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The inverse data space: examples and
practical aspects
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It has been proposed that in the case of strong multiple scattering, the data matrix
P is replaced by its inverse P−1 before starting seismic processing. In the inverse
data space, all surface-related multiples map onto the origin, whereas the inverse
of the primaries map mostly at negative times. This interesting property opens up
new ways to separate primaries from multiples and apply other preprocessing steps.
In the previous chapter the concept was introduced and illustrated with two simple
examples. In this chapter, the inversion of seismic data is demonstrated for a more
complicated 2D example. Furthermore, a new strategy for obtaining the inverse of
the data is developed, without involving explicit multi-dimensional inversion.

4.1 The inverse data space, a review

In the previous chapter, the concept of the forward data space (FDS) and the inverse data
space (IDS) has been introduced. The inverse data space provides a natural separation of
primaries and surface-related multiples, where all surface multiples map into the origin and
the inverse of the primaries maps mainly at negative times. According to the feedback model
(Berkhout, 1982; Berkhout and Verschuur, 1997), multiple scattering data in the forward data
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space (FDS) is given by

x (4.1)
P = P0 + P0AP, (4.1a)

or

P = [I − P0A]−1P0, (4.1b)

in which P contains the data with all surface multiples included and P0 represents the data
without surface multiples (i.e. primaries and internal multiples). Surface operator A con-
tains the inverse source and detector properties and the reflection operator at the free surface
(Verschuur et al., 1992):

A = S−1R∩D−1. (4.1c)

All bold quantities represent wavefields or wavefield operators for one frequency component
organized in a matrix: one column contains data from one shot record and one row contains
data belonging to a common receiver gather (see Berkhout, 1982). From expression 4.1b,
multiple scattering data in the inverse data space (IDS) can be easily derived:

P−1 = P−1
0 [I − P0A]

or

P−1 = P−1
0 − A. (4.2)

Equation 4.2 may be referred to as the multiple scattering equation in the inverse data space.
It shows that the inverse data space is very simple with respect to the forward data space: it
consists of the inverse surface-free response, (primarily) situated at negative times, and the
surface-related properties at and around zero time. This can be well understood if we bear in
mind that the inversion process transforms the poles in the reverberant forward data to zeros
in the non-reverberant inverse data.
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Fig. 4.1 Subsurface model containing a high-velocity salt layer overlaying the target area with a
fault structure. The arrow indicates the target boundaries.
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a) Data matrix for P at 30 Hz b) Autocorrelation matrix PHP at 30 Hz

Fig. 4.2 Matrix at 30 Hz for the synthetic data with multiples modeled in the subsurface model of
Figure 4.1. b) The autocorrelation matrix of the data with multiples. This matrix is inverted
in the least-squares implementation of P−1. Note that the matrices are of size 361x361.

4.2 Synthetic 2D data example

For a demonstration of transforming data to the inverse data space, a relatively complex sub-
surface model is considered. Figure 4.1 shows the subsurface model containing vertical as
well as lateral velocity and density variations. The model is used to simulate seismic data
with an acoustic finite difference scheme. An anticlinal salt structure is overlaying the target
- a fault structure - and strong surface-related multiples are expected related to the water bot-
tom and the top of the salt. Data are modeled in a fixed spread configuration, with sources and
receivers positioned between x = 0 and x = 5400 m with a step-size of 15m. This results in a
prestack dataset of 361x361 traces. Note that the same dataset has been used in the next chap-
ter of this DELPHI Volume for demonstrating the transformation of multiples into primaries.
For this example the data matrix, P, is far from Toeplitz (see Figure 4.2a), hence the inverse
of ΔP and P was computed in a least-squares sense with the aid of equation 4.3 (see the next
section). Note that the autocorrelation matrix PHP has a more diagonal structure than P,
which stabilizes the inversion (see Figure 4.2b).

In Figure 4.3 three shot records from this dataset have been displayed that were modeled
without and with surface-related multiples. Note the impact of the surface-related multiples
in Figure 4.3 d-f.

Both datasets have been inverted using the least-squares matrix inversion. After the inversion
in the space-frequency domain, the data is transformed back to the time domain and the gathers
for the same source locations as in Figure 4.3 have been extracted, both for the case without
and with surface multiples. Results are displayed in Figure 4.4. When comparing the inverse
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of the two datasets, we can see that all multiple energy is concentrated in and around the
origin. In the inverse space, the two datasets are very similar (besides the event in and around
the origin). Still, some differences can be observed away from the origin, especially at positive
times. This is probably due to the imperfectness of the inversion procedure. This aspect is
treated in the next section.
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Fig. 4.3 Three shot records modeled in the subsurface model of Figure 4.1. The top row contains data
modeled without surface multiples, and the bottom row contains data with surface multiples
included. The 361 receivers are located from x=0 to x=5400m and the source locations are
at x=1350 m (a,d), at x=2700 m (b,e) and at x=4050 m (c,f) respectively.



Chapter 4: The inverse data space: examples and practical aspects 31

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
im

e 
(s

.)

-1000 0 1000 2000 3000 4000
Offset (m.)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
im

e 
(s

.)

-2000 -1000 0 1000 2000
Offset (m.)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
im

e 
(s

.)

-4000 -3000 -2000 -1000 0 1000
Offset (m.)

a) Shot nr. 90 b) Shot nr. 180 c) Shot nr. 270

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
im

e 
(s

.)

-1000 0 1000 2000 3000 4000
Offset (m.)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
im

e 
(s

.)

-2000 -1000 0 1000 2000
Offset (m.)

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
im

e 
(s

.)

-4000 -3000 -2000 -1000 0 1000
Offset (m.)

d) Shot nr. 90 e) Shot nr. 180 f) Shot nr. 270

Fig. 4.4 Shot records extracted from the data in the inverse data space (IDS). The top row contains
the inverse of the data modeled without surface multiples, and the bottom row contains the
inverse of the data with surface multiples included. The source locations are at x=1350 m
(a,d), at x=2700 m (b,e) and at x=4050 m (c,f) respectively. The arrows point at the multiple
energy being mapped at and around the origin.
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4.3 From inversion to iterative modeling

The calculation of the inverse of the data matrix P is a process which is not easy to accomplish
in a stable and artifact-free manner because of the following reasons:

• Seismic data is naturally band-limited, which imposes stabilization problems in the
inversion process for high temporal and spatial frequencies.

• The relationship between primaries and multiples, as shown in equations 4.1 and 4.2,
assumes an infinite time and offset registration. Any truncation in the FDS will show
up as artifacts in the IDS.

To handle the first aspect, the inversion of the data matrices in the examples was done in a
least-squares sense:

x (4.3)P−1 ≈ PHB, (4.3a)

where
B =

[
ΔPΔPH + ε2I

]−1
. (4.3b)

In equation 4.3 superscript H denotes the Hermitian operator and the extra term ε2 is a small
positive constant that is used for stabilization purposes. Of course, equations 4.3a, b can be
refined.

The second aspect was handled in the synthetic data examples by modeling the seismic data
with a large offset range (e.g. 10 km) and long registration times (e.g. 8 seconds). In this way,
inversion artifacts could be reduced. In Figure 4.5 an example is given where the inverse of
a shot record from a model with one horizontal reflector is calculated for a small and large
modeling window. For this simple dataset, the inverse should contain one event at negative
times (i.e. P−1

0 ) and one band-limited spike at the origin. This is indeed the case when the
large modeling window is used (see Figure 4.5c), but when a small window of input data is
used to calculate the inverse, the truncation of the input data leads to an incomplete inversion
result: several artifacts can be observed in Figure 4.5b.

The problem at hand is that inversion assumes that the truncated data is the complete dataset,
i.e. that the input data is really zero beyond a certain time and offset value. However, this
means for example that for some primaries the corresponding multiples are not registered, or
for some multiples the higher-order multiples are not present. This renders the physical rela-
tionship between primaries and multiples to break down, being compensated by introducing
spurious events. Note that most data transforms suffer from truncation effects. As an example,
the parabolic Radon transform gives a smearing of each parabolic event along two events in
Radon space, that correspond to the first and last offset in the data (see e.g. Maeland, 2003).

A solution to this problem is to redefine the inversion problem as a parameter estimation
problem: find the inverse data domain such that it explains the input data within the offset and
time window that is present, but does not assume anything for the area beyond this window.
Such an inversion problem can have many solutions, and therefore an extra constraint need be
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Fig. 4.5 a) Shot record with multiples from a medium with one horizontal reflector. b) Inverse of the
shot record using the displayed offset and time window. c) Inverse of the data using 4 km
offset and 8 seconds of registration time. Note the artifacts when inverting data with a small
time-offset window.

built in to obtain one inversion result. Thus, the inversion procedure can be formulated with
the following main steps:

• Define an initial estimate of the inverse domain data P̂−1;

• Check how well it explains the input data, e.g. by computing P̂−1P − I = ΔI;

• Based on the error, update the inverse domain values P̂−1 by making use of ΔI, until
ΔI is small enough.

4.3.1 Solution by a Conjugate Gradient scheme

One way of solving the above inversion problem is by a Conjugate Gradient scheme (Shewchuk,
1994), that solves a problem defined by the following equation:

Lx = y, (4.4)

which is reformulated as a set of normal equations:

LHLx = LHy. (4.5)
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If A is defined as LHL and b is defined as LHy, this set of equations now reads:

Ax = b. (4.6)

Optionally, the definition of A can be redefined as:

A = LHL + λQ−1, (4.7)

where the addition of matrix Q−1 yields a stabilization effect. If Q−1 is chosen to be a unit
matrix, this describes the standard damped least-squares solution. However, this matrix can
also contain information on the solution x itself, which makes the inversion process a non-
linear one. An example of such stabilization is found by defining a sparseness constraint on the
solution vector x, as is used in the sparse Radon and Fourier transform work (see e.g. Sacchi
and Ulrych, 1995; Sacchi et al., 1998). In the Conjugate Gradient solution to the problem
defined above, the residual vector r in iteration i:

r(i) = b −A(i)x(i), (4.8)

is used to update the Conjugate Gradient search direction c:

c(i) = r(i) + βr(i−1), (4.9)

where β is a scalar that is related to the current and previous residual vectors r(i) and r(i−1).
With the new Conjugate Gradient search direction, an update for the desired solution vector x
is found by optimizing:

x(i+1) = x(i) + αc(i) (4.10)

as a function of parameter α such that the objective function is optimum. This describes a
line search procedure. The Conjugate Gradient scheme is started by choosing a suitable initial
estimate for x(0) and setting the first gradient direction c vector to be zero. When the solution
does not improve anymore, the iteration procedure is stopped. In Shewchuk (1994) a very
comprehensive description of the CG algorithm can be found, as well as a list for further
references in literature.

For the considered inversion problem, the model domain vector x is replaced by the desired in-
verse data domain P−1 and transform matrix L is taken as P, yielding the following inversion
problem to solve:

P−1PPH = PH . (4.11)

4.3.2 Solution by iterative convolution

Our approach is to go back to the original relations for the inverse data domain and derive an
update scheme from them. We aim at finding an inverse of the data P−1 such that:

P−1P = I. (4.12)
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When an estimate of the inverse, P̂−1, is found, then this relation can be written as:

P̂−1P = I + ΔI, (4.13)

meaning that the estimate contains an error. This can also be written as:

ΔI = P̂−1P − I. (4.14)

Multiplying both sides with P−1 gives:

P̂−1 = P−1 + ΔIP−1, (4.15)

or
P̂−1 ≈ P−1 + ΔIP̂−1 (4.16)

and thus
P−1 ≈ P̂−1 − ΔIP̂−1. (4.17)

The latter can be seen as an update formula, where the current version of the inverse of P̂−1
(i)

is modified according to the error in the reconstruction:

x (4.18)P̂−1
(i+1) = P̂−1

(i) − ΔI(i)P̂
−1
(i) , (4.18a)

in which
ΔI(i) = P̂−1

(i) P − I. (4.18b)

The major issue in the above equations is that if the initial estimate of the data inverse P̂−1
0 is

far away from the solution, it will probably not converge. This is where the prior knowledge
on the physical problem at hand can give a solution: in many cases it is possible to give a
reasonable estimate of the inverse of the data, e.g. by :

P̂−1
(0) = α2P̂H

0 + αI, (4.19)

where P̂0
H

is the time reverse of an estimate of the primaries (e.g. the muted water bottom
reflection) and α represents a factor that corresponds to the inverse of the seismic wavelet.

4.3.3 Example for a 1D earth

For a one-dimensional earth, all of the above matrix multiplications become scalar multiplica-
tions in the wavenumber-frequency domain, which can also be rewritten as convolutions in the
time domain for one ray-parameter value. Therefore, we consider that we have a time signal
p(t) and that we are looking for the inverse p−1(t) such that

p−1(t) ∗ p(t) = δ(t). (4.20)

The iteration process as described in the previous section (Equation 4.18) can be rewritten as
follows:

x (4.21)p̂−1
(i+1)(t) = p̂−1

(i) (t) − ε(i)(t) ∗ p̂−1
(i) (t), (4.21a)
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in which
ε(i)(t) = p̂−1

(i) (t) ∗ p(t) − δ(t). (4.21b)

Thus, finding the inverse of the data p(t) requires a sequence of convolutions and additions.
In a similar way, the Conjugate Gradient scheme can be rewritten in terms of iterative convo-
lutions, additions and one line search.

This is investigated for two simple examples that contain the seismic response for a perfect im-
pulsive source (i.e. the source wavelet is δ(t)) and a horizontally layered earth for a horizontal
plane wave component.

First we consider a model with one reflector with reflection coefficient r = 0.5, the primary
response being given in Figure 4.6a. The response with all multiples is displayed in Figure
4.6b. For this model the inverse of the total data is known, and will consist of a unit spike at
t = 0 and a spike with value 1/0.5 = 2.0 at the negative primary time. As an initial estimate
of the inverse data, two spikes with value 0.5 were put at the right locations. In Figure 4.6c
and d results of the estimated inverse domain data for both inversion methods are displayed.
Note that the first signal (iteration nr. 0) represents the initial estimate of p−1(t). Both the
CG scheme as well as our proposed iteration scheme converge towards this inverse data result.
Note, however, that the CG scheme needs more iterations to converge (about 12), whereas the
alternative scheme needs about 6.

For a next example the response is extended with four more reflectors, as visible in the primary
response in Figure 4.7a. The response with multiples becomes much more complex (Figure
4.7b). Taking 50 iterations of the CG scheme shows that the convergence is very slow: still af-
ter 50 iterations residuals in the order of 5% appear to be present when checking the inversion
result by convolving the estimated inverse data with the input data p(t). However, our update
scheme reaches the final result quite fast (within 10 iterations). Note that our scheme has the
property that the error is shifted towards positive times and thus is removed from the desired
output window. This can be observed in Figure 4.6d for iteration 3-7 and in Figure 4.7d for
the iteration results 4, 5 and 6.

Finally, it need be mentioned that these examples are somewhat theoretical, as no seismic
wavelet was involved and only one ray parameter was considered. Furthermore, it is expected
that both iterative inversion methods can be fine-tuned to increase the performance.

4.4 Conclusions

The inverse data space opens new possibilities in the case of multiple scattering, as primaries
and multiples are separated in a very natural way, without any prior information. Furthermore,
the source and receiver properties can be extracted in the inverse data space.

The inversion procedure itself requires matrix inversion in the frequency domain that has the
tendency to create artifacts in the space-time domain, because of truncation effects. Therefore,
it is proposed to redefine the inversion process as an iterative parametric inversion procedure,
in which an initial solution of the inverse data domain is updated based on the inversion error.
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Fig. 4.6 Inversion results for an earth model with one horizontal reflector displayed in the inverse
data space (IDS). a) True primary response. b) Response with multiples. c) Inversion results
for different iterations of a Conjugate Gradient scheme. d) Inversion results for different
iterations of the alternative update scheme. Note that iteration nr. 0 represents the initial
estimate of the inverse data. The arrows point at the multiples being mapped at zero time.
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Fig. 4.7 Inversion results for an earth model with five horizontal reflectors displayed in the inverse
data space (IDS). a) True primary response. b) Response with multiples. c) Inversion results
for different iterations of a Conjugate Gradient scheme. d) Inversion results for different
iterations of the alternative update scheme. Iteration nr. 0 represents the initial estimate of
the inverse data. The arrows point at the multiples being mapped at zero time.
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Two iterative schemes have been proposed, where matrix inversion is replaced by a number
of matrix multiplications. The advantage of such a scheme is that it becomes more efficient
than a full inversion and that extra constraints can be built in to avoid artifacts in the inversion
results. This is part of our current research. Some initial examples for 1D media show en-
couraging results. A multi-dimensional implementation of the iterative inversion is currently
under investigation.
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