wapenaar et al. (2014) showed how up- and downgoing wave-

fields in the subsurface can be retrieved through an iterative

scheme. By adding the update of each iteration subsequently,

it follows that these wavefields can be expressed as a series.

For the upgoing wavefield, we can write these series as

u= u0+

∞∑

k=1

uk. (1)

In this notation, u is a vector of concatenated traces that de-

scribe the upgoing wavefield at a specified image point in the

subsurface for all source locations at the surface. The first term

in these series, u0, is the upgoing wavefield that we would ob-

tain by conventional seismic redatuming. It can be retrieved

by evaluating (Berryhill, 1984; Van der Neut et al., 2015):

u0 = ΨΨΨRfd . (2)

Here, fd is introduced as the initial focusing function. It con-

tains time-reversed Green’s functions (computed in the macro

model) from all source locations to the subsurface image point.

The elements of fd are arranged in a similar fashion as those

of vector u, but are reversed in time. Matrix R applies multi-

dimensional convolution of these time-reversed Green’s func-

tions with the recorded data at the surface. Finally, we have

introduced a mask matrix ΨΨΨ to truncate the output. This ma-

trix removes all information before the direct wavefield. The

required truncation times for this operation are obtained from

the initial focusing function fd .

A conventional RTM image can be obtained by crosscorre-

lating u0 with the associated source wavefield at each image

point. With this approach, primary reflections are migrated

correctly, but internal multiples are not. This can be under-

stood intuitively, since u0 is not the exact upgoing wavefield in

the subsurface, but an approximation, where the series in equa-

tion 1 have been truncated after the first term. To be more spe-

cific: u0 contains all physical upgoing reflections that populate

u, but is contaminated with spurious events, stemming from in-

ternal multiples in the overburden. These spurious events are

suppressed by the other terms in the series, which can be ex-

pressed as (Wapenaar et al., 2014; Van der Neut et al., 2015):
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Figure 1: a) Synthetic 2D model (with propagation velocities

in m/s). The black dot indicates the reference image point.
b) Function j evaluated for various scaling factors a of the re-

flection data that was computed in this model. The series in

Equation 1 has been truncated at k = 10.

z 
(k

m
)

 

 

0.5

1

1.5

2
0

1000

2000

3000

4000

5000

6000a)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

a

j

b)

Figure 2: a) Synthetic 1D model (with propagation velocities

in m/s). The black dot indicates the reference image point. b)
In solid black: function j evaluated for various scaling factors

a of the reflection data that was computed in this model. The

series in Equation 1 has been truncated at k = 50. In dashed
red: same, where the series has been truncated at k = 1.

uk = ΨΨΨR(ΘΘΘR⋆
ΘΘΘR)k fd . (3)

Matrix R⋆ has a similar structure as R, but it applies multidi-

mensional crosscorrelation (rather than convolution) with the

reflection data. Matrix ΘΘΘ is complimentary to ΨΨΨ in the sense

that ΨΨΨ+ΘΘΘ = I. This matrix removes all information after the
direct wavefield (including the direct wavefield itself). Both ΘΘΘ

and ΨΨΨ are symmetric in time, meaning that they apply similar

truncations to the acausal part of any wavefield as they do to

the causal part. If the correct upgoing wavefield u (rather than

approximation u0) would be crosscorrelated with the source

wavefield at each image point, an equivalent RTM image can

be constructed without artifacts from internal multiples.

MINIMUM-ENERGY CRITERION

Evaluation of the series in Equation 1 requires accurate knowl-

edge of the exact amplitudes of the reflection data that consti-

tute the matrices R and R⋆. To illustrate this, we use Equation

1 to retrieve the upgoing Green’s function at a reference image

point in a 2D synthetic model that is shown in Figure 1a. More

information on this model and the acquisition parameters can

be found in Wapenaar et al. (2014). In our example, we rescale

the data with a coefficient a, prior to redatuming. For various

values of a, we have evaluated the following (cost) function,

using the redatumed data:
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Figure 3: a) Image of u0 (solid yellow + left half of gray scale)

versus the image of data without internal multiples (dashes red

+ right half of gray scale). b) Similar image of u that we re-

trieved with Equation 1, truncated at k = 50, using the exact
reflection response. c) Image of u0 after adaptive addition of

u1.

j =
|u|2
|u0|2

. (4)

Here, |u|2 and |u0|2 are the l2-norms of u and u0, being mea-
sures for the overall ‘energy’ in these gathers. The resulting j

is shown in Figure 1b, where Equation 1 has been evaluated up

to k = 10. We immediately observe a well-defined minimum
at a = 1, being its true value. When a is too small, updates
are under-predicted, resulting in an incomplete removal pro-

cess of the spurious events that are embedded in u0. If a is too

large, updates are over-predicted, such that extra information

is added to the gathers (rather than subtracted). As Figure 1b

suggests, j seems to be a useful cost function to determine a,

even if the data are erroneously scaled. Extending this idea, a

could be replaced by a short adaptive filter that minimizes cost

function j. In that way, mismatches in the predicted updates

can be compensated, even if they are frequency-dependent. In

various other demultiple methods, adaptive filters have proven

very useful, especially in field data applications (Verschuur

and Berkhout, 1997; Luo et al., 2011).

The success of adaptive filters depends strongly on satisfying

the minimum-energy criterion of cost function j. In severely

complex media, the interference of events can obstruct the

adaptive procedure. To illustrate this problem, we have re-

peated the previous experiment in a complex 1D model, see

Figure 2a. More information on this model can be found in

Alexandrov et al. (2012). Even in this complex model with se-

vere event interferences, we find a clear minimum of the cost

function at a = 1, as shown by the solid black line in Figure
2b (where we evaluated up to k = 50). It should be noticed,
though, how rapidly j increases if a is just slightly higher than

1, indicating a high sensitivity for over-scaling the data. An-

other important notification is that solving for a is in essence

a nonlinear problem. As a crude approximation, we can trun-

cate the series at k = 1. As a consequence, solving for a be-
comes a linear problem. The dashed line in Figure 2b shows
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j for this particular case. Although the observed minimum is

clearly not at a= 1 (and does not provide a solution to the ex-
act Marchenko equation), solving this minimization problem

locally can still serve as valuable input for internal multiple

suppression. To illustrate this, we have retrieved the upgoing

wavefield at each depth level of the model and computed an

image by crosscorrelation with the associated source pulse. In

Figure 3a, we show the result (in solid yellow) for the migra-

tion of u0. This result can be interpreted as a 1D RTM image.

We compare this result with an equivalent image of a refer-

ence dataset with only primaries (in dashed red). We observe

a significant amount of artifacts in the image of u0, mainly

stemming from the strong contrasts in the shallow part of the

model, emerging as spurious events in the redatumed data. In

Figure 3b, we show the image of u, which is obtained with

Equation 1, truncated at k= 50, using the correct scaling of the
reflection response (a= 1). Note that most of the artifacts have
been removed from the image, confirming the effectiveness of

Marchenko redatuming. In Figure 3c, we show an equivalent

result, where only the first update u1 has been added adaptively

to u0. In this example, we have used a scalar adaptive filter that

was applied in a local sliding window of 50ms. Although we

have not been able to obtain the accuracy that we demonstrated

in Figure 3b, we still have achieved a significant improvement

compared to imaging u0, even with the high level of event in-

terference that characterizes this model.

APPLICATION TO FIELD DATA

To evaluate the performance of adaptive Marchenko imaging

in practice, we test the procedure on marine streamer data.

More information on these data and the acquisition parame-

ters can be found in Altheyab et al. (2013). For our current

study, we select a relatively simple part of the data, covering

2.5km at the surface. The source signature has been decon-
volved from these data and free-surface multiples have been

removed. Further, we have gained the data by
√
t to mimic

a 2D situation (accounting for 3D geometrical spreading) and

we interpolated the near offsets by NMO-correction and cu-

bic spline interpolation, following Verschuur (1991). First, we

redatumed the recorded data in a macro velocity model with

Equation 2, leading to an initial estimate of the upgoing wave-

field u0 at each image point. A conventional RTM image is

obtained by crosscorrelating these data with source wavefields

that were computed in the same macro model. This image is

shown in Figure 4a, with a zoomed section in Figure 5a. Two

artifacts of internal multiples have been indicated by the red

and yellow arrows. Their origin is explained by the dashed

red and yellow raypaths in the figure. We aim to remove these

artifacts by adding the second term u1 in Equation 1 to our

initial estimate of the upgoing wavefield u0. Since imaging is

a linear process, we can migrate u1 separately and add the re-

sult to the RTM image of u0, as we will do in this example.

The image of u1 is shown in Figure 4b, with a zoomed section

in Figure 5b. The red and yellow arrows indicate the events

that are supposed to cancel the artifacts in Figures 4a and 5a.

Unfortunately, the amplitudes are incorrect and the events are

slightly out of phase. This can be due to various reasons, such

as incorrect near-offset interpolation, frequency-dependent at-

tenuation, unaccounted 3D effects, incorrect deconvolution of

the source signature, incorrect deghosting or other noise. We

try to account for these effects by an adaptive filter that en-

forces minimum energy when the images of u0 and u1 are

added together. The filter is 5 samples long and applied in a

local sliding window of 750m by 750m. In Figures 4c and 5c,

we show the image of u1, after applying the filter. Although

the signals are slightly more in phase, a complete subtraction

process of the artifacts in the image of u0 is still cumbersome.

This is illustrated in Figures 4d and 5d, where the images of

u0 and u1 are added (after the adaptive filter). Although the

event that is marked in yellow has clearly been subtracted to

some extent, this process has been incomplete. The event that

is marked in red seems also to be weakened, but this obser-

vation is hindered by various interferences, making it hard to

draw a definite conclusion here.

CONCLUSION

The multidimensional Marchenko equation can be solved by

evaluating a series, which can be used for redatuming a seis-

mic wavefield from the surface to an image point in the subsur-

face. In conventional seismic redatuming, only the first term of

the series is evaluated. Although this term inherits all physical

upgoing reflections, it can also contain spurious events that are

caused by internal multiples in the overburden. These spurious

events can be eliminated from the redatumed data by evaluat-

ing the remainder of the series. By assuming that the reda-

tumed data has minimum energy after subtracting the spurious

events, the terms in the series can be added adaptively. We

have shown that this minimum-energy criterion is often satis-

fied, even in severely complex models. However, finding the

adaptive filters is essentially a non-linear problem. A crude

approximation can be made by summing only the first two

terms in the series adaptively. Even in relatively complex me-

dia with strong event interferences, this approach enabled us

to suppress artifacts from internal multiples. Care should be

taken, especially with aggressive long filters applied in short

windows, since primary reflections can be accidentally elim-

inated, as we know from other methods that use minimum-

energy criteria. Finally, we have demonstrated how artifacts

from internal multiples can be suppressed in a RTM image of

marine streamer data, using the adaptive Marchenko redatum-

ing strategy. Although this suppression was incomplete, more

accurate preprocessing is likely to improve these results.
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Figure 4: Images of a) u0, b) u1, c) u1 after adaptive filtering

and d) u0+u1 after adaptive filtering.

x (km)

z 
(k

m
)

0.5 1 1.5

2.5

3

3.5

a)

x (km)

z 
(k

m
)

0.5 1 1.5

2.5

3

3.5

b)

x (km)

z 
(k

m
)

0.5 1 1.5

2.5

3

3.5

c)

x (km)

z 
(k

m
)

0.5 1 1.5

2.5

3

3.5

d)

Figure 5: Zoomed sections of the blue boxes in Figures 4a, b,

c and d.
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