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ABSTRACT

The Marchenko method makes it possible to compute
subsurface-to-surface Green’s functions from reflection
measurements at the surface. Applications of the Marchenko
method have already been discussed in many papers, but its
implementation aspects have not yet been discussed in de-
tail. Solving the Marchenko equation is an inverse problem.
The Marchenko method computes a solution of the Marche-
nko equation by an (adaptive) iterative scheme or by a direct
inversion. We have evaluated the iterative implementation
based on a Neumann series, which is considered to be the
conventional scheme. At each iteration of this scheme, a con-
volution in time and an integration in space are performed
between a so-called focusing (update) function and the reflec-
tion response. In addition, by applying a time window, one
obtains an update, which becomes the input for the next iter-
ation. In each iteration, upgoing and downgoing focusing
functions are updated with these terms. After convergence of
the scheme, the resulting upgoing and downgoing focusing
functions are used to compute the upgoing and downgoing
Green’s functions with a virtual-source position in the subsur-
face and receivers at the surface. We have evaluated this
algorithm in detail and developed an implementation that re-
produces our examples. The software fits into the Seismic
Unix software suite of the Colorado School of Mines.

INTRODUCTION

The Marchenko method relates Green’s function from a virtual
source inside a medium to the reflection response at the surface of
that medium. The method has been introduced to the geophysical
world by Broggini and Snieder (2012). In close collaboration with

these authors, their work is extended to 2D and 3D media by Brog-
gini et al. (2012) and Wapenaar et al. (2013). Based on the outputs
of the Marchenko method, upgoing and downgoing Green’s func-
tions can be estimated, for any point in the subsurface to the surface
array, using the reflection response recorded at the surface. The
Green’s function is the earth impulse response and is fundamental
in many processing schemes.
The application of the results of the Marchenko method is there-

fore manifold: It has been used for imaging the subsurface without
the disturbing effect of internal multiples (Behura et al., 2014; Slob
et al., 2014; Wapenaar et al., 2014b; da Costa Filho et al., 2015; van
der Neut et al., 2015c; Vasconcelos et al., 2015; Meles et al., 2016;
Ravasi et al., 2016), internal multiple elimination in the data domain
(Meles et al., 2015; van der Neut and Wapenaar 2016; da Costa
Filho et al., 2017), and retrieving the homogeneous Green’s func-
tion between any two points inside a medium from the reflection
response (Wapenaar et al., 2017).
In the first geophysical Marchenko papers, the computation of

the Green’s function is based on iteratively updating acoustic pres-
sure fields (Wapenaar et al., 2013). This pressure-based algorithm
requires two separate iterative updates to calculate the upgoing or
downgoing Green’s functions at a virtual source position. Slob et al.
(2014) combine these separate iterative schemes into one. In this
combined scheme, upgoing and downgoing focusing functions
are updated in each iteration. Wapenaar and Slob (2014) and da
Costa Filho et al. (2014) extend the method to elastic media, Singh
et al. (2015) include the free-surface multiples, and Slob (2016)
adapts the method to dissipative acoustic media. Apart from itera-
tive schemes, the Marchenko method can also be implemented as an
adaptive subtraction (Staring et al., 2016) or a least-squares inver-
sion (van der Neut et al., 2015b; Slob and Wapenaar, 2017).
In this paper, we describe in detail the implementational aspects

of the 2D iterative acoustic-Marchenko method based on focusing
functions. Although the algorithm is straightforward to implement,
the treatment of amplitudes and the initialization steps of the first
iterations require special attention. The input of the method is a
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reflection response without free-surface multiples, and it is decon-
volved by its source wavelet. The output of a surface-related multi-
ple elimination (SRME) scheme can (in principle) provide this
reflection response. A (smooth) background model is needed to cal-
culate an initial focusing function to start the algorithm. The
“Numerical examples” section demonstrates the use of the algo-
rithm and provides a user’s first steps with the Marchenko
technique.
The software bundled with this paper contains all source code and

scripts to reproduce the examples presents herein. The code can also
be found at its GitHub repository (Thorbecke, 2017). The GitHub
repository contains the most up-to-date stable version with bug fixes
and the latest developments. In Appendix A, the input parameters of
the programs are explained. To reproduce the figures in this manu-
script and to carry out a few post- and preprocessing steps, Seismic
Unix (SU) (Cohen and Stockwell, 2016) is required.

MARCHENKO METHOD

The Marchenko method is briefly introduced here, aiming at an
explanation of the method that helps to understand the algorithm.
The references mentioned in the “Introduction” section provide ad-
ditional details on the derivation of this method. In an imagined
medium truncated below level zi, we introduce a focusing function
f1. The truncated medium is identical to the actual medium above
depth level zi and is reflection free below this depth level. As illus-
trated in Figure 1, the actual and truncated media are reflection free
above the surface boundary ∂D0. We also introduce upgoing and
downgoing parts of the f1 focusing function (Slob et al., 2014):

f1ðx; xF; tÞ ¼ fþ1 ðx; xF; tÞ þ f−1 ðx; xF; tÞ; (1)

where xF ¼ ðxF; ziÞ is a focal position on the boundary ∂Di, x is an
observation point in the medium, and t is the time (see Figure 1). In
our notation, the first argument represents the receiver location and
the second argument stands for the focal point. The superscript “+”
in fþ1 denotes a downgoing field at observation point x, and the
superscript “−” in f−1 denotes an upgoing field, also at x. Below

boundary ∂Di only fþ1 continues as a diverging downgoing field
into the reflection-free half-space.
The f�1 focusing functions are defined to relate the upgoing and

downgoing Green’s functions in the actual medium with the reflec-
tion response at the surface (Wapenaar et al., 2014b):

GþðxF;xR;tÞ¼−
Z
∂D0

Z
t

t0¼−∞
RðxR;x;t−t0Þf−1 ðx;xF;−t0Þdt0dx

þfþ1 ðxR;xF;−tÞ; (2)

G−ðxF;xR; tÞ ¼
Z
∂D0

Z
t

t 0¼−∞
RðxR;x; t− t 0Þfþ1 ðx;xF; t 0Þdt 0dx

− f−1 ðxR;xF; tÞ; (3)

where RðxR; x; tÞ is the reflection response after surface multiple
elimination, deghosting, and deconvolution of the wavelet. The first
argument in R represents the receiver location, the second argument
represents the source location, and the last argument is the time. The
function R is a scaled (factor −2) pressure wavefield at xR of a ver-
tical force source Fz at x or, via reciprocity, the particle velocity
field Vz at x of a point source of the volume injection rate at xR
(Wapenaar et al., 2012). This reflection response is related to a
Green’s function by

∂RðxR; x; tÞ
∂t

¼ 2

ρðxÞ
∂GsðxR; x; tÞ

∂z
; (4)

with Gs the Green’s function of the scattered field only (it does not
contain the direct field). The upper integration boundary t 0 ¼ t of
the time integral in equations 2 and 3 accounts for the causality of
the reflection response RðxR; x; t − t 0Þ. Summing equations 2 and 3
and using source-receiver reciprocity for Green’s function gives
(Wapenaar et al., 2017)

GðxR; xF; tÞ ¼
Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0Þf2ðxF; x; t 0Þdt 0dx

þ f2ðxF; xR;−tÞ; (5)

where the Green’s function GðxR; xF; tÞ represents the response to a
virtual point source of volume injection rate at xF and pressure
receivers at the surface xR. The focusing function f2 is defined as

f2ðxF; x; tÞ ¼ fþ1 ðx; xF; tÞ − f−1 ðx; xF;−tÞ: (6)

Wapenaar et al. (2014b) introduce f2ðxF; x; tÞ as a focusing func-
tion that has its focal plane at ∂D0. Here, we merely use f2 as a
compact notation for the combination of the one-way focusing func-
tions fþ1 and f−1 , as defined in equation 6. Note that the time-re-
versed upgoing function f−1 can be interpreted as a downgoing
function, similar to fþ1 . Hence, from here onward, we interpret
f2ðxF; x; tÞ as a downgoing focusing function that is emitted into
the medium from x and that focuses at receiver location xF. The
argument change in equation 6 between x and xF in the left side
f2 and the right side f�1 follows from the same logic in the order
of the arguments as defined by Wapenaar et al. (2014b). In the
“Numerical examples” section, we demonstrate that f2 can be
back-propagated into the medium and focuses at xF. In Wapenaar

Figure 1. Downgoing and upgoing components of the focusing
function f1 for the 2D wave equation in a truncated medium.
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et al. (2013), a (reciprocal) relation between f2ðxF; x; tÞ and a
downgoing wavefield pþðx; xF; tÞ is given. Together with pþ there
is also a p− defined, the upgoing reflection response at x from the
focal point at xF. The sum of pþ and p− gives also the Green’s
function of equation 5. The p� functions are just a different notation
of the Marchenko method and can be used to compute the Green’s
functions in a convenient way. These p� functions are therefore
used in the implementation to compute the Green’s function. From
an educational point of view, the Marchenko method is more easily
understood using the focusing functions only, and we will continue
along that way.
The above equations, on which the following implementation is

based on, use pressure-normalized fields. Other papers derive sim-
ilar equations based on flux-normalized fields (Wapenaar et al.,
2014a; Singh et al., 2015; van der Neut et al., 2015b). The relation-
ship between pressure- and flux-normalized representations is ex-
plained by Wapenaar et al. (2014a).
TheMarchenko algorithm estimates focusing functions fþ1 ðx;xF;tÞ

and f−1 ðx; xF; tÞ. However, equations 2 and 3 are by themselves in-
sufficient to determine f1; there are four unknowns, but only two
equations. We can eliminate two unknowns by exploiting the fact that
the focusing functions and Green’s functions have different causality
properties in the time-space domain. Based on the principle of cau-
sality, we know that no energy arrives before the first arrival
tdðxR; xFÞ; hence, the Green’s function GðxR; xF; t < tdðxR; xFÞÞ
is zero. This also holds for the upgoing and downgoing Green’s func-
tions and leads to

0 ¼ −
Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0Þf−1 ðx; xF;−t 0Þdt 0dx

þ fþ1 ðxR; xF;−tÞ; (7)

0 ¼
Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0Þfþ1 ðx; xF; t 0Þdt 0dx

− f−1 ðxR; xF; tÞ; (8)

where t < tdðxR; xFÞ in both equations above.
The combination of equations 7 and 8 is known as the Marchenko

equation. These equations form the basis of the iterative scheme,
which estimates focusing functions fþ1 and f−1 . In Wapenaar et al.
(2014a), the relation

fþ1 ðx; xF; tÞ ¼ T invðxF; x; tÞ (9)

is used to derive an initial estimate for fþ1 that can start the inversion
scheme. In equation 9, T invðxF; x; tÞ is the inverse of the transmis-
sion response of the truncated medium, which is equal to the actual
medium between ∂D0 and ∂Di, for a source at x (at ∂D0) and a
receiver at ∂Di. It is assumed that this inverse transmission response
T inv can be composed as a direct wave followed by scattering coda
(van der Neut et al., 2015b):

fþ1 ðx; xF; tÞ ¼ T inv
d ðxF; x; tÞ þMþðx; xF; tÞ; (10)

where Mþ is the unknown scattering coda and T inv
d is the direct

arrival of the inverse transmission response. In equation 10, the in-
verse of the direct arrival of the transmission response is needed. For
simplicity, we take the time reversal of the direct arrival of Green’s
function; Gdðx; xF;−tÞ:

fþ1 ðx; xF; tÞ ≈ Gdðx; xF;−tÞ þMþðx; xF; tÞ: (11)

We thereby introduce an overall scaling error and an offset-depen-
dent amplitude error, proportional to transmission losses, in the final
result. The function Gdðx; xF;−tÞ is the time-reversed direct arrival
part of the transmission response to subsurface focal point xF and
can, for example, be computed from a smooth macromodel. As
mentioned before, the arrival time of Gdðx; xF; tÞ is td; hence,
Gdðx; xF; tÞ is zero before t < td. The multiple scattering coda
Mþðx; xF; tÞ follows after the first arrival of fþ1 , and it is zero
for t ≤ −td. It can also be shown that it is also zero for t ≥ þtd (Slob
et al., 2014).
Equations 7 and 8 are only valid for t < td. Therefore, we define a

time-window function:

θðxR; xF; tÞ ¼
8<
:

1 t < tεd
1
2

t ¼ tεd
0 t > tεd

; (12)

where time tεd is the time of the direct arrival from the focal point xF
to xR (td), minus a small positive constant ε to exclude the wavelet
in the direct arrival Gd. For example, a time window that sets all
times t < −tεd to zero and applied to equation 11 mutes Gdð−tÞ,
but it leaves all events of Mþ in. In the following, we will use
the shorthand notation θt for θðxR; xF; tÞ. In the included Marchen-
ko program, there is an input parameter (called smooth; see Ap-
pendix A for all input parameters) that defines a temporal tapering
in this mute window to suppress high-frequency artifacts.
It is further assumed that it is possible to get an estimate of this

direct arrival Gd of the transmission response. Given the reflection
response RðxR; x; tÞ and this direct arrival Gdðx; xF; tÞ from the fo-
cal point, the Marchenko algorithm solves for the scattering coda
Mþðx; xF; tÞ to estimate fþ1 ðx; xF; tÞ and f−1 ðx; xF; tÞ.
The iterative solution of the Marchenko equations can now be

developed. The iterative scheme is started with the following ini-
tialization of Mþ:

Mþ
0 ðxR; xF; tÞ ¼ 0: (13)

The subscript in Mþ
0 defines the iteration number. By substituting

equation 11, using 13 as an initialization, into equation 8 one arrives
at the initialization of f−1 :

f−1;0ðxR; xF; tÞ

¼ θt

Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0ÞGdðx; xF;−t 0Þdt 0dx:

(14)

Equation 14 includes the previously defined time-window function
θt. Equations 7 and 11 are expressions for fþ1 . By combining these
equations, the only part remaining in equation 11 is Mþ. The iter-
ative update of Mþ for step k ≥ 1 is given by

Mþ
k ðxR; xF;−tÞ

¼ θt

Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0Þf−1;k−1ðx; xF;−t 0Þdt 0dx:

(15)

Marchenko method WB31
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Following the assumption in equation 11, that it is possible to write
fþ1;k as a direct field plus scattering coda, the update at step k of f

þ
1;k

is given by

fþ1;kðxR; xF; tÞ ¼ GdðxR; xF;−tÞ þMþ
k ðxR; xF; tÞ: (16)

Using equation 8 and the expression of fþ1 in equation 16, the up-
date of f−1 at step k is given by

f−1;kðxR; xF; tÞ ¼ f−1;0ðxR; xF; tÞ

þ θt

Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0ÞMþ

k ðx; xF; t 0Þdt 0dx: (17)

This completes the definition of the iterative Marchenko scheme.
In the next section, the first few iterations are discussed in detail and
illustrated with simple numerical examples.

MARCHENKO ALGORITHM

To compute f1 focusing functions with the Marchenko method,
two ingredients are needed:

• Reflection data without free-surface multiples, ghosts and
deconvolved for the wavelet: RðxR; x; tÞ with source x and
receiver xR on the same surface ∂D0, and small enough sam-
pling for xR and x to avoid spatial aliasing.

• An estimate of the direct arrival between the receiver posi-
tions at the surface (xR), and the focal point at xF:
GdðxR; xF; tÞ, and derived from it the direct arrival time
tdðxR; xF; tÞ. Note that td can also be computed by another
method, for example, an eikonal solver.

Given these two components, the iterative method can be initial-
ized and the iterations of the Marchenko method can start.

The first few iterations

The initialization of the method is given in equations 13 and 14.
The time-windowed expression for f−1;0ðxR; xF; tÞ in equation 14 is
renamed to

− N0ðxR; xF;−tÞ

¼ θt

Z
∂D0

Z
t 0
RðxR; x; t − t 0ÞGdðx; xF;−t 0Þdt 0dx: (18)

At each iteration, the spatial integration and temporal convolution
with R plays an important role because it is used to define new fo-
cusing updates given by terms Ni (see also appendix B of Wapenaar
et al., 2014b). These Ni terms are used to update the estimates of the
focusing functions fþ1 and f−1 . Although theNi terms are not strictly
needed to describe the method, they are introduced here to remain
as close as possible to the actual implementation.
For computational efficiency, the temporal convolution of R is

implemented in the Fourier domain. The spatial integration is car-
ried out by summing the resulting traces of the time convolution
over a common-receiver gather. The introduced time-window sets
events for t > tεd to zero, in accordance with equation 18. Applying
the mute window is therefore a crucial and mandatory step in the
Marchenko method; without it, the method would be incorrect.

Given these initializations, the first step in the algorithm, based
on equations 15–17, can be computed. This first step, k ¼ 1, in-
volves two integration-convolutions with R to update fþ1 and f−1 :

Mþ
1 ðxR;xF;−tÞ¼θt

Z
∂D0

Z
t 0
RðxR;x;t− t 0Þf−1;0ðx;xF;−t 0Þdt 0dx

¼−θt
Z
∂D0

Z
t 0
RðxR;x;t− t 0ÞN0ðx;xF;t 0Þdt 0dx

¼N1ðxR;xF;−tÞ; (19)

fþ1;1ðxR; xF; tÞ ¼ GdðxR; xF;−tÞ þMþ
1 ðxR; xF; tÞ

¼ GdðxR; xF;−tÞ þ N1ðxF; xR; tÞ; (20)

f−1;1ðxR;xF; tÞ ¼ f−1;0ðxR;xF; tÞ

þ θt

Z
∂D0

Z
t 0
RðxR;x; t− t 0ÞMþ

1 ðx;xF; t 0Þdt 0dx

¼−N0ðxR;xF;−tÞ

þ θt

Z
∂D0

Z
t 0
RðxR;x; t− t 0ÞN1ðx;xF; t 0Þdt 0dx;

¼−N0ðxR;xF;−tÞ−N2ðxR;xF;−tÞ; (21)

f2;1ðxF; xR; tÞ ¼ GdðxR; xF;−tÞ þ N0ðxR; xF; tÞ
þ N1ðxR; xF; tÞ þ N2ðxR; xF; tÞ: (22)

The first integration-convolution with R in equation 19 is used to
update fþ1 as shown in equation 20. The second integration-convo-
lution in equation 21 updates f−1 . The update of f2, introduced in
equation 6, includes the results of all integration-convolutions
with R.
The next step for k ¼ 2 results in the following updates:

Mþ
2 ðxR;xF;−tÞ¼θt

Z
∂D0

Z
t 0
RðxR;x;t− t 0Þf−1;1ðx;xF;−t 0Þdt 0dx

¼−θt
Z
∂D0

Z
t 0
RðxR;x;t− t 0ÞfN0ðx;xF;tÞ

þN2ðx;xF;tÞgdt 0dx
¼N1ðxR;xF;−tÞþN3ðxR;xF;−tÞ; (23)

fþ1;2ðxR; xF; tÞ ¼ GdðxR; xF;−tÞ þMþ
2 ðxR; xF; tÞ

¼ GdðxR; xF;−tÞ þ N1ðxR; xF; tÞ
þ N3ðxR; xF; tÞ; (24)
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f−1;2ðxR;xF;tÞ¼f−1;0ðxR;xF;tÞ

þθt

Z
∂D0

Z
t 0
RðxR;x;t− t 0ÞMþ

2 ðx;xF;t 0Þdt 0dx

¼−N0ðxR;xF;−tÞþθt

Z
∂D0

Z
t 0
RðxR;x;t− t 0Þ

×fN1ðx;xF;tÞþN3ðx;xF;tÞgdt 0dx
¼−N0ðxR;xF;−tÞ−N2ðxR;xF;−tÞ
−N4ðxR;xF;−tÞ; (25)

f2;2ðxF; xR; tÞ ¼ GdðxR; xF;−tÞ þ N0ðxR; xF; tÞ
þ N1ðxR; xF; tÞ þ N2ðxR; xF; tÞ
þ N3ðxR; xF; tÞ þ N4ðxR; xF; tÞ: (26)

From these updates, it becomes clear that in updating fþ1 in equa-
tion 24 Gd and the odd terms of Ni are used and in updating f−1 in
equation 25 the even terms of Ni are used. The f2 function in equa-
tion 26 is built up from Gd and even and odd Ni terms.
In the implementation, the Ni terms are computed by

N−1ðxR; xF;−tÞ ¼ Gdðx; xF;−t 0Þ; (27)

NiðxR;xF;−tÞ¼−θt
Z
∂D0

Z
t 0
RðxR;x;t− t 0ÞNi−1ðx;xF;t 0Þdt 0dx;

(28)

and are used to update the focusing functions fþ1 ; f
−
1 , and f2. This

makes the algorithm simple and efficient. In summary, the relations
for Mþ

m;Ni and the updates for the focusing functions for m iter-
ations with m ≥ 1 are

Mþ
mðxR; xF; tÞ ¼

Xm−1

l¼0

N2lþ1ðxR; xF; tÞ; (29)

fþ1;mðxR; xF; tÞ ¼ GdðxR; xF;−tÞ þ
Xm−1

l¼0

N2lþ1ðxR; xF; tÞ;

(30)

f−1;mðxR; xF; tÞ ¼ −
Xm
l¼0

N2lðxR; xF;−tÞ; (31)

f2;mðxF; xR; tÞ ¼ GdðxR; xF;−tÞ þ
X2m
l¼0

NlðxR; xF; tÞ: (32)

In the provided program, each computation of a focusing update
term Ni is called one iteration. The implementation is shown in Al-
gorithm 1, and a flowchart is shown in Figure 2.
The initializations of f−1 , f

þ
1 , f2, and Ni are done just before the

iteration starts. The even and odd iterations for Ni update f−1 and

fþ1 , respectively. The Green’s function is computed by inserting the
estimate of f2 given by equation 32 into equation 5:

GðxF;xR;tÞ¼f2ðxF;xR;−tÞ

þ
Z
∂D0

Z
t

t 0¼−∞
RðxR;x;t− t 0ÞGdðx;xF;−tÞdt 0dx

þ
X2m
l¼0

Z
∂D0

Z
t

t 0¼−∞
RðxR;x;t− t 0ÞNlðx;xF;t 0Þdt 0dx:

(33)

Algorithm 1. The Marchenko algorithm as implemented in
the provided source code.
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In equation 33, the integration-convolution terms can be recognized
as the summation of the unmuted Ni terms. By storing the sum of
these unmuted terms of the integration-convolution (in p−), the
Green’s functions can be calculated as a summation of previously
computed values.
The program can compute the results of multiple focal points at

the same time (Nfoc in Algorithm 1). This is convenient for cal-
culating the Marchenko results (e.g., the Green’s function) on a
depth level or area of interest in one run. The computational ad-
vantage is that the reflection response has to be read in only once
to compute the results of multiple focal points. The computations
for different focal points are independent of each other. Hence,
the code is OpenMP parallelized over the number of focal points
(Nfoc).
The function synthesis in Algorithm 1 computes the integra-

tion-convolution, of the focusing update term Ni with R, in the fre-
quency domain (the Fourier operator is denoted with F ). For the
computation of only one focal point, loading the required input data
into memory usually takes more time than the computational work.
The implementation has additional functionality (not shown in
Algorithm 1) to compute the upgoing and downgoing Green’s func-
tions in equations 2 and 3 and write intermediate computed fields
(Ni) to disk.

NUMERICAL EXAMPLES

To use the Marchenko method with numerically modeled data, it
is very important that the amplitudes of the reflection response are
correct. This is certainly also true for field data. Therefore, the im-
portance of amplitude scaling is explained first before discussing
the numerical examples in more detail.
In the summation of N1 and Gd to compute fþ1;1 in equation 20, it

is important that the amplitude of the measured reflection data is ac-
curate. A wrong amplitude of R will result in a wrong amplitude of
fþ1;1 and the scheme will not converge. This is illustrated with the
following equations. Let us assume that we introduce a wrong scaling
factor b in R to update fþ1;i. Then, the first iterations will compute

−bN0ðxR; xF;−tÞ ¼ θt

Z
∂D0

Z
t 0
bRðxR; x; t − t 0Þ

× Gdðx; xF;−t 0Þdt 0dx;

−b2N1ðxR; xF;−tÞ ¼ θt

Z
∂D0

Z
t 0
bRðxR; x; t − t 0Þ

× bN0ðx; xF; t 0Þdt 0dx;
fþ1;1ðxR; xF; tÞ ¼ GdðxR; xF;−tÞ þ b2N1ðxR; xF; tÞ:

(34)

The update of fþ1;1 involves an error of b
2 and in each next update of

fþ1;m the error in the updateN2mþ1 will growwith b2mþ2. An incorrect
amplitude in Gd is not a problem because the Marchenko equations
are linear in the focusing function. An amplitude error can be factored
out, and it does not change for higher iterations:

−aN0ðxR;xF;−tÞ¼θt

Z
∂D0

Z
t0
RðxR;x;t−t0ÞaGdðx;xF;−t0Þdt0dx;

−aN1ðxR;xF;−tÞ¼θt

Z
∂D0

Z
t0
RðxR;x;t−t0ÞaN0ðx;xF;t0Þdt0dx;

afþ1;1ðxR;xF;tÞ¼aGdðxR;xF;−tÞþaN1ðxR;xF;tÞ: (35)

Van der Neut et al. (2015c) introduces an adaptive amplitude-correc-
tion factor to correct for possible amplitude errors in R. By solving
the Marchenko equation in an explicit series, the sensitivity of am-
plitude errors can be adjusted by adaptive subtraction of the focusing
update terms. This approach makes it better suited to apply to field
data (van der Neut et al., 2015a; Staring et al., 2016).
Brackenhoff (2016) and Thomsen (2016) develop estimation

methodologies for a constant scaling factor b of R. These methods
compensate for an overall amplitude mismatch in R, which is an
important first step to apply the Marchenko method on measured
data. Brackenhoff’s method, for example, makes use of the fact that
G−ðx; xF; tÞ is identically zero for a point xF below the deepest re-
flector.
The following will provide step-by-step directions how to com-

pute the reflection response with accurate amplitudes:

• The reflection data must be deconvolved for the wavelet
(Mildner et al., 2017). The result of this deconvolution is
the reflection response of a zero-phase wavelet with a flat
spectrum between the frequencies fmin and fmax. Because
we are computing the reflection response, we can avoid de-
convolution and directly models the reflection response with

Figure 2. Flowchart of the Marchenko algorithm. In the notation,
the lateral coordinates are omitted for a more compact notation. The
symbol ⊛ represents the integration-convolution operator.

WB34 Thorbecke et al.

D
ow

nl
oa

de
d 

09
/1

0/
17

 to
 1

45
.9

4.
65

.1
41

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



a source signature that has a flat frequency spectrum of am-
plitude 1.0:

sðtÞ ¼
Z

fmax

fmin

1.0 expð−j2πftÞdf: (36)

The implemented flat wavelet spectrum has smooth transitions
(a cosine taper) to the minimum, and from the maximum, frequency
to avoid a very long wavelet in the time domain. The provided pro-
gram makewave can generate these waveforms and the provided
scripts give the makewave parameters used to calculate the source
wavelet. Note: In the discrete implementation of the computation of
the source wavelet in the frequency domain, one must not forget to
multiply with the frequency interval Δf, when going from fre-
quency to time with the Fourier transform. The source wavelet used
in the examples is shown in Figure 3. A shift of 0.3 s (the parameter
setting t0=0.3 in makewave) is added to the source wavelet to
make it causal and suitable to use in the finite-difference program.
In the finite-difference modeling of the reflection response, the re-
cording of the data is postponed with 0.3 s (parameter setting
rec_delay = 0.3 in fdelmodc) to set the peak of the wavelet
back at the correct time.

• In the finite-difference program for modeling RðxR; x; tÞ, an
Fz source of vertical force is chosen (see the manual of the
finite-difference modeling program fdelmodc for an ex-
planation about the options). The receivers are placed at
the same surface as the source and measure the pres-
sure field.

• The amplitude scaling factor, in the finite-difference scheme
for an Fz source with time signature sðtÞ, is defined in the
update of particle velocity Vz as

Vzðx; z; tþ ΔtÞ ¼ Vzðx; z; tÞ −
ΔPðx; z; tÞ

ρΔz
þ Δt

ρΔx2
sðtÞ:

(37)

The discrete intervals Δt;Δx ¼ Δz are the steps in the finite-differ-
ence program, and ρ is the local density at the injection grid point of
the source. The term ΔP∕Δz is a fourth-order finite-difference im-
plementation of the first derivative to z of pressure field P

• To compute R, from Green’s functions calculated by the fi-
nite-difference program, only a factor of −2 is needed (equa-
tion 10 in Wapenaar et al., 2012). This factor −2 is included
in the marchenko program when it reads in the reflection
response R.

• The time convolution of R is implemented by a forward Fou-
rier transformation from the time to the frequency domain,
multiplication in the frequency domain, and back-transfor-
mation to the time domain. In the numerical implementation,
the multiplication with Δt, for the convolution in time and
with Δx for the integration over x, must be included as well.
Together with the standard scaling factor of 1∕N for discrete
Fourier transformations when going from the time to the fre-
quency domain and back to the time domain, with N the
number of time samples, the scale factor to compute the time

convolution and space integration in the frequency domain
becomes

ΔxΔt
N

: (38)

Building up the Green’s function

The Marchenko algorithm is illustrated with a 2D horizontally
layered model as shown in Figure 4. The numerical modeling is
carried out with a finite-difference modeling program (Thorbecke
and Draganov, 2011) that is also included in the software package.
The input source signature used to model the reflection response
RðxR; x; tÞ is approximately a sinc function with a flat spectrum
of amplitude 1, as shown in Figure 3.
The full reflection matrix RðxR; x; tÞ, for a fixed-spread geometry,

can be constructed from one forward-modeled shot (Figure 4c) be-
cause the model contains no lateral variations. The constructed
fixed-spread geometry ranges from −2250 to 2250 m with a 5 m
distance between the source and receiver positions. The 5 m dis-
tance is chosen to avoid spatial aliasing. We use a laterally invariant
medium because the time to compute the reflection response R in a
laterally variant medium is too large to be practical for the desired
reproducibility of the examples in this paper. However, the Marche-
nko method does not make any assumption about the medium and
can handle lateral variations as well. Moreover, the demo directory
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Figure 3. Source wavelet with a flat frequency spectrum between
fminð¼ 5 HzÞ and fmaxð¼ 80 HzÞ used to model the reflection re-
sponse.
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of the Marchenko program contains also an example with lateral
variations in the model (marchenko/demo/twoD).
The transmission response, recorded at the surface for a source at

a 900 m depth, is shown in Figure 4d. It has been modeled with a
zero-phase Ricker source wavelet sðtÞ that has its peak at 25 Hz. It is
important that the chosen source wavelet to model Gd be zero
phase; otherwise, the time reversals applied in the algorithm would
not work properly and the Marchenko scheme would not converge.
It is also preferable to choose a source wavelet that decreases rap-
idly in time. This is to minimize the occurrence of overlap between
the direct arrival and the first reflections as is assumed in equa-
tion 11. In case of an overlap, the defined window function (θt in
equation 12) cuts through the overlapping events, and the first re-
flection is not retrieved correctly.
The initialization step used to compute f−1;0 (equation 18) is illus-

trated in Figure 5. Each shot record in RðxR; x; tÞ is convolved
with GdðxR; xF;−tÞ, where GdðxR; xF;−tÞ shown in Figure 5
only contains the time reversal of the full transmission response
as shown in Figure 4d. By making use of shift invariance
RðxR; x; tÞ ¼ RðxR − x; 0; tÞ, the time-convolution result is inte-
grated (summed over all receiver positions xR) and results in one
trace at the x position in the N0 panel.
In −N0ðx; xF;−tÞ, the dotted lines indicate the cutoff boundaries

of the implemented time window θðx; xF; tÞ. To suppress wrap-
around events (from positive times wrapping to negative times),
the time window θðx; xF; tÞ, as introduced in equation 12, is sym-
metrized. Hence, from here onward θðx; xF; tÞ is zero for t > tεd and
t < −tεd, and unity for times inside −tεd < t < tεd. For deep focal
points, one can also extend the time axis by padding zeros at

the end of the array and in that way avoid the influence of
wrap-around events in the time domain. In Appendix A, the treat-
ment of time wrap-around is explained in more detail.
The events before the top dotted line and the events after the

bottom dotted line are muted. The two remaining events originate
from the two reflectors above the chosen focal point at a 900 m
depth. A detailed explanation of the different events in the focus-
ing functions is given by van der Neut et al. (2015b). Staring et al.
(2016) give a similar explanation in case free-surface multiples are
included in the Marchenko method. This initialization of f−1 is the
input of the next step to compute a first estimate of fþ1 , given in
equations 19 and 20.
The computation of fþ1;1 involves the same time convolution and

spatial integration operation, and it is illustrated in Figure 6. The
result of the integration and convolution; −N1ðx; xF;−tÞ is, accord-
ing to equation 20, time reversed, multiplied by −1 and added to
Gdðx; xF;−tÞ to get the first estimate fþ1;1. Note, that the lower
(causal) part of the time window θðx; xF; tÞ mutes also the event
at direct arrival time. This event at the direct arrival time td will
end up in the update of the Green’s function and will adjust the
amplitude of the direct arrival in the Green’s function (van der Neut
et al., 2015b). This update of the direct arrival in the Green’s func-
tion is explained in more detail below.
Figure 7 shows the results of the first four iterations of the

Marchenko method. The first column represents the results of each
convolution and integration of the focusing update term Ni with R.
From these figure parts (all with the same clipping factor) one can
observe that the amplitude of Ni becomes smaller with each next
iteration.
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Figure 4. Four-layer model with (a) velocity and (b) density contrasts. (c) A shot record, with source position xðx ¼ 0; z ¼ 0Þ and receivers at
xRðx ¼ xr; z ¼ 0Þ, and (d) the transmission response from a source at xFðx ¼ 0; z ¼ 900Þ. Note that the source wavelet used to compute R
(c) is given in Figure 3 and T (d) is modeled with a Ricker wavelet with a peak at 25 Hz.
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The trace in the fifth column is a comparison between the refer-
ence Green’s function (solid gray) and the computed Green’s func-
tion (dotted black). In these traces, one can observe (indicated with
arrows) that some events are weakened by subsequent iterations:
The computed Green’s function converges to the reference Green’s
function.
To get a better understanding of the computation of the Green’s

function, the first few iterations are discussed in more detail. The
initialization of the method starts with Gd (equation 27), and G is
computed according to equation 33. This gives

f2;0ðxF; xR; tÞ ¼ GdðxR; xF;−tÞ
G0ðxR; xF; tÞ ¼ GdðxR; xF;−tÞ

þ
Z
∂D0

Z
t

t 0¼−∞
RðxR; x; t − t 0Þ

× Gdðx; xF;−tÞdt 0dxþ N0ðxR; xF;−tÞ:
(39)

Note that in equation 39, the result of the first
integration-convolution with R is notmuted with
θt. The initial estimate of Green’s function is thus
built up of three terms:

1) the direct arrival of the transmission re-
sponse (GdðxR; xF;−tÞ),

2) the integration-convolution of R with
Gd, this is the (unmuted) top left panel in
Figure 7, and

3) A θt muted and multiplied by −1 version of
the integration-convolution of R with Gd:
N0ðxR; xF;−tÞ ¼ −f−1;0ðxR; xF; tÞ, the sec-
ond panel in the top row of Figure 7 multi-
plied by −1.

It is important to note that the result of the com-
bination of the second and third terms just sub-
tracts f−1;0ðtÞ (the events within the black-dotted
lines) from the unmuted integration-convolution
of R with Gd. This is the same as the inverse op-
eration of the time window θt. To get the first es-
timate of the Green’s function, GdðxR; xF;−tÞ is
added to this result and gives the top-right panel
in Figure 7. In the next iteration, we have

f2;1ðxF;xR;tÞ¼GdðxF;xR;−tÞþN0ðxF;xR;tÞ
G1ðxF;xR;tÞ¼G0ðxR;xF;tÞ

þ
Z
∂D0

Z
t

t0¼−∞
RðxR;x;t−t0Þ

×N0ðx;xF;tÞdt0dxþN1ðxR;xF;−tÞ: (40)

Compared with the previous iteration, two new
terms are added:

1) the integration-convolution of R with N0, this is the (unmuted)
left panel for i ¼ 1 in Figure 7 and

2) the θt muted, time reversed, multiplied by −1 version of the
integration-convolution of R with N0: N1ð−tÞ.

The combination of these two terms results in the subtraction of the
events within the black-dotted lines from the unmuted integration-
convolution of R with N0.
Each next iteration follows this same pattern: The events within

the time window θt (above tεd) are used to update the f1 focusing
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Figure 5. Initialization step to compute f−1;0ðx; xF; tÞ ¼ −N0ðx; xF;−tÞ. After applying
the time window θðx; xF; tÞ ¼ θt only events between the dotted lines remain in N0. The
mute window at t < 0 is applied to mute the wrap-around events of the temporal con-
volution. This extra window at t < 0 is only a practical solution and is not needed from
the theory. Note the difference in the time axes of the three panels: positive for RðtÞ,
negative for Gdð−tÞ, and negative and positive for N0ð−tÞ).
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function, and the events outside the time window θt (below tεd)
are used to update Green’s function. Application of the window
function θt separates the focusing function and the Green’s
function.
There is one important remark to make: The direct arrival T inv

d in
the focusing function fþ1 is not updated, whereas the direct arrival
Gd in the Green’s function G is updated. In the first iteration (top
row in Figure 7), the direct arrival in the Green’s function G0 is

equal toGd. In the second iteration shown in Figure 7, the amplitude
of the direct arrival is corrected by the event in the unmuted
−N1ð−tÞ just below the black-dotted line of the mute window. This
event in the unmuted −N1ð−tÞ has an opposite sign to the direct
arrival and decreases the amplitude of the direct arrival (van der
Neut et al., 2015b). In the plotted trace of G0, the amplitude of
the direct arrival (the dotted line) is much higher than the reference
(the gray line). In G1, the amplitudes of the direct arrival between
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Figure 6. First iteration to compute fþ1;1ðx; xF; tÞ from f−1;0ðxR; xF; tÞ. In the summation of Gd with N1 it is important that the amplitudes of R
are correct.
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Figure 7. Four successive iterations of the Marchenko method. The arrows point to an event that does not belong to Green’s function, and it is
weakened at each iteration. The function f−1;i (the second column) only changes from i ¼ 1 to i ¼ 2, whereas fþ1;i (the third column) changes
from i ¼ 0 to i ¼ 1 and from i ¼ 2 to i ¼ 3. The clip level forNi andGi is the same for all panels. Labels of the horizontal and vertical axes are
the same for all panels, and they are shown for the top and left panels.
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reference and computed Green’s function are already much closer.
We do not expect that the scheme started with the approximation
T inv
d ≈Gd will arrive at the correct amplitudes; to achieve accurate

amplitudes, the inverse of the transmission transpose had to be used
and not Gd. There is an offset-dependent scaling factor between the
reference and the computed Green’s function. Thorbecke et al.
(2013) show that this estimate of the direct arrival does not have
to be precise and can be based on a macromodel. The relative am-
plitudes between the events of the computed Green’s function are
correct and are shown in the trace comparison with the reference
output in Figure 7.
The iterative corrections of the amplitude of Green’s function

are needed to take into account transmission losses. The result is
that the upgoing field that arrives at t ¼ td has an amplitude that
is equal to the local reflection coefficient of depth level zf (Slob
et al., 2014). In the next section, we will see how good this
correction is when the f2 focusing function is emitted into the
medium.

Broggini et al. (2014) use the energy before the direct arrival
in Green’s function to define the convergence of the scheme.
In the provided Marchenko program, there is no stopping criteria
built in, to give the user the freedom to choose the number of iter-
ations carried out. The energy in the focusing update term

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;tN
2
i ðx; tÞ

q
) is computed and printed for each iteration and

can be monitored for convergence. In each next iteration, this
energy should become smaller. The convergence rate for eight iter-
ations is shown in Figure 8.
A comparison with the reference Green’s function and the

Marchenko-computed Green’s function after eight iterations is
shown in Figure 9. The difference with the reference Green’s func-
tion is negligible in the middle part of the picture around x ¼ 0.
A small amplitude mismatch increases slightly with the increasing
offset. Closer to the edge of the acquisition (�2250 m), the differ-
ence with the reference becomes larger because the full Fresnel zone
is not included in the acquisition. The higher wavenumbers, more
present at earlier times, are also not captured by the limited acquis-
ition. Note that after approximately 1.5 s, the presence of higher
wavenumbers becomes smaller, and the amplitude error at the
far offsets also decreases. To suppress artifacts from limited acquis-
ition aperture, tapers can be applied to the edges of the initial focus-
ing operator and/or the reflection response. In our experience, these
tapers have limited effects on suppressing these artifacts. Depend-
ing on the specific events at the boundaries of the model the finite
aperture effect could slightly be attenuated. In some cases, the taper
shifts the problem to the nontapered part adjacent to the tapered
region and finite aperture artifacts remain. Another, usually smaller,
amplitude mismatch is caused by the use of the time reversal of the
direct arrival in the transmission response Gd (equation 11) instead
of the inverse.

Propagating the focusing function

One of the properties of the defined f2ðxF; x; tÞ focusing function
in equation 6 is that it will focus at t ¼ 0 at the focal point xF. This
property can be demonstrated by emitting f2ðxF; x; tÞ from ∂D0 into
the medium and show that it has a focus at position xF at snapshot
t ¼ 0 (Singh et al., 2016; Wapenaar et al., 2017). If the transmission
losses in the events in f2 have correctly been taken into account,
then all internal multiples will be canceled at (and only at) t ¼ 0.
The left column of Figure 10 shows five snapshots at times
−0.30;−0.15;−0.03;−0.02, and 0.0. The snapshot at t ¼ 0 indeed
shows only a focus at the focal point. In the snapshots at times t ¼
−0.03 and t ¼ −0.02, it is observed that events related to internal
multiples have opposite amplitude and travel toward each other to
cancel out at t ¼ 0.
The second column of Figure 10 shows snapshots at positive

times, after the wavefield has focused at t ¼ 0. After t ¼ 0, the
focused and dimmed events separate again and continue their
path.
Adding the snapshots at negative times to the corresponding snap-

shots at positive times defines the snapshots of the homogeneous
Green’s function (Wapenaar et al., 2016) with a virtual source at
xF. The third column in Figure 10 shows these combined snapshots,
in which the snapshots at positive and negative times are summed,
and they represent the causal part of the homogeneous Green’s func-
tion. These snapshots can be interpreted as the response of a virtual
source located at the position of the focal point xF.
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Figure 8. Logarithmic convergence rate of the marchenko/demo/
oneD example for 16 iterations. The bumps at the end of the curve
are caused by limited aperture artifacts. These artifacts are two or-
ders of magnitude smaller than the main events.
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Figure 9. Comparison of the Marchenko computed Green’s func-
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solid-gray trace in the background is the reference, and the dotted-
black trace is the Green’s function computed with the Marchenko
method.
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CONCLUSION

The iterative Marchenko method computes focusing functions
which in turn can be used to compute upgoing and downgoing
Green’s functions from a virtual source position in the subsurface.
For the method to converge, the amplitudes of the (modeled) reflec-
tion response must be deconvolved for the source signature and cor-

rectly scaled. In each iteration, a time convolution and spatial
integration is carried out between a focusing-update term Ni and
the reflection data. The result of this integration is split by a time
window that is defined by the first-arrival time from the virtual
source position. The events before the first arrival define at each
iteration a new Ni, which is used in the next iteration. The events
after the time window update the Green’s function. The main com-
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Figure 10. Snapshots of propagation of focusing function f2 through the actual medium. The left column shows snapshots at acausal times,
and the middle column shows snapshots at causal times. The rightmost column shows the addition of the acausal snapshots at negative times
with the corresponding causal snapshots at positive times (time T). Labels of the horizontal and vertical axes are the same for all panels, and
they are shown for the top and left panels.
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putational work in each iteration is the computation of these focus-
ing-update terms Ni. The focusing functions are updated by adding
the computed Ni terms.
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APPENDIX A

INPUT PARAMETERS AND IMPLEMENTATION
DETAILS

The provided marchenko source-code package contains two
main programs:

• fmute: picks the first-arrival time from a transmission re-
sponse and mutes along this time

• marchenko: solves for the focusing functions in the Mar-
chenko method and computes the Green’s functions.

The fmute program tracks the first arrival from a transmission
response to a focal point in the subsurface. Its main use is to sep-
arate the direct arrival of the transmission response (Gd) from the
multiple scattering coda (Mþ), a similar separation to that presented
in equation 11. In the examples provided, the transmission response
is also computed by finite-difference modeling and the direct arrival
needs to be separated from the coda. For example, fmute is used to
compute GdðtÞ in Figure 5 from TðtÞ in Figure 4d. The program
fmute is not needed if a method is used (e.g., an eikonal solver)
that computes the direct arrival in a direct way. The output Gd of the
fmute program is the input file_inv of the marchenko pro-
gram. The different parameters of fmute are shown in the self-docu-
mentation of the program:
fmute - mute in time domain file_shot along

curve of maximum amplitude in file_mute
fmute file_shot= file_mute= [optional

parameters]

Required parameters:
file_mute= : : : : : :input file with event that

defines the mute line
file_shot= : : : : : :input data that are muted

Optional parameters:
file_out=.. : : : : : :output file
above=0 ... : : : : : : mute after(0), before(1) or

around(2) the maximum times
of file_mute : : : : : : options
4 is the inverse of 0, and
−1 is the inverse of 1

shift=0 ... : : : : : : number of points above(pos-
itive) / below(negative)
maximum time for mute

check=0 ...: : : : : :. plots muting window on top
of file_mute: output file
check.su

scale=0 .. : : : : : :scale data by dividing
through the maximum

hw=15 ..... : : : : : :number of time samples to
look up and down in the next
trace for the maximum

smooth=0 .. : : : : : :number of points to smooth
the mute with a cosine
window

verbose=0. : : : : : : silent option; >0 display
info

If file_mute is not provided, file_shot will be used in-
stead to pick the first-arrival times.
The above option is explained in Figure A-1 and separates in

different ways the direct arrival time (td) from the coda. The
above=0 and above=4 options have also a truncation point at
the lower end of the time axis, with the time reversal of td, to mute
wrap-around events introduced by the periodicity of the discrete
Fourier transform. Note that the lower end of the time axis can also
represent negative times. The above=2 option defines a passing
window around td, and it is convenient to select the direct arrival
of the transmission response in case the first arrival also contains
head waves.
To find the first-arrival time in file_mute, a simple tracking

algorithm is implemented. At the trace position equal to the source
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Figure A-1. The different options of the above parameter in the fmute and marchenko programs, illustrated with a shot panel consisting of
noise.
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position, the algorithm searches for the maximum value in that
trace. It is assumed that this is the first-arrival time at the source
position. For complex models, this might not be true, and it is there-
fore always good to enable check=1 and verify in the created out-
put file check.su if the program has tracked the correct direct
arrival time. Starting at the time-sample position of the maximum
(jmax) in the source trace i, the algorithm looks in neighboring traces
(i� 1) for the maximum. It only searches for this maximum in a
restricted time window. For example, the maximum in the left trace
is searched in the time window jmax − hw < ti−1 < jmax þ hw,
where hw is several samples given as the input parameter. If there
are head waves present, the search algorithm can lose track of the
direct arrival, so it is good practice to choose a small hw (four to
eight samples).
The shift option represents the ε in tεd, and it is needed to in-

clude the width of the wavelet in the mute window. Figure A-2
shows the effect of setting a negative or positive shift to exclude
or include the width of the wavelet. With the above=-1 option,
a positive shift will mute the direct arrival, whereas a negative shift
will preserve the direct arrival.
The parameter smooth defines a transition zone (in samples)

going from one to zero in the mute window. Using a few time sam-
ples (3–5) for the smooth transition zone is enough to give satisfac-
tory results. The direction of the taper, going from zero to one, is
away from �td.
The marchenko program has the following parameters and

options:
MARCHENKO — Iterative Green’s function and fo-

cusing functions retrieval
marchenko file_tinv= file_shot= [optional

parameters]
Required parameters:
file_tinv= : : : : : : direct arrival from focal

point: G_d
file_shot= : : : : : : Reflection response: R

Optional parameters:
INTEGRATION
tap=0 : : :... : : : : : : lateral taper focusing(1),

shot(2) or both(3)
ntap=0 .. : : : : : : : : : number of taper points at

the boundaries
fmin=0 : : : : : :.. : : : minimum frequency in the

Fourier transform
fmax=70 : : :. : : : : : : maximum frequency in the

Fourier transform
MARCHENKO ITERATIONS
niter=10 : : : : : : : : : number of iterations

MUTE-WINDOW
above=0 . : : : : : : : : : mute above(1), around(0) or

below(−1) the first travel-
times of file_tinv

shift=12 : : : : : : : : : number of points above(pos-
itive) / below(negative)
traveltime for mute

hw=8 : : : : : : : : :. : : : window in time samples to
look for the maximum in
the next trace

smooth=5 : : : : : : : : : number of points to smooth
mute with the cosine window

REFLECTION RESPONSE CORRECTION
tsq=0.0 : : : : : : : : : scale factor n for t^n for

true amplitude recovery
scale=2 . : : : : : : : : : scale factor of R for summa-

tion of Ni with G_d
pad=0 ... : : : : : : : : : amount of samples to pad the

reflection series
OUTPUT DEFINITION
file_green= : : : : : : output file with the full

Green’s function(s)
file_gplus= : : : : : : output file with G+
file_gmin= . : : : : : : output file with G-
file_f1plus= : : :. output file with f1+
file_f1min= : : : : : : output file with f1-
file_f2= : : :... : : : output file with f2 (=p+)
file_pplus= : : : : : : output file with p+
file_pmin= : : : : : : output file with p-
file_iter= : : : : : : output file with -Ni(-t) for

each iteration
verbose=0 : : : : : : silent option; >0 displays

info.
The number of iterations required for convergence depends on

the reflection strengths and number of events in the model; a com-
plex model will need more iterations. Typically, the number of iter-
ations is between 8 and 20. An automatic stopping criterion could
be based on the energy in the focusing update Ni. This stopping
criterion is not implemented to give the user the freedom to choose
the number of iterations.
To suppress artifacts from a limited acquisition aperture, tapers

can be applied to the edges of the initial focusing operator (tap=1)
and/or the reflection response (tap=2). In our experience, these
tapers have limited effects on suppressing the finite-acquisition-
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Figure A-2. The shift parameter in the fmute and marchenko pro-
grams.
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related artifacts and tapering is usually not enabled. The mute-
window parameters have the same meaning as in the fmute
program.
The temporal convolution of events at positive times in the fo-

cusing update term causes events in R to be shifted forward in time.
Events at negative times will shift events in R backward in time. In
the Marchenko method, it is important that these backward-shifted
events are properly handled. For deeper focal points, some events
can be shifted to negative times; see, for example, N0 in Figure 5.
By implementing the temporal convolution in the frequency do-
main, we make use of the periodic property of the discrete Fourier
transformation: Negative times wrap around to the end of the dis-
crete time axis.
The reason to symmetrize the time window θt is to suppress un-

wanted time wrap-around effects. The time-wrap-around effects can
also be avoided by padding zeros to the time traces in R, making the
time traces 2*nt long, where the last nt samples are zeros. The
parameter pad will pad zeros to the time traces of R. Adding extra
time samples will lead to longer computation times. Therefore, we
prefer to use a symmetrized time window to suppress the unwanted
effects of time wrap around.
The scale parameter can be useful when the modeled data do

not have the correct amplitude, and it represents the previously men-
tioned b scaling factor of the reflection response. The program
can optionally, when the file-names file_* are defined, output
results of computed Green’s and focusing functions. Defining
file_iter writes for each iteration the focusing update term
−Nið−tÞ (=iRN(t) in Algorithm 1) before applying the mute win-
dow. By setting the verbose option to 2, the energy of the focusing
update term is printed out for each iteration and can be used to mon-
itor the convergence of the scheme.
The code to reproduce all figures in this paper can be found in the

directory marchenko/demo/oneD. The README file in that
directory explains in detail how to run the scripts. A more compli-
cated (laterally varying) model can be found in the directory mar-
chenko/demo/twoD. This example usually takes several hours to
complete the reflection data modeling on a personal computer,
and it is thus not discussed.
In addition to the Marchenko programs, the package also contains

the previously published finite-difference modeling code, which is
used to model all data in the examples, in directory fdelmodc
(Thorbecke and Draganov, 2011). The directory utils contains
programs to calculate a gridded model (makemod), source wavelets
(makewave), and programs for basic processing steps.
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