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The methodology of Green’s function retrieval by cross-correlation has led to many interesting

applications for passive and controlled-source acoustic measurements. In all applications, a virtual

source is created at the position of a receiver. Here a method is discussed for Green’s function

retrieval from controlled-source reflection data, which circumvents the requirement of having an

actual receiver at the position of the virtual source. The method requires, apart from the reflection

data, an estimate of the direct arrival of the Green’s function. A single-sided three-dimensional (3D)

Marchenko equation underlies the method. This equation relates the reflection response, measured at

one side of the medium, to the scattering coda of a so-called focusing function. By iteratively solving

the 3D Marchenko equation, this scattering coda is retrieved from the reflection response. Once the

scattering coda has been resolved, the Green’s function (including all multiple scattering) can be

constructed from the reflection response and the focusing function. The proposed methodology has

interesting applications in acoustic imaging, properly accounting for internal multiple scattering.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4869083]
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I. INTRODUCTION

The one-dimensional (1D) Marchenko equation is an

exact integral equation which relates the reflection response,

measured at one side of a medium, to a field inside that me-

dium.1 It finds its most important applications in 1D inverse

scattering problems.2–4

In a series of seminal papers, Rose5–7 discusses the link

between 1D autofocusing and the Marchenko equation.

Autofocusing is a process that uses the single-sided reflec-

tion response to derive a focusing wave field, which, when

emitted from one side into the medium, focuses at one par-

ticular point in that medium. The work of Rose shows that

the focusing field is equal to a delta pulse, minus the time-

reversed solution of the 1D Marchenko equation. Hence, this

links autofocusing to inverse scattering.

Broggini and Snieder8 link the autofocusing method of

Rose to Green’s function retrieval in 1D media. They show

that the superposition of the time-reversal of the focusing

wave field and its reflection response yields the 1D Green’s

function of the medium (including all multiple scattering),

with its source at the position of the focal point inside the

medium. Since the focusing wave field is obtained by

solving the Marchenko equation, the Green’s function is thus

retrieved entirely from the single-sided reflection response

of the medium.

The latter link is remarkable because it implies that a vir-

tual source can be created at any position in the medium, with-

out requiring the presence of actual receivers inside the

medium. This is different from the recent methodology of

Green’s function retrieval by cross-correlation, which has been

developed for ambient noise recordings9–12 as well as for

controlled-source data.13–16 In these methods, the Green’s

function between two receivers is obtained by cross-correlating

wave fields measured at these two receivers. Hence, with these

methods, one of the receivers is turned into a virtual source,

whereas the other receiver measures the response to this virtual

source. In seismology these methods are also called “seismic

interferometry.” The method of Broggini and Snieder,8 by

which the Green’s function is retrieved without requiring a re-

ceiver at the position of the virtual source, is therefore also

called “beyond seismic interferometry.”17 The aim of this pa-

per is to generalize the Marchenko equation and its application

in Green’s function retrieval to three dimensions.

The Marchenko equation has previously been extended

to a three-dimensional (3D) equation, which is known as

the Newton-Marchenko equation.18,19 However, solving the

Newton-Marchenko equation requires measurements all

around the scattering object (i.e., reflection and transmission

measurements). In Secs. III–VI of this paper, a 3D Marchenko

equation is derived which relates the single-sided reflection
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response of a 3D medium to a field inside that medium, simi-

lar to the 1D Marchenko equation. In Secs. VII and VIII it is

shown how an iterative solution method for the single-sided

3D Marchenko equation leads to the 3D Green’s function

(including all multiple scattering), with its source point

inside the medium where no actual receiver is present.

Knowing this Green’s function is the first step toward imag-

ing the medium, properly accounting for multiple reflec-

tions.20,21 Before starting the derivations, Sec. II illustrates

the classical approach to Green’s function retrieval from

reflection data with a numerical example.

II. GREEN’S FUNCTION RETRIEVAL FROM
REFLECTION DATA: THE CLASSICAL APPROACH

The classical approach to retrieving the 3D Green’s

function from reflection data ignores multiple scattering.22,23

This is illustrated here with a numerical example, with the

aim to indicate the limitations and to explain the main pur-

pose of the proposed Green’s function retrieval approach.

Figure 1(a) shows a layered model, with curved interfa-

ces between the layers, and different propagation velocities

and mass densities within the layers. A source, indicated by

the star at the surface, emits a wave field into the medium

which, after propagation and scattering inside the medium, is

detected by 451 receivers at the surface, with an inter-

receiver distance of 10 m, indicated by the triangles at the

surface (only every 15th receiver is shown). The numerically

modeled reflection response is shown in gray-level display

in Fig. 1(b). It has been convolved with a source function

with a central frequency of 20 Hz. Note that this response

contains triplicated arrivals and internal multiple reflections

[the response is displayed with a small time gain of

exp(0.1 * t) to emphasize these multiples]. Reflection

responses like the one in Fig. 1(b) are modeled for a total of

451 source positions at the surface, with an interval of 10 m.

The aim of this numerical experiment is to retrieve the

Green’s function between a virtual source inside the medium

(indicated by the star inside the medium) and the receivers at

the surface. Figure 1(c) shows the directly modeled Green’s

function, which will serve as a reference [here a time gain of

exp(1.2 * t) has been applied].

Suppose that a smooth model of the medium is avail-

able, as shown in Fig. 1(d). Then an estimate of the direct ar-

rival of the Green’s function can be obtained by numerically

modeling the response to the source in the smooth model.

The result is shown in Fig. 1(e). This direct Green’s function

is now used to focus the sources of the reflection responses

to the position of the virtual source inside the medium. This

involves cross-correlation of the reflection responses with

the direct Green’s function and integration along the sources

at the surface. The result approximates the response to a

FIG. 1. (Color online) (a) Propagation velocity model. (b) Reflection response of the model in (a). The source is indicated by the star at the surface. (c)

Green’s function in the model in (a). The source is indicated by the star inside the medium. (d) Smoothed version of the propagation velocity model. (e) Direct

arrival of the Green’s function in the smoothed model of (d). (f) Green’s function, retrieved by the classical approach.
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downward radiating source at the virtual-source position.

The direct Green’s function itself approximates the response

to an upward radiating source at the virtual-source position.

Hence, the superposition of these responses approximates

the total Green’s function between the virtual source inside

the medium and the receivers at the surface. This retrieved

Green’s function is shown in Fig. 1(f) (after muting acausal

events before the first arrival). The same result is represented

by the thin black lines in Fig. 2(a) [only every 15th trace is

shown, corresponding with the receivers indicated by the tri-

angles in Fig. 1(a); a time gain of exp(1.9 * t) has been

applied]. As a reference, the thick gray lines represent the

directly modeled Green’s function. The central trace of Fig.

2(a) is shown with more detail in Fig. 2(b). Note that the

match between the retrieved and the directly modeled

Green’s function is reasonably accurate for the early arrivals.

These early arrivals correspond to the direct arrival and the

primary reflections from the reflectors below the virtual

source in Fig. 1(a). The later arrivals, corresponding to the

multiple reflections, are not correctly retrieved.

The theory discussed in Secs. III–VIII leads to an

improved methodology for Green’s function retrieval, with

the aim to recover primary as well as multiple reflections.

The new methodology, called the Marchenko approach to

Green’s function retrieval, uses the same information as the

classical approach, i.e., reflection data at the surface and an

estimate of the direct arrival of the Green’s function. The

Marchenko approach retrieves the multiples in the Green’s

function from the reflection data in an iterative way, but it

does not improve the travel time of the direct arrival, thus

leaving a small uncertainty in the position of the virtual

source. If one seeks to know the Green’s function for a given

source point inside the medium, one needs to prescribe

somehow where that point is located. Ideally one would like

to give the coordinates, but the direct waves depend only on

the location of this point through the travel time of these

waves. This is the reason why one must prescribe the travel

time of the first arriving waves: It is through this travel time

that the virtual source point is defined. The problem of esti-

mating the travel time of the direct arrival and pinpointing

the position of the virtual source is in essence the same as

for the classical approach. This is a separate issue, beyond

the scope of this paper.

III. RECIPROCITY THEOREMS FOR ONE-WAY WAVE
FIELDS

Reciprocity theorems for one-way wave fields form the

basis for deriving a specific form of Green’s function repre-

sentation (Sec. V) which, in turn, underlies the single-sided

3D Marchenko equation (Sec. VI). This section starts with

the basics of flux-normalized one-way wave fields and

reviews reciprocity relations between one-way wave fields

in two different states.

An acoustic wave field in the space-time domain is rep-

resented by the acoustic pressure p(x, t) and particle velocity

vm(x, t), where x is the Cartesian spatial coordinate vector, t
denotes time and subscript m takes on the values 1 to 3. In

this paper, the positive x3-axis is pointing downward. The

temporal Fourier transform is defined as

pðx;xÞ ¼
ð1
�1

pðx; tÞ expð�jxtÞ dt; (1)

where x is the angular frequency and j is the imaginary unit

(j ¼
ffiffiffiffiffiffiffi
�1
p

). To keep the notation simple, the same symbol is

used for time- and frequency-domain functions (here p). The

downward and upward propagating, mutually coupled, con-

stituents of the wave field are denoted by pþ and p�, respec-

tively. In the space-frequency domain, the formal relation

between one-way (i.e., down-going and up-going) and

two-way (i.e., total) wave fields is given by24–31

p
v3

� �
¼ L1 L1

L2 �L2

� �
pþ

p�

� �
: (2)

Here L1 and L2 are pseudo-differential operators, which are

discussed in detail in the aforementioned references. Assuming

the one-way wave fields are normalized with respect to acous-

tic power flux, the inverse of Eq. (2) is given by

pþ

p�

� �
¼ Lt

2 Lt
1

Lt
2 �Lt

1

� �
p
v3

� �
; (3)

where the superscript t stands for operator transposition.28,31

The symmetry between the composition and decomposition

FIG. 2. Retrieved Green’s function, using the classical approach (thin black

lines), overlain on the directly modeled Green’s function (thick gray lines).

(a) Green’s function at all receivers in Fig. 1(a). (b) Green’s function at the

central receiver in Fig. 1(a).
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Eqs. (2) and (3) implies that the flux-normalized one-way

wave fields, as well as the corresponding one-way Green’s

functions and the reflection and transmission responses,

obey simple reciprocity relations.32–36 This facilitates the

derivation of the 3D Marchenko equation. Therefore, in the

main text of this paper (except in Sec. VIII) all one-way

wave fields are flux-normalized. In the Appendix the 3D

Marchenko equation is derived using pressure normalized

one-way wave fields.

Consider an inhomogeneous lossless medium below an

acoustically transparent boundary @D0. The upper

half-space above @D0 is homogeneous. The propagation ve-

locity and mass density of the inhomogeneous medium

below @D0 are defined as c(x) and q(x), respectively. From

here onward, the spatial coordinate vector x is defined as

x¼ (xH, x3), in which xH¼ (x1, x2) is the horizontal coordi-

nate vector and x3 is the vertical coordinate.

The boundary @D0 is chosen at depth level x3¼ x3,0.

Coordinates at @D0 are denoted as x0¼ (xH, x3,0). A second

boundary @Di is defined at an arbitrary depth level x3¼ x3,i,

with x3,i> x3,0. Coordinates at @Di are denoted as xi¼ (xH,

x3,i). Consequently, the notations p(x0) and p(xi) stand for

pðxÞjx3¼x3;0
and pðxÞjx3¼x3;i

, respectively [i.e., the function

p(x) evaluated at depth levels x3,0 and x3,i, respectively].

The domain enclosed by boundaries @D0 and @Di is

denoted as D.

Acoustic reciprocity theorems formulate general relations

between two acoustic states in one and the same domain.37,38

Flux-normalized one-way wave fields obey in the space

frequency domain the following reciprocity relation:36,39

ð
@D0

pþA p�B � p�A pþB
� �

dx0 ¼
ð
@Di

pþA p�B � p�A pþB
� �

dxi;

(4)

where subscripts A and B refer to two independent states.

The underlying assumptions are that there are no sources in

the domain D between @D0 and @Di and that the medium

parameters in D are the same in states A and B. Note that

sources may be present outside D and the medium parame-

ters in the two states may differ from each other outside D

(this is because in the derivation of reciprocity theorems

only the situation inside the considered domain

matters36–38). According to the definitions of x0 and xi, the

integrations in Eq. (4) take place at @D0 and @Di, respec-

tively, along the horizontal coordinate vector xH. Equation

(4) is the so-called one-way reciprocity theorem of the con-

volution type, because products like pþA p�B in the frequency

domain correspond to convolutions in the time domain. A

second reciprocity theorem for one-way wave fields is given

by ð
@D0

pþA
� ��pþB � p�Að Þ�p�B
n o

dx0

¼
ð
@Di

pþA
� ��pþB � p�Að Þ�p�B
n o

dxi; (5)

where the asterisk (*) denotes complex conjugation. This is

the so-called one-way reciprocity theorem of the correlation

type, because products like pþA
� ��pþB in the frequency do-

main correspond to correlations in the time domain. In addi-

tion to the assumptions mentioned above, evanescent waves

are neglected in Eq. (5) at the boundaries @D0 and @Di. In

Secs. IV and V , the reciprocity theorems (4) and (5) are

used to derive relations between focusing functions and the

Green’s function of the inhomogeneous medium below

@D0.

IV. FOCUSING FUNCTIONS

In the derivation of the Marchenko equation for 1D scat-

tering problems, the so-called “fundamental solutions” of the

source-free Schr€odinger equation play an essential role.1 For

the situation of a localized scattering potential in a homogene-

ous embedding, the fundamental solutions f1(x, t) and f2(x, t)
of the Schr€odinger equation are those solutions that reduce to

outgoing waves for x ! 1 and x ! �1, respectively. Any

other solution can be expressed as a linear combination of the

two fundamental solutions.

The concept of fundamental solutions has been extended

for the 3D situation.40 Here, a slightly different approach is

followed. First, the 3D versions of the fundamental solutions

are renamed as “focusing functions,” which better reflects

the character of these functions. Second, the 3D focusing

functions are defined in a reference configuration rather than

in the actual medium, similar as proposed by Slob et al.41 for

the 1D situation. The reference configuration is chosen such

that above boundary @Di it is equal to the actual medium

discussed in Sec. III, whereas below this boundary it is taken

reflection-free. The focusing function f1(x, t), with x 2 R3

and t 2 R, consists in the homogeneous upper half-space

x3� x3,0 of a down-going field fþ1 (x, t) and an up-going field

f�1 (x, t), with fþ1 (x, t) shaped such that f1(x, t) focuses at x0i
¼ ðx0H; x3;iÞ at t¼ 0, and continues as a diverging down-going

field fþ1 (x, t) into the reflection-free reference half-space

x3� x3,i. The focusing condition is formally defined as

f1ðxH; x3 ¼ x3;i; tÞ ¼ dðxH � x0HÞdðtÞ; (6)

where d(xH� x0H) and d(t) are two-dimensional (2D) and 1D

Dirac delta functions, respectively. For the following deriva-

tions, it is necessary to consider the lateral position x0H of the

focal point as a variable and therefore it is useful to include

the focal point x0i in the argument list of the wave fields.

Hence, f 6
1 (x, t) is from here onward denoted as f 6

1 (x, x0i, t),
etc., see Fig. 3(a).

The second focusing function f2(x, t) consists in the

reflection-free reference half-space x3� x3,i of an up-going

field f�2 (x, t) and a down-going field fþ2 (x, t), with f�2 (x, t)
shaped such that f2(x, t) focuses at x000 ¼ (x00H, x3,0) at t¼ 0,

and continues as a diverging up-going field f�2 (x, t) into the

homogeneous upper half-space x3� x3,0. The focusing con-

dition is formally defined as

f2ðxH; x3 ¼ x3;0; tÞ ¼ dðxH � x00HÞdðtÞ: (7)

From here onward the focal point x000 is included in the argu-

ment list, hence f 6
2 (x, t) is denoted as f 6

2 (x, x000, t), etc., see

Fig. 3(b).
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In the frequency domain, the first focusing function is

written as

f1ðx; x0i; xÞ ¼ fþ1 ðx; x0i; xÞ þ f�1 ðx; x0i; xÞ; (8)

with f�1 (x, x0i, x)¼ 0 for x3� x3,i. Focusing condition (6)

reads in the frequency domain

f1ðxi; x0i; xÞ ¼ fþ1 ðxi; x0i; xÞ ¼ dðxH � x0HÞ: (9)

Note that f1(x, x0i, x) can only collapse into a delta function

at x3¼ x3,i when the entire evanescent field is included.

Since the evanescent field decays exponentially during

downward propagation and should remain finite at x3¼ x3,i,

the illuminating field fþ1 (x, x0i, x) in the upper-half-space

x3� x3,0 should have very high amplitudes, which could

make this focusing function unstable. To avoid this unstable

behavior, evanescent waves are excluded at the focusing

depth level x3¼ x3,i (i.e., at boundary @Di). This means that

the delta function in Eq. (9) and in subsequent equations

should be interpreted as a spatially band limited delta func-

tion. Note that the sifting property of the delta function,

h(xH)¼
Ð
d(xH� x0H)h(x0H) dx0H, remains valid for a spatially

band limited delta function, assuming h(xH) is also spatially

band limited (which is the case when evanescent waves are

excluded).

The second focusing function reads in the frequency

domain

f2ðx; x000; xÞ ¼ fþ2 ðx; x000; xÞ þ f�2 ðx; x000; xÞ; (10)

with fþ2 (x, x000, x)¼ 0 for x3� x3,0. Focusing condition (7)

reads in the frequency domain

f2ðx0; x000; xÞ ¼ f�2 ðx0; x000; xÞ ¼ dðxH � x00HÞ: (11)

Evanescent waves are excluded at the focusing depth level

x3¼ x3,0 (i.e., at boundary @D0); hence, the delta function

should again be interpreted as a spatially band limited delta

function.

Reciprocity theorems (4) and (5) can be used to find

relations between the focusing functions at the boundaries

@D0 and @Di. Substituting p6
A (x, x)¼ f 6

1 (x, x0i, x) and

p6
B (x, x)¼ f 6

2 (x, x000, x) into Eqs. (4) and (5), using Eqs. (9)

and (11), yields

fþ1 ðx000; x0i; xÞ ¼ f�2 ðx0i; x000; xÞ (12)

and

�ff�1 ðx000; x0i; xÞg� ¼ fþ2 ðx0i; x000; xÞ; (13)

respectively.

V. GREEN’S FUNCTION REPRESENTATIONS

The one-way reciprocity theorems of Sec. III and the fo-

cusing functions introduced in Sec. IV are used to derive

Green’s function representations. To this end, the flux-

normalized one-way Green’s function of the actual inhomo-

geneous medium is introduced, with its flux-normalized

source at x000, just above @D0, see Fig. 4. This source radiates

up-going waves into the homogeneous upper half-space and

FIG. 3. 3D focusing functions in a reference configuration, which is equal to the actual medium above @Di and reflection-free below @Di. (a) The function f1
focuses at x0i¼ (x0H, x3,i) at t¼ 0 and continues as a diverging down-going field fþ1 into the lower half-space. (b) The function f2 focuses at x000 ¼ (x00H, x3,0) at

t¼ 0 and continues as a diverging up-going field f�2 into the upper half-space.

FIG. 4. Flux-normalized one-way Green’s functions of the 3D wave equa-

tion in the actual inhomogeneous medium. The source at x000 is chosen just

above @D0. The Green’s function G�,þ(x0, x000, t) is by definition the reflec-

tion response R(x0, x000, t) of the medium.
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down-going waves into the inhomogeneous lower half-

space. At and below @D0, the response is entirely due to the

downward radiating part of the source. Directly below the

source, at @D0, the downward propagating constituent of the

Green’s function is defined as

Gþ;þðx0; x000; tÞ ¼ dðxH � x00HÞdðtÞ: (14)

The first superscript (þ) denotes the downward propagation

direction at the observation point x0, whereas the second

superscript (þ) refers to the downward radiating part of the

source at x000. Because of the flux-normalization, this direct

field contribution directly below the source is simply repre-

sented by the delta function on the right-hand side.36 The

upward propagating constituent of the Green’s function at

@D0 is defined as

G�;þðx0; x000; tÞ ¼ Rðx0; x000; tÞ: (15)

Here the first superscript (�) denotes the upward propaga-

tion direction at the observation point x0. This Green’s func-

tion is by definition the reflection response of the

inhomogeneous medium, represented by R(x0, x000, t) on the

right-hand side. Figure 4 further shows the downward and

upward propagating constituents Gþ,þ(xi, x000, t) and G�,þ(xi,

x000, t), respectively, at @Di.

In the frequency domain, the one-way Green’s functions

in the half-space x3� x3,0 are represented by G6,þ(x, x000, x),

and Eqs. (14) and (15) become

Gþ;þðx0; x000; xÞ ¼ dðxH � x00HÞ (16)

and

G�;þðx0; x000; xÞ ¼ Rðx0; x000; xÞ; (17)

respectively. Relations between the Green’s functions G6,þ

and the focusing functions f 6
1 can be found by applying the

reciprocity theorems (4) and (5) to the domain D enclosed

by @D0 and @Di. Note that this is allowed because in D the

Green’s function and the focusing function are both defined

in the actual medium; the fact that below @Di (i.e., outside

D) the media are different does not matter. Substituting

p6
A (x, x)¼ f 6

1 (x, x0i, x) and p6
B (x, x)¼G6,þ(x, x000, x) into

Eqs. (4) and (5), using R(x0, x000, x)¼R(x000, x0, x) (Ref. 39)

and Eqs. (9), (16), and (17), yields

ð
@D0

fþ1 ðx0; x0i; xÞRðx000; x0; xÞdx0

� f�1 ðx000; x0i; xÞ ¼ G�;þðx0i; x000; xÞ (18)

and

�
ð
@D0

ff�1 ðx0; x0i; xÞg�Rðx000; x0; xÞdx0

þ ffþ1 ðx000; x0i; xÞg� ¼ Gþ;þðx0i; x000; xÞ; (19)

respectively. Adding these expressions, using Eqs. (10),

(12), and (13), and bringing the Green’s functions to the left-

hand side, gives

Gþ;þðx0i; x000; xÞþG�;þðx0i; x000; xÞ

¼
ð
@D0

f2ðx0i; x0; xÞRðx000; x0; xÞdx0þff2ðx0i; x000; xÞg�:

(20)

Note that the left-hand side represents a superposition of the

flux-normalized down-going and up-going Green’s wave

fields at x0i, related to the downward radiating part of the

source at x000. It can be transformed into the pressure-

normalized two-way Green’s function G(x0i, x000, x) as fol-

lows. Applying the operator L1 at depth level x3¼ x3,i to the

left-hand side of Eq. (20) gives, analogous to Eq. (2), the

two-way Green’s pressure at x0i. This operation does not

affect the source at x000, hence, the result is written as

Gp,þ(x0i, x000, x) (superscript p refers to the pressure at the

observation point x0i). Using a combination of two-way and

one-way source-receiver reciprocity,36,38 this is equal to

G�,q(x000, x0i, x), i.e., the flux-normalized upward propagating

Green’s wave field at x000, due to a source of the

volume-injection type (denoted by superscript q) at x0i.
Applying the operator L1 at depth level x3¼ x3,0 turns this

into Gp,q(x000, x0i, x), i.e., the pressure-normalized two-way

Green’s function. Combining these steps, applying

source-receiver reciprocity once more and dropping the

superscripts p and q gives

Gðx0i; x000; xÞ ¼ Gðx000; x0i; xÞ
¼ L1ðx3;iÞL1ðx3;0ÞfGþ;þðx0i; x000; xÞ
þ G�;þðx0i; x000; xÞg: (21)

Summarizing, Eqs. (20) and (21) show that the Green’s func-

tion of the actual inhomogeneous medium, propagating from

a source just above the surface @D0 (Fig. 4) to a receiver at

an arbitrary depth level @Di (or vice versa), can be obtained

from the reflection response of the actual medium, observed

at the surface @D0, and the focusing function f2 of the refer-

ence configuration [Fig. 3(b)].

VI. 3D MARCHENKO EQUATION

The right-hand side of Eq. (20) is used to derive the 3D

Marchenko equation, which is an integral equation for the

focusing function f2. Transforming Eq. (20) to the time do-

main gives

Gþ;þðx0i; x000; tÞ þG�;þðx0i; x000; tÞ

¼
ð
@D0

dx0

ðt

�1
f2ðx0i; x0; t0ÞRðx000; x0; t� t0Þdt0

þ f2ðx0i; x000; �tÞ: (22)

The upper integration limit (t0 ¼ t) stems from the causality

of the reflection response R(x000, x0, t� t0). Let td(x0i, x000)

denote the travel time of the first arrival between x000, located

just above @D0, and x0i at @Di [in case of a triplicated wave,

td(x0i, x000) is the travel time of the first onset]. In the follow-

ing, Eq. (22) is evaluated only for t< td(x0i, x000), hence
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0 ¼
ð
@D0

dx0

ðt

�1
f2ðx0i; x0; t0ÞRðx000; x0; t� t0Þdt0

þ f2ðx0i; x000; �tÞ; for t < tdðx0i; x000Þ: (23)

Assuming R(x000, x0, t) is known (obtained from reflection

measurements at the surface), the aim is to determine the fo-

cusing function f2(xi, x000, t). Equation (23) has no unique so-

lution (e.g., f2¼ 0 is also a solution). Therefore an ansatz

will be made for the form of f2(xi, x000, t), inspired by the 1D

case. In the 1D derivation,1 f2(x, t) is defined as a delta pulse

traveling in the negative x-direction followed by a coda

caused by the scattering potential. The coda vanishes beyond

the scattering region, leaving only the delta pulse traveling

in the negative x-direction beyond this region.

Before generalizing the ansatz to the 3D situation, an

auxiliary property of f�2 (xi, x000, t) is derived. Figure 5(a)

shows the transmission response T(xi, x000, t) in the reference

configuration to a source at x000 just above @D0. Hence, T(xi,

x000, t) is the transmission of the actual inhomogeneous me-

dium in D, sandwiched between a homogeneous half-space

above @D0 and a reflection-free reference half-space below

@Di. Substituting pþA (x0, x)¼ d(xH� x00H), pþA (xi, x)¼ T(xi,

x000, x), p�A (xi, x)¼ 0, and p6
B (x, x)¼ f 6

2 (x, x00, x) into

Eq. (4), using Eq. (11) (with single instead of double

primes), yields

dðx0H � x00HÞ ¼
ð
@Di

Tðxi; x000; xÞf�2 ðxi; x00; xÞdxi: (24)

Hence, f�2 (xi, x000, x) is the inverse of the transmission

response T(xi, x000, x) in the sense of Eq. (24). In the time do-

main, this is formulated as

f�2 ðxi; x000; tÞ ¼ Tinvðxi; x000; tÞ: (25)

Analogous to the 1D case, the ansatz for the 3D situation is

that f2(xi, x000, t) can be defined as the superposition of a direct

up-going wave and a scattering coda, which vanishes in the

homogeneous upper half-space. Since f2(xi, x000, t) focuses at

x000 at t¼ 0 [see Eq. (7) and Fig. 3(b)], it is reasonable to

assume that the first event arriving at x000 is the direct arrival

of the up-going field f�2 (xi, x000, t), i.e., the direct arrival of the

inverse transmission response, which is denoted as Tinv
d (xi,

x000, t). The travel time of this direct arrival is �td(xi, x000).

Figure 5(b) illustrates the propagation of Tinv
d (x, x000, t)

through the inhomogeneous medium and its focusing at x000 at

t¼ 0. The ansatz for f2(xi, x000, t) is thus written as

f2ðxi; x000; tÞ ¼ Tinv
d ðxi; x000; tÞ þMðxi; x000; tÞ; (26)

where M(xi, x000, t) is the coda following the direct arrival,

with

Mðxi; x000; tÞ ¼ 0; for t � �tdðxi; x000Þ: (27)

This coda is the result of reflections taking place in the inho-

mogeneous medium in D; it vanishes in the homogeneous

upper half-space. Figure 5(c) illustrates the scattering coda

M(x, x000, t) related to a single ray of the direct wave.

Note that the ansatz [Eq. (26)] limits the validity of the

following derivation to configurations for which the ansatz

holds true. For example, it holds in layered media with mod-

erately curved interfaces as long as jxH � x00Hj is not too large

(to avoid occurrence of turning waves, head waves, etc.).

The conditions underlying the ansatz need further investiga-

tion, which is beyond the scope of this paper.

FIG. 5. (a) Transmission response T(xi, x000 , t) in the reference configuration.

Its inverse is equal to the up-going wave f�2 (xi, x000, t). (b) The ansatz for the

focusing function f2(xi, x000, t) is that it can be defined as the superposition of

a direct up-going wave and a scattering coda. The direct up-going wave con-

sists of the direct arrival of the inverse transmission response, i.e., Tinv
d (x,

x000, t). (c) The coda M(x, x000, t) is a result of scattering in the inhomogeneous

medium in D. For illustration, the fat solid ray represents the right-most ray

of the direct up-going wave of (b), whereas the thin solid rays constitute the

scattering coda. Note that the coda vanishes in the upper half-space.
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Substituting Eq. (26) into Eq. (23) yields

ð
@D0

dx0

ð�t�
d
ðx0i;x0Þ

�1
Tinv

d ðx0i; x0; t
0ÞRðx000; x0; t� t0Þdt0

þ
ð
@D0

dx0

ðt

�t�
d
ðx0i;x0Þ

Mðx0i; x0; t
0ÞRðx000; x0; t� t0Þdt0

þMðx0i; x000;�tÞ ¼ 0 for t < tdðx0i; x000Þ; (28)

where t�dðx0i; x0Þ¼ tdðx0i; x0Þ� �, with � a small positive con-

stant [it is introduced to assure that the direct arrival at

t0 ¼�td(x0i, x0) is included in the first integral]. Equation (28)

is the 3D Marchenko equation. It is an integral equation for

the coda M(x0i, x000, t) of the focusing function f2(x0i, x000, t).

VII. ITERATIVE SOLUTION METHOD

To solve the Marchenko equation for M(x0i, x000, t), it is

rewritten into the following iterative scheme:

Mkðx0i; x000; �tÞ ¼ M0ðx0i; x000; �tÞ

�
ð
@D0

dx0

ðt

�t�
d
ðx0i; x0Þ

Mk�1ðx0i; x0; t0Þ

� Rðx000; x0; t� t0Þdt0; (29)

with

M0ðx0i; x000; �tÞ

¼�
ð
@D0

dx0

ð�t�
d
ðx0i;x0Þ

�1
Tinv

d ðx0i; x0; t0ÞRðx000; x0; t� t0Þdt0;

(30)

for t< td(x0i, x000), and

Mkðx0i; x000; �tÞ ¼ 0; for t � tdðx0i; x000Þ: (31)

Evaluation of Eq. (30) requires that, apart from the reflection

response, information about the direct arrivals of the trans-

mission response is available. These direct arrivals can, for

example, be modeled in an estimated background model. In

its simplest form, Tinv
d (x0i, x0, t) is approximated by Td(x0, x0i,

�t). This approximation properly accounts for travel times

and geometrical spreading, but ignores the effect of trans-

mission losses at the interfaces.42 Using this approximation,

the evaluation of Eq. (30) requires the direct arrivals

between all positions x0 at the surface @D0 and the selected

position x0i at @Di. In the more general situation, Tinv
d (x0i, x0,

t) is an inverse in the sense of Eq. (24). Determining Tinv
d (x0i,

x0, t) involves resolving an integral equation (which in prac-

tice comes to matrix inversion). This requires the direct

arrivals between all positions x0 at the surface @D0 and all

positions x0i at @Di.

Once M0(x0i, x000, �t) has been evaluated, it is used in the

iterative scheme of Eq. (29), which starts for k¼ 1 and contin-

ues until convergence. The scheme is expected to converge as

long as the reflection response does not return all emitted

energy back to the surface @D0. Using Eq. (26), the succes-

sive iterations for the focusing function f2(x0i, x000, t) read

f2;0ðx0i; x000; tÞ ¼ Tinv
d ðx0i; x000; tÞ; (32)

f2;kðx0i; x000; tÞ ¼ Tinv
d ðx0i; x000; tÞ þMk�1ðx0i; x000; tÞ: (33)

Note that the iterative scheme of Eqs. (29)–(31) resem-

bles the iterative time-reversal approach of Fink and co-

workers.43–45 However, whereas in the iterative time-

reversal approach the measurements are time-reversed and

physically re-emitted into the medium, the scheme described

by Eqs. (29)–(31) is implemented as a numerical processing

method. Moreover, the iterative time-reversal approach is ei-

ther limited to focusing on the strongest scatterer in reflec-

tion data,43 or it is applied to measured transmission data.44

In contrast, the scheme of Eqs. (29)–(31) does neither need

measured transmission data nor a physical scatterer to

focus on: The reflection measurements plus an estimate

of the direct arrivals of the transmission response suffice

to obtain the focusing function for any focal point inside

the medium. Finally, the distinction between the different

time intervals in Eqs. (29)–(31), which follows from the

theoretical analysis, is necessary for a correct treatment

of multiple scattering in the reflection data. This distinc-

tion is absent in the iterative time-reversal approach for

reflection data.43

What the time-reversal approach and the Marchenko

method presented here have in common is that one does not

need to know the medium. In the time-reversal approach, the

waves propagate back through the physical medium, which

one therefore does not need to know. In the Marchenko

method presented here, one needs to know a smooth back-

ground model, but all detailed information of the medium is

encoded in the measured reflected waves. The algorithm

convolves these reflected waves in the appropriate way to

retrieve the focusing function and, subsequently, the Green’s

function (see Sec. VIII).

VIII. GREEN’S FUNCTION RETRIEVAL FROM
REFLECTION DATA: THE MARCHENKO APPROACH

The foregoing sections contain all the ingredients to

design a scheme for iterative retrieval of the Green’s func-

tion G(x000, x0i, t), with x0i inside the medium, from the reflec-

tion response R(x000, x0, t) at the surface and the estimated

direct arrival Td(x0i, x0, t). The derivation of the underlying

3D Marchenko equation is based on reciprocity theorems for

flux-normalized one-way wave fields. Hence, the reflection

response and direct arrival, which are required as input for

the Green’s function retrieval scheme, need to be

flux-normalized as well. In the Appendix, a 3D Marchenko

equation is derived from reciprocity theorems for

pressure-normalized one-way wave fields. Green’s function

retrieval, based on that version of the Marchenko equation,

requires a pressure-normalized reflection response and a

pressure-normalized direct arrival as input. In the follow-

ing, the steps needed to retrieve the Green’s function

from the measured reflection response at the surface and

the estimated direct arrivals are presented for both

approaches.
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Data-driven Green’s function retrieval according to the

flux-normalized approach involves the following steps.

(1) In case the reflection response is measured at a free sur-

face, remove the surface-related multiple reflections.46,47

Deconvolve the reflection response for the source time

function. The output is the reflection response in a con-

figuration with a homogeneous half-space above the ac-

quisition surface @D0.

(2) Apply flux-normalization to the reflection response and

the estimated direct arrival.

(3) Evaluate the inverse direct arrival Tinv
d (x0i, x000, t).

Optionally, approximate Tinv
d (x0i, x000, t) by Td(x000, x0i, �t).

(4) Use the scheme of Eqs. (29)–(31) to obtain the iterations

Mk(x
0
i, x000, t) for the coda of the flux-normalized focusing

function. Construct the iterations f2,k(x
0
i, x000, t) of the

flux-normalized focusing function, using Eqs. (32) and

(33).

(5) After convergence, construct the flux-normalized two-

way Green’s function Gþ,þ(x0i, x000, t)þG�,þ(x0i, x000, t),
using Eq. (22).

(6) Construct the pressure-normalized Green’s function

G(x0i, x000, t)¼G(x000, x0i, t), using Eq. (21).

Data-driven Green’s function retrieval according to the

pressure-normalized approach involves the following steps.

FIG. 6. The focusing function f2,k(x
0
i,

x000 , t) for fixed x0i and variable x000. (a)

k¼ 0. (b) k¼ 1. (c) k¼ 2. (d) k¼ 10.
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(1) As above.

(2) Evaluate the inverse direct arrival T inv
d (x0i, x000, t), where

T d(x0i, x000, t) is related to the direct arrival of the

pressure-normalized Green’s function, Gd(x0i, x000, t), via

Eqs. (A24) and (A26). Optionally, approximate T inv
d (x0i,

x000, t) by Gd(x000, x0i, �t).
(3) Use the scheme of Eqs. (A27)–(A29) to obtain the itera-

tions Mk(x
0
i, x000, t) for the coda of the pressure-normalized

focusing function. Construct the iterations f2,k(x
0
i, x000, t) of

the pressure-normalized focusing function, using Eqs.

(A30) and (A31).

(4) After convergence, construct the pressure-normalized

Green’s function G(x0i, x000, t)¼G(x000, x0i, t), using Eqs.

(A18) and (A19).

The schemes above have been derived for 3D media but

hold equally well for 2D media. The latter scheme is illus-

trated with the 2D numerical data of Fig. 1, used earlier to

illustrate a classical method for retrieving the Green’s func-

tion from reflection data. Figure 1(b) represents the pressure-

normalized reflection response R(x000, x0, t) for fixed x0 and

variable x000, observed at the surface @D0. The half-space

above @D0 is homogeneous, hence, the reflection response

contains no surface-related multiple reflections. The aim is to

retrieve the Green’s function G(x000, x0i, t), with its source at

x0i¼ (0 m, 1100 m). Similar as for the classical method this

requires, apart from the reflection response, an estimate of the

direct arrival of the Green’s function, Gd(x000, x0i, t), which is

shown in Fig. 1(e) for fixed x0i and variable x000. Note that a

triplication is present in this estimated direct arrival, although

less prominent than in the direct arrival of the Green’s func-

tion in the actual medium [Fig. 1(c)]. The travel time td(x000,

x0i), appearing in the iterative scheme, is defined as the time of

the first onset of the triplicated event in Fig. 1(e).

Because @D0 is not a free surface, the surface-related

multiple elimination in step 1 is skipped. For step 2 the most

simple approach is chosen, i.e., T inv
d (x0i, x000, t) is approxi-

mated by Gd(x000, x0i, �t), the time-reversal of the direct ar-

rival of the Green’s function in Fig. 1(e). This is the zeroth

order iteration of the pressure-normalized focusing function,

f2,0(x0i, x000, t), which is shown in Fig. 6(a). Step 3 involves

evaluating f2,k(x
0
i, x000, t) for successive values of k. Figures

6(b)–6(d) show f2,k(x
0
i, x000, t) for fixed x0i and variable x000, for

k¼ 1, 2, and 10, respectively. Note that during the first few

FIG. 8. (Color online) (a) Strongly smoothed version of the propagation velocity model of Fig. 1(a). (b) Direct arrival of the Green’s function of the smoothed

model, Gd(x000, x0i, t).

FIG. 7. Retrieved Green’s function, using the Marchenko approach (thin

black lines), overlain on the directly modeled Green’s function (thick gray

lines). (a) Green’s function at all receivers in Fig. 1(a). (b) Green’s function

at the central receiver in Fig. 1(a).
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iterations new events are generated, whereas during the

higher iterations only the amplitudes of these events are

modified. The second iteration [Fig. 6(c)] is already very

close to the tenth iteration [Fig. 6(d)], which is taken as the

final estimate of the focusing function f2(x0i, x000, t). Finally,

step 4 involves constructing the pressure-normalized

Green’s function G(x000, x0i, t) from the reflection response

R(x000, x0, t) and the focusing function f2(x0i, x000, t). The result

is represented by the thin black lines in Fig. 7(a) for fixed x0i
and variable x000. The thick gray lines represent the directly

modeled Green’s function. A time gain of exp(1.9 * t) has

been applied to emphasize the multiple reflections. The cen-

tral trace of Fig. 7(a) is shown with more detail in Fig. 7(b).

Note that overall the match is very good. The triplications

and internal multiples are very well recovered. Only the

amplitudes of the steepest events at large horizontal

source-receiver distance are underestimated. The cause for

this is probably a combination of using a finite acquisition

aperture and approximating T inv
d (x0i, x000, t) by Gd(x000, x0i, �t).

In a next experiment, the direct arrival of the Green’s

function, Gd(x000, x0i, t), is modeled in a further smoothed ver-

sion of the model of Fig. 1. Figure 8(a) shows the propaga-

tion velocity of the smoothed model and Fig. 8(b) shows the

corresponding Gd(x000, x0i, t). Due to the smoothing, the tripli-

cation, which was still present in Fig. 1(e), has disappeared.

Also the travel time at the apex is slightly smaller than that

in Fig. 1(e). This estimate of the direct arrival [Fig. 8(b)] is

used, together with the reflection response R(x000, x0, t) of the

original model [Fig. 1(b)], as input for the Green’s function

retrieval schemes. First the classical approach, as discussed

in Sec. II, is applied. The result is shown in Fig. 9, in overlay

with the reference Green’s function. As expected, multiple

reflections are not recovered. Next, the iterative Marchenko

scheme is applied to the same data. The retrieved Green’s

function G(x000, x0i, t) (again after ten iterations) is shown in

Fig. 10. Amplitude errors and an overall small time shift are

visible, but apart from that, the Marchenko scheme recov-

ered the multiple reflections reasonably well.

These examples confirm that detailed knowledge of the

medium is not required but that a smooth model suffices.

The internal multiples in the retrieved Green’s function

G(x000, x0i, t) come directly from the reflection response.

Because the scatterers in the intervening medium do not

need to be resolved in an intermediate step, the retrieval of

internal multiples does not suffer from error accumulation.

For comparison, full wave form inversion48,49 could start

with the same smooth model, but the full Green’s function

could only be retrieved after the scatterers in the intervening

medium were retrieved.

IX. CONCLUSIONS

It has been shown that for a 3D inhomogeneous, lossless

acoustic medium, the full Green’s function between a virtual

source inside the medium and receivers at the surface can be
FIG. 9. Classical approach, as in Fig. 2, but this time using the direct arriv-

als in the strongly smoothed model of Fig. 8.

FIG. 10. Marchenko approach, as in Fig. 7, but this time using the direct

arrivals in the strongly smoothed model of Fig. 8.
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obtained from reflection measurements at the surface and an

estimate of the direct arrival of the Green’s function. No

detailed information about the medium is required; a smooth

background model that predicts the direct arrival suffices.50

The multiple reflections in the retrieved Green’s function are

extracted directly from the reflection measurements.

This method constitutes a significant step beyond seismic

interferometry, because, unlike in seismic interferometry, no

actual receiver is required at the position of the virtual source.

The proposed method is based on a 3D extension of the single-

sided Marchenko equation, which in this paper has been

derived from reciprocity theorems for one-way wave fields.

This 3D Marchenko equation formulates a relation between the

single-sided reflection response and the scattering coda of a so-

called focusing function. Once the scattering coda has been

resolved, the Green’s function can be constructed from the

reflection response and the focusing function.

The proposed methodology has interesting applications

for acoustic imaging. Because no receivers are needed at the

virtual source positions, Green’s functions can be obtained

for virtual source positions throughout the medium. Because

these Green’s functions correctly contain all multiple scatter-

ings, they can be used to obtain an accurate image of the me-

dium, free of ghost images related to internal multiple

scattering.20 This new form of imaging, also called 3D

Marchenko imaging, uses the same information as standard

reflection imaging, namely the reflection response at the sur-

face and a background model of the propagation velocity

(needed to evaluate the direct arrivals). Similar as in stand-

ard imaging, errors in the background model may cause mis-

positioning and defocusing. Nevertheless, the suppression of

ghost images with Marchenko imaging is robust with respect

to moderate errors in the background model.21

The proposed Green’s function retrieval methodology

and the resulting 3D Marchenko imaging methodology have

interesting potential applications in ultrasonic, electromag-

netic, and seismic imaging and monitoring at many scales.

The main line of current research is directed toward extend-

ing the methodology beyond the scalar wave equation.

APPENDIX: DERIVATION OF THE MARCHENKO
EQUATION, USING PRESSURE-NORMALIZED
ONE-WAY WAVE FIELDS

The relation between acoustic pressure and flux-

normalized one-way wave fields is, according to Eq. (2),

given by

p ¼ L1fpþ þ p�g: (A1)

Although flux-normalization facilitates the derivation of the

3D Marchenko equation, the actual implementation is com-

plicated by the fact that pseudo-differential operators are

involved. In this appendix the 3D Marchenko equation is

derived, using pressure-normalized one-way wave fields.

The relation between acoustic pressure and pressure-

normalized one-way wave fields is very simple, namely,

p ¼ pþ þ p�: (A2)

The derivation is, however, more complicated, as is seen

below.

1. Reciprocity theorems for pressure-normalized
one-way wave fields

The starting point for the derivation is formed by the

reciprocity theorems of the convolution and correlation type

for two-way wave fields,37,38 which, for a lossless medium

between @D0 and @Di, read

ð
@D0

q�1fð@3pAÞpB � pAð@3pBÞgdx0

¼
ð
@Di

q�1fð@3pAÞpB � pAð@3pBÞgdxi (A3)

and

ð
@D0

q�1fð@3pAÞ�pB � p�Að@3pBÞgdx0

¼
ð
@Di

q�1fð@3pAÞ�pB � p�Að@3pBÞgdxi; (A4)

respectively. Substituting pA¼ pþA þ p�A and pB¼ pþB þ p�B ,

each product under the integrals is expanded into four prod-

ucts. Using one-way wave equations at @D0 and @Di, only

the products containing oppositely propagating waves remain,

whereas other terms cancel.26 The remaining terms are pair-

wise equal to each other, so they can be combined. This still

leaves the choice to keep the terms with the operator @3 acting

on the fields in state A or on those in state B. For the following

derivations it appears to be useful to have @3 acting on fields

in state B at @D0 and on fields in state A at @Di. This gives

�2

ð
@D0

q�1 pþA @3p�Bð Þ þ p�A @3pþB
� �� �

dx0

¼ 2

ð
@Di

q�1 @3pþA
� �

p�B þ @3p�Að ÞpþB
� �

dxi (A5)

and

�2

ð
@D0

q�1 pþA
� �� @3pþB

� �
þ p�Að Þ� @3p�Bð Þ

n o
dx0

¼ 2

ð
@Di

q�1 @3pþA
� ��pþB þ @3p�Að Þ�p�B
� �

dxi; (A6)

respectively. Note that in Eq. (A6) the evanescent wave

fields at @D0 and @Di are neglected.26

2. Pressure-normalized one-way Green’s functions
and focusing functions

The Green’s function G(x, x000, t) is defined as the solu-

tion of the scalar wave equation in the actual medium, with a

source at x000, according to qr � ð1=qÞrGð Þ � ð1=c2Þð@2G=
@t2Þ ¼ �qdðx� x000Þð@dðtÞ=@tÞ. Defined in this way, the

Green’s function is the response to an impulsive point source

of volume injection rate at x000.51 In the frequency domain

G(x, x000, x) obeys qr � ð1=qÞrGð Þ þ ðx2=c2ÞG ¼ �jxqd
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�ðx� x000Þ. In the following, x000 is chosen again just above

@D0, see Fig. 4. At and below @D0 the Green’s function

consists of a down-going part Gþ,q(x, x000, x) and an up-going

part G�,q(x, x000, x), coupled by the inhomogeneities of the

medium below @D0 (recall that the medium above @D0 is

homogeneous). Unlike the flux-normalized one-way Green’s

functions introduced in Sec. V, the pressure-normalized one-

way Green’s functions are decomposed only at the observa-

tion point x, which is denoted by the first superscript (þ or

�); the second superscript (q) refers to the volume-injection

source at x000. In agreement with Eq. (A2) the two-way Green’s

function is related to the pressure-normalized one-way

Green’s functions, according to

Gðx;x000;xÞ ¼ Gp;qðx;x000;xÞ
¼ Gþ;qðx;x000;xÞ þ G�;qðx;x000;xÞ: (A7)

With these definitions, the pressure-normalized version of

Eq. (16) is

@3Gþ;qðx;x000;xÞjx3¼x3;0
¼ � 1

2
jxqðx000ÞdðxH � x00HÞ:

(A8)

To derive the pressure-normalized version of Eq. (17), sub-

stitute p6
B ðx;xÞ¼G6,q(x, x000, x) into Eq. (A5). Moreover,

replace @Di by @Dm, where @Dm is a boundary which lies

below all inhomogeneities, so that p�A ðxm;xÞ ¼ p�B ðxm;xÞ
¼ 0. This gives

p�A ðx000;xÞ¼
ð
@D0

@3G�;qðx;x000;xÞjx3¼x3;0

1

2
jxqðx0Þ

0
B@

1
CApþA ðx0;xÞdx0:

(A9)

Introducing the pressure-normalized reflection response

Rðx000; x0;xÞ via

p�A ðx000;xÞ ¼
ð
@D0

Rðx000; x0;xÞpþA ðx0;xÞdx0; (A10)

it follows that

@3G�;qðx;x000;xÞx3¼x3;0
¼ 1

2
jxqðx0ÞRðx000; x0;xÞ; (A11)

which is the pressure-normalized version of Eq. (17).

The focusing functions are again defined in the refer-

ence configuration of Fig. 3. Analogous to Eq. (A8), the

pressure-normalized versions of Eqs. (9) and (11) are

@3fþ1 ðx;x0i;xÞjx3¼x3;i
¼ � 1

2
jxqðx0iÞdðxH � x0HÞ (A12)

and

@3f�2 ðx;x000;xÞjx3¼x3;0
¼ 1

2
jxqðx000ÞdðxH � x00HÞ; (A13)

respectively. Substituting p6
A (x, x)¼ f 6

1 ðx; x0i;xÞ, p6
B ðx;xÞ

¼ f 6
2 ðx; x000;xÞ, and @3p�A ðx; xÞjx3¼x3;i

¼ @3pþB ðx; xÞjx3¼x3;0

¼ 0 into Eqs. (A5) and (A6), using Eqs. (A12) and (A13), yields

fþ1 ðx000; x0i;xÞ ¼ f�2 ðx0i;x000;xÞ (A14)

and

�ff�1 ðx000; x0i;xÞg
� ¼ fþ2 ðx0i;x000;xÞ; (A15)

respectively.

Substituting p6
A (x, x)¼ f 6

1 (x, x0i, x), p6
B (x, x) ¼G6,q(x,

x000, x), and @3p�A ðx; xÞjx3¼x3;i
¼ 0 into Eqs. (A5) and (A6),

using Eqs. (A8) and (A11)–(A13), yields

ð
@D0

fþ1 ðx0; x
0
i;xÞRðx000; x0;xÞdx0 � f�1 ðx000; x0i;xÞ

¼ G�;qðx0i;x000;xÞ (A16)

and

�
ð
@D0

ff�1 ðx0; x
0
i;xÞg

�Rðx000; x0;xÞdx0 þ ffþ1 ðx000; x0i;xÞg
�

¼ Gþ;qðx0i;x000;xÞ; (A17)

respectively. Adding these expressions, using Eqs. (A14)

and (A15), and bringing the Green’s functions to the left-

hand side, gives

Gþ;qðx0i;x000;xÞ þ G�;qðx0i;x000;xÞ

¼
ð
@D0

f2ðx0i;x0;xÞRðx000; x0;xÞdx0 þ ff2ðx0i;x000;xÞg
�:

(A18)

Note that, despite the different normalization, Eqs.

(A16)–(A18) are identical to Eqs. (18)–(20). Keep in mind

that, unlike in Eqs. (18)–(20), R(x000, x0, x) in Eqs.

(A16)–(A18) does not obey source-receiver reciprocity.

Furthermore note that because the one-way Green’s func-

tions on the left-hand sides of Eqs. (A16)–(A18) are

pressure-normalized, the two-way Green’s function is simply

given by

Gðx0i;x000;xÞ ¼ Gþ;qðx0i;x000;xÞ þ G�;qðx0i;x000;xÞ; (A19)

which is the pressure-normalized version of Eq. (21).

3. Pressure-normalized Marchenko equation

The derivation of the pressure-normalized 3D

Marchenko equation from Eq. (A18) is very similar to the

derivation in Sec. VI of the flux-normalized 3D Marchenko

equation from Eq. (20). The main difference lies in the

ansatz that is made for f2(xi, x000, t). Again, first an auxiliary

property of f�2 (xi, x000, t) is derived. Let T(xi, x000, t) in Fig. 5

denote the pressure-normalized transmission response of the

reference configuration, with x000 just above @D0.

Substituting pþA (x0, x)¼ d(xH� x00H), pþA (xi, x)¼T(xi;x
00
0;x),

p�A ðxi; xÞ¼ 0, and p6
B ðx; xÞ ¼ f 6

2 ðx;x00;xÞ into Eq. (A5),

using Eq. (A13) (with single instead of double primes),

yields
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dðx0H � x00HÞ ¼
ð
@Di

T ðxi;x
00
0;xÞf�2 ðxi;x

0
0;xÞdxi; (A20)

where the modified transmission response T ðxi;x
00
0;xÞ is

given by

T ðxi;x
00
0;xÞ ¼

@3Tðx;x000;xÞjx3¼x3;i

� 1

2
jxqðxiÞ

: (A21)

Hence, f�2 (xi, x000, x) is the inverse of the modified transmis-

sion response T (xi, x000, x) in the sense of Eq. (A20). In the

time domain this is formulated as

f�2 ðxi;x
00
0; tÞ ¼ T invðxi;x

00
0; tÞ: (A22)

Following the same reasoning as in Sec. VI, the ansatz for the

pressure-normalized version of f2(xi, x000, t) is thus written as

f2ðxi;x
00
0; tÞ ¼ T

inv
d ðxi;x

00
0; tÞ þMðxi;x

00
0; tÞ; (A23)

where T inv
d (xi, x000, t) is the inverse of the direct arrival of the

modified transmission response,

T dðxi;x
00
0;xÞ ¼

@3Tdðx;x000;xÞjx3¼x3;i

� 1

2
jxqðxiÞ

; (A24)

and where M(xi, x000, t) is the pressure-normalized coda fol-

lowing the direct arrival, with

Mðxi;x
00
0; tÞ ¼ 0; for t � �tdðxi;x

00
0Þ: (A25)

Note that the direct arrival of the pressure-normalized trans-

mission response in Eq. (A24), Td(xi, x000, x), is related to the

direct arrival of the Green’s function, Gd(xi, x000, x)¼Gd(x000,

xi, x), analogous to Eq. (A11), via

Tdðxi;x
00
0;xÞ ¼

@3Gdðx00;xi;xÞjx00
3
¼x3;0

1
2

jxqðx000Þ
: (A26)

The pressure-normalized 3D Marchenko equation is

obtained by transforming Eq. (A18) to the time domain, sub-

stituting Eq. (A23), and evaluating the result only for

t< td(x0i;x
00
0). It is solved for M(x0i, x000, t) by the following iter-

ative scheme:

Mkðx0i;x000;�tÞ ¼ M0ðx0i;x000;�tÞ

�
ð
@D0

dx0

ðt

�t�
d
ðx0i;x0Þ

Mk�1ðx0i;x0; t
0Þ

� Rðx000; x0; t� t0Þdt0; (A27)

with

M0ðx0i;x000;�tÞ

¼ �
ð
@D0

dx0

ð�t�
d
ðx0i;x0Þ

�1
T inv

d ðx0i;x0; t
0ÞRðx000; x0; t� t0Þdt0;

(A28)

for t< td(x0i, x000), and

Mkðx0i;x000;�tÞ ¼ 0; for t � tdðx0i;x000Þ: (A29)

Using Eq. (A23), the successive iterations for the focusing

function f2(x0i, x000, t) read

f2;0ðx0i;x000; tÞ ¼ T inv
d ðx0i;x000; tÞ; (A30)

f2;kðx0i;x000; tÞ ¼ T inv
d ðx0i;x000; tÞ þMk�1ðx0i;x000; tÞ: (A31)

In its simplest form, T inv
d (x0i, x000, t) is approximated by Gd(x0i,

x000,�t). This approximation properly accounts for travel

times and geometrical spreading, but ignores the effect of

transmission losses at the interfaces.42
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