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S U M M A R Y
Marchenko redatuming is a novel scheme used to retrieve up- and downgoing Green’s func-
tions in an unknown medium. Marchenko equations are based on reciprocity theorems and are
derived on the assumption of the existence of functions exhibiting space–time focusing prop-
erties once injected in the subsurface. In contrast to interferometry but similarly to standard
migration methods, Marchenko redatuming only requires an estimate of the direct wave from
the virtual source (or to the virtual receiver), illumination from only one side of the medium
and no physical sources (or receivers) inside the medium. In this contribution we consider a
different time-focusing condition within the frame of Marchenko redatuming that leads to the
retrieval of virtual plane-wave responses. As a result, it allows multiple-free imaging using
only a 1-D sampling of the targeted model at a fraction of the computational cost of stan-
dard Marchenko schemes. The potential of the new method is demonstrated on 2-D synthetic
models.

Key words: Controlled source seismology; Seismic interferometry; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

Marchenko redatuming estimates Green’s functions between the
earth’s surface and arbitrary locations in the subsurface. Differ-
ently from seismic interferometry, in Marchenko redatuming no
real sources, nor receivers, are required at the chosen subsurface
locations (Broggini et al. 2012b ; Wapenaar et al. 2014). These
Green’s functions are evaluated using reciprocity theorems involv-
ing the so-called ‘focusing functions’, that is, wavefields which
achieve space–time focusing in the subsurface.

In principle, redatumed Green’s functions can be used to provide
multiple-free images directly (Behura et al. 2014; Broggini et al.
2014). However, this approach requires as many virtual sources as
there are image points in the subsurface. Marchenko redatuming
also allows one to perform redatuming of the reflection response
from the surface to a finite number of depth levels and to apply
standard imaging in between those datum levels (Wapenaar et al.
2014; Ravasi et al. 2016). In that case, however, the redatumed
reflection responses still include internal multiples reverberating
below the redatuming level, which again may diminish the quality
of resulting images if the distance between the redatuming levels is
too large.

Other applications of the Marchenko method include demultiple
schemes (Meles et al. 2015, 2016; van der Neut & Wapenaar 2016;
da Costa Filho et al. 2017b), microseismic source localization (Be-
hura et al. 2013; van der Neut et al. 2017), inversion (van der Neut
& Fokkema 2018) and homogeneous Green’s functions retrieval
(Urruticoechea & Wapenaar 2017; Wapenaar et al. 2018).

Despite its requirements on the quality of the reflection response
(e.g. knowledge and accurate deconvolution of the source wavelet,
co-location of sources and receiver and knowledge of the absolute
scaling factor of the recorded data), the Marchenko scheme has
already been successfully applied to field data (van der Neut et al.
2015b; Ravasi et al. 2016; da Costa Filho et al. 2017a; Jia et al. 2017;
Staring et al. 2017). Moreover, recent advances have shown how
the requirements above can be considerably relaxed by combining
the Marchenko equations with a one-way version of the Rayleigh
integral representation (Ravasi 2017).

In this contribution we show how focusing functions associ-
ated with virtual plane-wave responses can be derived by impos-
ing a time-focusing condition in the subsurface, which allows the
derivation of a new set of Marchenko equations. The virtual plane-
wave responses can be used to efficiently image the subsurface
involving only a fraction of virtual responses as compared to stan-
dard Marchenko methods. The proposed method thus stands as an
ideal bridge between areal-source methods for primaries (Rietveld
et al. 1992) and the extended virtual-source Marchenko method
addressed by Broggini et al. (2012a).

Potential and limitations of the new strategy are illustrated by
means of numerical examples.

2 M E T H O D A N D T H E O RY

In this section we briefly introduce reciprocity theorems and use
them to derive the coupled Marchenko equations. To simplify our
derivations, we will make use of both time and frequency domain
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expressions. Following standard formalism, we will indicate wave-
fields in the time and frequency domain as p(x, z, t) and p̂(x, z, ω),
respectively.

Reciprocity theorems for one-way flux-normalized wavefields
relate up- and downgoing wavefield components of two states A
and B evaluated at two depths. Convolution and cross-correlation
reciprocity theorems can be expressed in the frequency domain as
follows (Wapenaar & Grimbergen (1996)):

∫
�a

d2x{ p̂+
A p̂−

B − p̂−
A p̂+

B } =
∫

� f

d2x{ p̂+
A p̂−

B − p̂−
A p̂+

B }, (1)

∫
�a

d2x{ p̂+
A p̂+∗

B − p̂−
A p̂−∗

B } =
∫

� f

d2x{ p̂+
A p̂+∗

B − p̂−
A p̂−∗

B }, (2)

where ∗ is complex conjugation, subscripts A and B relate to
the corresponding states, superscripts + and − indicate down- and
upgoing constituents, and �a and �f stand for two arbitrary depth
levels.

Eqs (1) and (2) assume that the medium parameters are identical
for both states in the volume circumscribed by �a and �f, and
that no sources exist between these depth levels. Moreover, while
eq. (1) is valid for lossy media, eq. (2) requires the medium to
be lossless between the levels �a and �f, thus posing a limitation
to the methodology presented here (for an extension to account
for dissipation see Slob 2016). Moreover, evanescent waves are
neglected in eq. (2).

We will consider �a and �f to be the acquisition surface and
a redatuming level, respectively. Moreover, we consider for state
A a truncated medium identical to the physical medium above �f

and reflection-free below this level, while for state B we choose the
physical medium.

We now discuss and define the properties of the wavefield for
state A for two different focusing conditions, which we will refer to
as f and F.

In standard space–time focusing, it is assumed that the down-
going component of the focusing function representing state
A, that is, f +

1 , satisfies the following focusing condition along
�f: f +

1 (x, z f ; xF , z f ; t) = δ(t)δ(x − xF ), where xF, zf are the coordi-
nates of a focal point in the subsurface (in the frequency domain this
becomes: ∀ω, f̂ +

1 (x, z f ; xF , z f ; ω) = δ(x − xF )). Moreover, since
it is assumed that the medium in state A is truncated below �f, no
upgoing component f −

1 exists along this lower boundary regardless
of its properties along �a (Fig. 1a).

For state B, following the standard approach, we place a
point source for a downgoing wavefield at xB at depth za just
above the surface, so that along �a we have p̂+

B = δ(x − xB)
and p̂−

B = R̂(x, za ; xB, za ; ω), where R̂ indicates the reflection re-
sponse of the physical medium at the surface, and on �f we have
p+/−

B = g+/−(x, z f ; xB, za ; ω), where g+ and g− are the down- and
upgoing parts of the Green’s function.

Substituting these definitions into eqs (1) and (2) we get:

f̂ −
1 (xB, za ; xF , z f ; ω) + ĝ−(xF , z f ; xB, za ; ω) =∫

�a

d2xR̂(x, za ; xB, za ; ω) f̂ +
1 (x, za ; xF , z f ; ω),

f̂ +
1 (xB, za ; xF , z f ; ω) − ĝ+∗(xF , z f ; xB, za ; ω) =∫

�a

d2xR̂∗(x, za ; xB, za ; ω) f̂ −
1 (x, za ; xF , z f ; ω), (3)

or, using the compact, time-domain formalism introduced in
van der Neut et al. (2015a):

f−
1 + g− = Rf+

1 ,

f+
1 − g+� = R�f−

1 , (4)

where the superscript � indicates time reversal.
We now analyse this standard problem in more detail and show

how the algorithm that provides its solution can be easily extended
to problems involving different focusing conditions. The underde-
termined system in eq. (4), which represents the basis for standard
Marchenko redatuming, can be additionally simplified invoking a
separation operator �f to annihilate the Green’s function terms:

� f f−
1 = � f Rf+

1 ,

� f f+
1 = � f R�f−

1 . (5)

This leads, after decomposing the focusing function into a di-
rect and a coda component (i.e. setting f+

1 = f+
1d + f+

1m, and using
� f f−

1 = f−
1 and � f f+

1 = f+
1m), to the linear problem

[I − � f R�� f R]f+
1m = � f R�� f Rf+

1d, (6)

which, under standard convergence conditions (Fokkema &
van den Berg 2013), is solved by

f+
1 =

∞∑
k=0

(� f R�� f R)kf+
1d. (7)

Once the focusing functions are found, they are inserted in eq. (4),
yielding the point-source Green’s functions g− and g+.

More details about the derivation of this series solution can be
found in van der Neut et al. (2015a), while in Dukalski & de Vos
(2017) other algorithms to solve eq. (6) are analysed.

We now consider a different focusing condition, which we will
refer to as ‘time-focusing condition’ and show how its imposition
results in the same Marchenko equations discussed above. For the
time-focusing approach we refer to the focusing wavefield in state
A as F1. We assume F1 to be defined in a medium truncated be-
low �f, and therefore also in this case no upgoing component F−

1

exists along this lower boundary regardless of its properties along
�a. However, differently from the standard space–time focusing
approach, we define F+

1 as satisfying the following time-focusing
condition along � f : ∀x ∈ � f , F+

1 (x, z f ; z f ; t) = δ(t), where zf is
the depth of the horizontal focal plane in the subsurface.

Note that in the frequency domain this becomes ∀x ∈
� f , ∀ω, F̂+

1 (x, z f ; z f ; ω) = 1. Note also that the time-focusing
condition can be interpreted as a spatial integral along �f of space–
time focusing conditions, namely,

F+
1 (x, z; z f ; t) =

∫
� f

d2xF f +
1 (x, z; xF , z f ; t). (8)

It is therefore clear that the focusing function F1 could be obtained
by integrating an appropriate set of focusing functions f1, each
involving the solution of a Marchenko equation (see eq. 7). We
will show in the following that the solution of a single Marchenko
equation can provide the same result.

For state B we consider again a point source for a downgoing
wavefield at xB just above the surface.
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Figure 1. Down- and upgoing components of the focusing functions of the 3-D wave equation in a reference configuration. (a) Standard space–time focusing
function f1, leading to point-source responses (Green’s functions). (b) Time focusing function F1, leading to areal-source responses.

Substituting these definitions into eqs (1) and (2) we get:

F̂−
1 (xB, za ; z f ; ω) + Ĝ−(z f ; xB, za ; ω) =∫

�a

d2xR̂(x, za ; xB, za ; ω)F̂+
1 (x, za ; z f ; ω),

F̂+
1 (xB, za ; z f ; ω) − Ĝ+∗(z f ; xB, za ; ω) =∫

�a

d2xR̂∗(x, za ; xB, za ; ω)F̂−
1 (x, za ; z f ; ω), (9)

where

Ĝ−(z f ; xB, za ; ω) =
∫

� f

d2xĝ−(x, z f ; xB, za ; ω),

Ĝ+(z f ; xB, za ; ω) =
∫

� f

d2xĝ+(x, z f ; xB, za ; ω), (10)

or, using again the compact, time-domain formalism:

F−
1 + G− = RF+

1 ,

F+
1 − G+� = R�F−

1 . (11)

Similarly to what considered in eq. (4), the set of equations in eq.
(11) is also underdetermined. As discussed above, the key ingredient
to solve the system in eq. (4) is the existence of an appropriate
separation operator.

Such an operator does not necessarily exist only for the space–
time focusing system (4), as already preliminarily observed in Brog-
gini et al. (2012a) for slightly spatially extended virtual sources.
Here we generalize the observation of Broggini et al. (2012a), now
considering plane-wave spatially extended sources. More precisely,
we postulate that when a focusing function F+

1 satisfies the time-
focusing property discussed above, a separation operator �F (based
on the first arrival of the response of

∫
� f

d2xg+(x, z f ; t ; x′, za ; 0),

which can be interpreted as a plane-wave source based on reci-
procity) can be successfully applied to eq. (11).

In this scenario, the existence of a separation operator reduces
(11) into:

�F F−
1 = �F RF+

1 ,

�F F+
1 = �F R�F−

1 . (12)

Following again the decomposition into a direct and coda compo-
nent of the downgoing focusing function, this leads to the solution
for the focusing function:

F+
1 =

∞∑
k=0

(�F R��F R)kF+
1d. (13)

Once the focusing functions are found, they are inserted
in eq. (11), yielding the plane-wave source Green’s functions
Ĝ−(z f ; xB, za ; ω) and Ĝ+∗(z f ; xB, za ; ω). This scheme therefore re-
sults in the retrieval of plane-wave up- and downgoing areal-receiver
responses (by invoking reciprocity, these responses can be related
to the down- and uppropagating areal-source responses discussed
in Rietveld et al. 1992) rather than standard up- and downgoing
Green’s functions as in van der Neut et al. (2015a).

Once these plane-wave responses are available, they could be
used within the areal-source framework (Rietveld et al. 1992).

3 N U M E R I C A L E X A M P L E S

3.1 Focusing performances

We illustrate the potential of the iterative solutions algorithm for
areal-source responses with finite-difference examples (Thorbecke
et al. 2017). We consider the 2-D inhomogeneous subsurface model
in Fig. 2.

First we assess the focusing performances of the solution of eq.
(7) when a separation operator �F and an initial focusing function
F+

1d associated with the first arrival of
∫

� f
d2xg+(x, z f ; t ; x′, za ; 0)

are used.
We consider two arbitrarily chosen different depth levels (Lines

’1’ and ’2’ in Fig. 2). We then solve eq. (13) for initial focusing
functions F+

1d related to the depth levels of Lines ‘1’ and ‘2’, re-
spectively, computing these direct components using the smooth
models in Figs 2(c) and (d). The resulting up- and downgoing fo-
cusing functions are shown in Fig. 3. We then inject the retrieved
downgoing focusing functions F+

1 (Figs 3a and c) into the corre-
sponding truncated media, and record their response along Lines
‘1’ and ‘2’, respectively.

Fig. 4 shows that for both cases the focusing is very good, with
only small amplitude artefacts contaminating the wavefield along
the focal plane (red arrows in Fig. 4). Note that Line ‘1’ crosses an
interface, and therefore represents a particularly challenging prob-
lem due to the intrinsic limitations of the Marchenko method at
interfaces, where the validity of the separation operator can be vio-
lated (Vasconcelos et al. 2014). The overall focusing performances
are comparable to those of the standard Marchenko method, shown
in Fig. 5 for representative points located close to or far-away from
interfaces (Figs 2a–d), where artefacts (partially due to the finite
acquisition aperture) are also seen to contaminate the focusing (red
arrows in Fig. 5). Note that smooth models (see Figs 2c and d) were
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Figure 2. (a) Velocity model used in the first numerical experiment. Dashed lines and stars represent subsurface planes and points for time and space–time
focusing, respectively. (b) Density model used in the numerical experiment. (c and d) Smooth velocity and density models used to provide input for Marchenko
redatuming.
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Figure 3. (a) Downgoing component of the focusing function F1 associated with F1d+ being first arrival of
∫

L1
d2xg+(x, z f ; t ; x′, za ; 0). (b) Upgoing

component of the focusing function F1 associated with F1d+ being the first arrival of
∫

L1
d2xg+(x, z f ; t ; x′, za ; 0). (c and d) As for panels (a) and (b), but for

F1d+ associated with the first arrival of
∫

L2
d2xg+(x, z f ; t ; x′, za ; 0).

used to initiate the focusing process, and that perfect foci cannot be
expected.

Fig. 6 compares directly modelled and retrieved Marchenko areal-
source responses at the surface for Lines ‘1’ and ‘2’, respectively.
As a direct consequence of the excellent focusing performances
demonstrated in Fig. 4, the match between the modelled and the
retrieved areal responses is also very good, with mainly tapering-
related minor differences in the left- and right-most portions of the
gather.

3.2 Imaging results

As mentioned in the introduction, redatumed Green’s functions
can be used to provide multiple-free images directly, by cross-
correlation of upgoing and direct downgoing wavefields in the sub-
surface (Behura et al. 2014). However, this approach is expensive,
as it requires as many virtual sources as there are image points in
the subsurface (number of required Marchenko solutions: nx × nz

in 2-D, or nx × ny × nz in 3-D, where nx, ny and nz stand for the
number of image points along the x, y and z axes, respectively).

With Marchenko areal-source responses, however, we can use
a single redatumed solution to image a whole line/plane at once
(number of required Marchenko solutions: nz in 2-D as well as in 3-
D). To achieve this, we use the following redatumed reflectivity and
standard migration imaging condition definitions, in the frequency
domain:

R̂(x, z f ; ω) =
∫

�a

d2x′ ĝd
+∗(x, z f ; x′, za ; ω)Ĝ−(z f ; x′, za ; ω),

I (x, z f ) =
∫
R

dω R̂(x, z f ; ω). (14)

Note that the imaging condition in eq. (14) can be seen as an
integral along the focal plane of point-source imaging conditions
(this integration is implicit in Ĝ−). We expect this integration to
reduce the lateral resolution of the final image due to poorer angle-
illumination. In the following we will present a strategy to account
for this limitation.
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Figure 4. (a) Time-focusing along Line ‘1’ in Fig. 2(a). (b) Time-focusing along Line ’2’ in Fig. 2(a). Red arrows point at small-amplitude artefacts.

Figure 5. (a) Space–time focusing at point ‘a’ in Fig. 2. (b–d) As for (a), but for points (b)–(d) in Fig. 2. Red arrows point at small-amplitude artefacts.

Figure 6. (a) FD modelled (black lines) and Marchenko (red lines) areal-source responses for Line ‘1’. (b) As for (a), but for Line ’2’.

We apply our new imaging condition to the model discussed
in the previous section. In this case we sample in depth every 5
m, and consequently to image the entire domain we employ 400
virtual areal sources. Note that imaging the whole model at a 5

m sampling rate using other Marchenko schemes would involve
the computation and migration of up to 400∗1200 virtual point-
source responses, which would require considerable CPU or RAM
resources. An exhaustive analysis about the computational burden
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Figure 7. (a) Migration result using the imaging condition of eq. (14) and Marchenko redatumed virtual-plane wavefields. The red arrow points at a poorly
imaged dipping layer, whereas the blue arrows point at similar structures that are properly imaged. (b) Migration result using standard one-way extrapolation
of virtual-plane wavefields. Red arrows point at multiple-related artefacts.

of the Marchenko method as an imaging tool can be found in Behura
et al. (2014). The migration associated with the imaging condition
in eq. (14) is shown in Fig. 7(a). Each interface is properly imaged,
while no multiple-related artefacts are present. Only a dipping layer
in the bottom of the model is relatively poorly imaged (red arrow
in Fig. 7a), partially due to its smaller impedance contrast. In any
case, other structures with similar geometry are properly imaged
(blue arrows in Fig. 7a). Multiple-related artefacts, on the other
hand, contaminate the image if we migrate the upgoing response
associated with the same areal sources obtained through standard
one-way wavefield extrapolation (Fig. 7b). Note that in the migration
step the same smooth models depicted in Figs 2(c) and (d) employed
for Marchenko redatuming were used.

We further investigate the potential and limitations of the
Marchenko plane-wave imaging scheme by considering a more
complex subsurface model (Figs 8a and b). Differently from the
medium of the first experiment (Fig. 2), the model considered here
comprises dipping structures and diffractors. We follow the same
imaging strategy discussed for the first numerical experiment, that
is, we initially compute Marchenko areal-source responses for a set
of evenly spaced (sampling every 5 m in depth) horizontal bound-
aries and we then apply the redatuming and imaging condition
discussed in eq. (14). As for the previous experiment, we employ
smooth velocity and density distributions both for the Marchenko
and migration steps (Figs 8c and d).

The migration associated with the imaging condition in eq. (14) is
shown in Fig. 9(a). While only minor multiple-related artefacts con-
taminate the migration result (red arrows in Fig. 9a), some dipping
interfaces are not imaged (red box in Fig. 9a). However, most struc-
tures are properly identified. As for the first experiment, multiple-
related artefacts contaminate the image if we migrate standard one-
way extrapolated wavefields (red arrows in Fig. 9b). Blue arrows in
Fig. 9(a) point at structures clearly visible in the Marchenko image
that are partially or totally overshadowed by coherent noise in the
standard one-way extrapolation result. Whereas the occurrence of
only minor false positives (i.e. multiple-related artefacts) testifies
the potential of the method, the presence of false negatives (i.e. the
unability to image dipping interfaces) also indicates its limitations.
The dipping structures in the red box are not imaged due to the poor
illumination provided by horizontal areal sources. Despite this lim-
itation, the method provides an unexpensive multiple-related free
image which could be used to guide more expensive target imaging
methods to areas of interests otherwise overshadowed by coherent
noise in the standard one-way extrapolation results (such as that of
Fig. 9b).

Moreover, we can improve the imaging results at a small cost
by simply employing dipping boundaries in the subsurface and re-
trieving, via solution of an appropriate Marchenko equation, in- and
outpropagating areal-source responses associated with tilted planes
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Figure 8. (a) Velocity model used in the second numerical experiment. (b) Density model used in the second numerical experiment. (c and d) Smooth velocity
and density models used to provide input for Marchenko redatuming. The red box in (c) indicates a subzone of the model where tilted planes, represented by
white and black lines, are used to improve the final imaging result.
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Figure 9. (a) Migration result using the imaging condition of eq. (14) and Marchenko redatumed virtual-plane wavefields. The red arrows point at low
amplitude artefacts, whereas the blue arrows point at resolved structures not visible in the standard migration image. The red box encircles an area where
dipping interfaces are not imaged. (b) Migration result using standard one-way extrapolation of virtual-plane wavefields. Red arrows point at multiple-related
artefacts. (c) Migration result using plane-wave Marchenko wavefields associated with the tilted planes in Fig. 8(c). Blue arrows indicate dipping interfaces
now properly imaged.

(the derivation of these new equations is obtained by simply replac-
ing �f in eq. 9 with a tilted boundary, and replacing downgoing
and upgoing fields by outward and inward propagating fields). The
retrieved wavefields provide better illumination of dipping inter-
faces and therefore improve the overall quality of the migration. To
emphasize the benefit of this strategy, we target the area in the red
box and employ four sets of dipping boundaries (white and black

lines in Fig. 8c). For the geometry considered here, 600 additional
Marchenko solutions are used. The same procedure as discussed
above, consisting of Marchenko areal-source response estimation
and migration, is then followed. The images associated with hori-
zontal and dipping boundary migrations are finally stacked together
and the result is shown in Fig. 9(c). While no false positive is con-
taminating the final image, the previously invisible tilted interfaces
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Figure 10. As for Fig. (9), but now using a simplified, constant velocity model in the redatuming and migration steps.

are now visible (blue arrows in Fig. 9c). Consider that the area of
the target zone alone is about 1 km2, which would correspond to
about 40 000 virtual source locations (at a 5 m sampling rate) if we
chose to image it with other Marchenko schemes. Thus, while in-
volving dipping boundaries increases the computation burden of the
areal-source method presented here, its convenience with respect to
point-source methods is still significant.

In the examples discussed above we have employed smoothed
versions of the actual velocity/density models in the redatuming

and migration steps. However, in practical situations it is not al-
ways possible to have access to such good estimates of the true
model parameter distributions. To assess the applicability of the
method in realistic scenarios we therefore test the Marchenko areal-
source scheme also assuming very poor prior knowledge of the
actual velocity/density distributions. More specifically, we repeat
the second experiment using homogeneous velocity/density mod-
els, setting c = 2000 m s−1 and ρ = 2000 kg m−3. Several authors
have already discussed the sensitivity of the Marchenko method to
various sources of errors (Thorbecke et al. 2013; Meles et al. 2015,
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2016; de Ridder et al. 2016), and here its robustness is further tested.
Fig. 10(a) shows the migration output corresponding to Marchenko
horizontal areal-source responses. While the image is distorted due
to the simplified velocity model employed in the migration step,
only minor multiple-related artefacts contaminate the image (red
arrows in Fig. 10a). This demonstrates the good performance of
the plane-wave Marchenko method in suppressing standard wave-
field extrapolation artefacts even if the employed velocity model is
strongly simplified. On the other hand, strong multiple-related arte-
facts are superimposed to actual interfaces when standard one-way
extrapolated wavefields are migrated (red arrows Fig. 10b). Blue ar-
rows in Fig. 10(a) point at structures clearly visible in the Marchenko
image that are partially or totally overshadowed by coherent noise
in the one-way extrapolation result. As for the previous case, if we
include tilted boundaries in the redatuming and migration process,
the dipping interfaces are imaged (Fig. 10c).

4 C O N C LU S I O N S

We have demonstrated that Marchenko methods can be success-
fully applied beyond conventional space–time focusing. We have
discussed how a modified focusing condition relates areal-source
responses associated with horizontal or dipping planes to standard
reflection data. A separation operator based on specifically designed
direct focusing functions can then be applied to convolution/cross-
correlation representation theorems to retrieve areal-source re-
sponses at the surface through standard Marchenko algorithms. The
retrieved wavefields can be used to produce images, free of multiple-
related artefacts, at a fraction of the cost of standard Marchenko
approaches, thus potentially guiding expensive target imaging and
being applicable also for 3-D data sets. While more complex prob-
lems could deteriorate the performances of the proposed method, the
results discussed above demonstrate its applicability to a large class
of problems. Analysis and assessment of the resolution properties of
the proposed method with respect to standard Marchenko imaging
and its extension to elasticity are topics of ongoing research.
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