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What’s in the black box?

I3
TUDelft 4




Lets build a compute system

FPU

ALU

This is called a Von Neumann Architecture

%
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Wafers and dies:production of chips

An entire wafer is produced and chopped into dies that undergo
testing and packaging
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A Typical Compute Server
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Yield, defect, density and die size

Wafer 1: 32 gross die, 6 lost die, 81.25% yield Wafer 2: 120 gross die, 10 lost die, 91.6% yield|
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Die errors

Unique in each Yield Enhancement Focus
device

Example of
defect maps

Pattern

degradation
Variation of film Designs or Patterning defects /
Example of thickness, critical mask defects | or particles
the cause of dimension, or
the defects dopant

concentration \ Shortiopen of )
IEEE IRDS: INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS.
2021 UPDATE “YIELD ENHANCEMENT".
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Intel Penryn dual-core die (45 nm)
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Haswell quad core 22nm 2013

Haswell Die Layout

Haswell 22nm

m Process

4 CPU col 22n
GPU core (GT2) 1 4B transistors
8MB LL Cache 177 mm2

Copyright (¢) 2013 Hiroshige Goto All rights reserved.
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good 0.49 cm2 dies (note the effect of area and yield)

Haswell Chip
Integrated C

* A 30 cm diameter wafer cost $200-$700 in 2015
» Such a wafer yields about 366 good 1 cm? dies and 1014
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Progress

Intel generation manufacturing | ¢ransistor count die size
Pentium (P5) 0"561; 3.1M 294 mm?
Pentium 4 0.18um 42M 217 mm?
Nehalem 4-core 45 nm 731M 263 mm?2
SandyBridge 8-core 32nm 2270M | 434 mm2
Haswell 18-core 22 nm 5560M | 661 mm?
Broadwell 22-core 14 nm 7200M 456 mm2
Esrephire Rapids 56- 10 nm ~20000M | 1600 mm?2
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The AMD Opteron Processor

AMD Opteron™
Processor Architecture

u

_B4KB

Dedicated —. winycinete |
Memory Bus f
(5§
Instr'n
Native 32 & 64 —_— /64KB
bit x86 (%Y
compatibility G 4—1mB
Upto19.2GBIs __ I @ eortm |
T
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AMD Opteron Processor

16 instruction bytes fetched per cycle

System
Request
Queue [

| [ Bus Unit

Crossbar

Memory

Controller
HyperTransportrs| | 7

36 entry FPU instruction scheduler
64-bit/80-bit FP Realized throughput (1 Mul + 1 Add)/cycle: 1.9 FLOPs/cycle
32-bit FP Realized throughput (2 Mul + 2 Add)/cycle: 3.4+ FLOPs/cycle
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Instruction sets

« Instructions to tell the hardware what to do.

« Brief overview of instructions before we dive deeper into the
hardware.
3
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Instruction sets

o ISA: An instruction set, or instruction set architecture (ISA), is the part of the
compute b)) ~hitecture related to programming, including the native data
types, insn,oﬁ'[ registers, addressing modes, memory architecture,
interrupt and ex. 0/7), " andling, and external I/O. An ISA includes a
specification of the se. 7@ ar ‘as (machine language), the native commands
implemented by a particular «

Categories of ISA
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ISA Considerations

e Code size
* Long instructions take more time to fetch
« Longer instructions require a larger memory
« Important in small devices, e.g., cell phones

* Number of instructions (IC)

» Reducing IC reduce execution time
* At a given CPI (clocks cycles per instruction) and frequency

» Code “simplicity”
* Simple HW implementation
« Higher frequency and lower power
» Code optimization can better be applied to “simple code”

%
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CISC

» Definition: Pronounced "sisk" and standing for Complex Instruction
Set Computer, is a Microprocessor Architecture that aims at achieving
complex operations with single instructions and favors the richness of
the instruction set (typically as many as 200 unique instructions) over
the speed with which individual instructions are executed.

Why should I know about CISC?

» Today’s computers still use processors which are based on CISC
designs

« It has been a prominent architecture since 1978 (x86)
* x86_64: 64 bit version of the x86 instruction set

RISC

» RISC - Reduced Instruction Set Computer
 The idea: simple instructions enable fast hardware
* load-store architecture

» Characteristic
» A small instruction set, with only a few instructions formats
 Simple instructions
* execute simple tasks
* Most of them require a single cycle (with pipeline)

 ALU operations on registers only
* Memory is accessed using Load and Store instructions only
* Many orthogonal registers

« Fixed length instructions

* Examples: MIPS™, Sparc™, Alpha™, Power™

5
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RISC/CISC Example

Main Memory

General
Purpose
Registers

e ALU

SOURCE: ARSTECHNICA
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The CISC Approach

« Instruction : Operations:
« Loads the two operands into
MULT 2:3, 5:2 separate registers

 Multiplies the operands in the
execution unit

» Then stores the product in the some
temporary register

« Stores value back to memory
location 2:3

* MULT is what is known as a "complex instruction."
* Operates directly on the computer's memory banks
» Does not require the programmer to explicitly call any loading or storing

functions.
* closely resembles a command in a higher level language.
e.g. a 'C’ statement "a=a*b."
I3
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Consider following task of Multiplication

1 2 3 4

O M A WN e

Operands:

M[2:3] = operand 1 (15)
M[5:2] = operand 2 (20)

Task : Multiplication

Result: M[2:3] <= result

%
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The RISC Approach

¢ Instructions :  Operations:
* Load operandl into register A
LW A 2:3 « Load operand? into register B
LW B, 5:2 * Multiply the operands in the
MULT A B execution unit and store result in A
SW 2:3 A  Store value of A back to memory

location 2:3

« These set of Instructions is known as a “Reduced Instructions."

« Cannot Operate directly on the computer's memory banks

 Requires the programmer to explicitly call any loading or storing functions.

« RISC processors only use simple instructions that can be executed within one
clock cycle

I3
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Developments

» The terms RISC and CISC have become less meaningful with the
continued evolution of both CISC and RISC designs and
implementations.

* Modern x86 processors also decode and split more complex
instructions into a series of smaller internal "micro-operations" which
can thereby be executed in a pipelined (parallel) fashion, thus
achieving high performance on a much larger subset of instructions.

%
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Computer Architecture
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Top 20 instructions of x86

shi

Cthers
or 1%

mov

/ 35%

More than 50% of all code
is dedicated to moving
things between registers
and memory (MOV),
passing arguments,
saving registers (PUSH,
POP), and calling
functions (CALL).

%
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A Simple Computer Architecture

Bus
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Register Array The Program Counter (PC

« All modern CPU’s have an array of registers
« usually at least 32 general purpose registers (128 bit wide)

- frequently some registers have dedicated use e stores address of next instruction to execute
» Characteristics of registers
- usually contain one computer word » must be incremented after each instruction
* can be accessed in one CPU cycle . .
« Functions of registers * may be changed by function call or jump

* serve as source of operands

* serve as destination of results

 temporarily store intermediate results

* serve as index registers to access arrays (stack pointer)
 Specialized registers

« floating point registers

* store constants ....frequently used values

e controls flow of program execution

73 73
TUDelft TUDelft
Arithmetic Logic Unit (ALU) Floating Point Unit (FPU)
ALU FPU
« performs arithmetic and logical functions » mainly for addition, multiplication and sometimes division
» works on integers » works on floating point numbers
 add, subtract, multiply, divide, complement, shift...etc. « higher order functions like divide, sqrt are emulated in software:
for example using a series expansion approximation based on the
« function performed is determined by the control signals received basic operations add and mul
» will have input and output latches to hold operands and results « has its own set of registers it can use

» SSE and AVX instructions (SIMD) can do more than one operation
in a clock cycle

L3 I3
TUDelft TUDelft 36



Memory Buffer (Cache)

« A distinct memory positioned between the CPU and Main Memory

« holds values to be transferred between main memory and the
CPU

» both data or instructions can be stored in cache
« values to be written to memory

» machines are capable of transferring more than a single word
called a cache line; usually 8 bytes (64 bits)

%
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Control Unit

« provides control signals necessary to control the hardware of the
CPU

« control signals are needed to control functions of various
hardware units and to direct the flow of information within the
CPU.

« Directs the operation of the processor: It tells the computer's
memory, arithmetic/logic unit and input and output devices how
to respond to a program's instructions

L3
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Decoder

» Decode the instructions that are sent to the microprocessor.

e It can decode and optimise the order of instructions before it
sends them to the execution unit to be run.

5
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control unl( arithmetic /
Togic: unit
/ decode > execu(e\

/

/‘
\reEl \(slore) /

» The steps that the control unit carries out in executing a program are:
(1) Fetch the next instruction to be executed from memory.
(2) Decode the opcode.
(3) Read operand(s) from main memory, if any.
(4) Execute the instruction and store results.
(5) Go to step 1.

The Fetch-Execute Cycle

This is known as the fetch-execute cycle.

3
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Memory Unit

¢ Main Memory
» used to store programs (instructions) and data
« volatile: requires power to maintain the stored information
e usually uses DRAM... Dynamic Random Access Memory
* most memory is byte addressable
* can retrieve a single byte per memory access
* can be organised to access a full word or multiple words per
access.

%
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Memory direct connected

“Zen2” “Zen2”

Cccb ccb

8x CCDs ’éc":f | | | | k-
Server

VNF\NVTV INFIN\TV
10 Controllers
[ oowaes ][RR [g[Ele EPYC

INFINITY FABRIC ™ I@
(INTRA DIE)
IR 7742

1X I O D - D 10 Controllers “

“Server”
“Large”

“Rome” CPU
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Bus structure
Bus

» CPU bus structure

» a bus is an ‘path’ connecting the various functional units within
the CPU

« capable of transmitting one entire word in parallel
 will consist of one word length of ‘wires’ or data paths
 the CPU will have multiple buses to improve the information

transfer options within the CPU to maximize the flexibility and
parallelism of the system

%
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Memory Design

» Types of memory
« DRAM
* SRAM

» Access speed
« latency
 bandwidth

* Amount of storage

« Fabrication costs

I3
TUDelft 44




Memory differences

« Volatile: fast access but non permanent
» static RAM
» dynamic RAM (must be refreshed regularly)

» Permanent writable: (very) slow write access but permanent
» magnetic (hard-drive, magnetic tape, etc)
» SSD (Solid State Drive)
» FLASH (page write access)
» EEPROM
» CD, DVD

» Permanent non writable
» ROM
» PROM

5
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DRAM memory cell

» Word line selects cell for reading or writing
To write, the bit line is charged with logic 1 or 0

To read, sensitive amplifier circuits detect small changes in bit line.

« storage cells consist of Word Line |
one capacitor and transistor per data bit _L
Reading discharges the capacitor.
Capacitor T
GND Bit Line

Memory Types volatile

* SDRAM: Synchronous Dynamic-RAM used for main memory

* SRAM: Static-RAM used for cache

* Registers: direct accessible

Memory locations are arranged linearly in consecutive order. Each
numbered locations corresponds to a word. The unique number
that identifies each word is referred to as its address.

%
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2-1/2D Organization of a 64-Word by
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One-Bit RAM
100 e e
010 (il i)
#0011y | HIANAIANANAI AN Reviowie
ot | QROIDICIQIRIRI)] o'
101 ata Column
111 I'I;l_’ I'I;]_‘ I-E-]1 I-E-]_ I-E-]_ rrT_]_ I'E|]1 I'Q‘ Two bits wide: G
One bjt for data and
;18: Column Decoder (MUX/DEMUX) one bit for select.
As
t’O Data
1,:;U Delft 48




1M DRAM = 1024 x 1024 array of bits

10 row address bits
arrive first
—

Row Access Strobe (RAS)

1024 bits
are read out

Subset of bits

10 column address bits returned to CPU

arrive next Co decoder -_—
—_—

Column Access Strobe (CAS) T 49

%
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Addressing sequence

trac—Access time

Precharge delay :

RASH# \ f / N
‘RAS/CAS delayi : E
CAS# ! | 5

A0:7] O ) Row 3
k | CL - CAS latency
Data f | Datan oy

* Access sequence
* Put row address on data bus and assert RAS#
* Wait for RAS# to CAS# delay (tgep)
* Put column address on data bus and assert CAS#
* DATA transfer
* Pre-charge

L3
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Basic DRAM chip

Column latch

Column addr

decoder
IHEEEE
|
Row T

Row Memory IT-

Addr \atch » address array T
decoder TTTTTT
T
T

* Addressing sequence
* Row address and then RAS# asserted
* RAS# to CAS# delay
¢ Column address and then CAS# asserted
* DATA transfer

%
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RAM Latency: "tCAS-tRCD-tRP-tRAS"

* tCAS
The number of clock cycles needed to access a certain column of Data in SDRAM. CAS Latency, or
simply CAS, is known as Column Address Strobe Latency, sometimes referred to as tCL.

tRCD (RAS to CAS Delay)
The number of Clock cycles needed between a Row Address Strobe (RAS) and a CAS. It is the time
required between the computer defining the row and column of the given memory block and the actual
read or write to that location. Stands for Row address to Column address Delay.

tRP (RAS Precharge)
The number of clock cycles needed to terminate access to an open row of memory, and open access to
the next row. Stands for Row precharge time.

tRAS
The minimum number of clock cycles needed to access a certain row of data in RAM between the data
request and the precharge command. Known as Active to Precharge Delay.

RAM speeds are given by the four numbers above. So, for example, latency values given as 2.5-3-3-8
would indicate tCAS=2.5, tRCD=3, tRP=3, tRAS=8. (Note that 0.5 values of latency (such as 2.5) are
only possible in Double data rate RAM, where two parts of each clock cycle are used)

22
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Latency

* Memory latency is traditionally quoted using two measures:

* access time is the time between when a read is requested
and when the desired word arrives

« cycle time is the minimum time between requests

Cycle time is greater than access time because the memory
needs the address lines to be stable between accesses.

%
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DDR-SDRAM

» 2n-prefetch architecture
* The DRAM cells are clocked at the same speed as SDR SDRAM
« Internal data bus is twice the width of the external data bus
» Data capture occurs twice per clock cycle
 Lower half of the bus sampled at clock rise
 Upper half of the bus sampled at clock fall

O:n-1 ]
SDRAM | 0:2n-1 On-1
Array
n:2n-1

200MHz clock ¢

» Uses 2.5V (vs. 3.3V in SDRAM)
* Reduced power consumption

L3
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DRAM Properties

» The RAS and CAS bits share the same pins on the chip (multiplex)
e Column Address Strobe dictates how many clocks the memory waits
before sending data on.

» Each bit loses its value after a while — hence, each bit has to be refreshed
periodically:
This is done by reading each row and writing the value back (hence,
dynamic random access memory) — causes variability in memory
access time

* SDRAM runs Synchronously with the clock of the processor and the
system bus.

5
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DIMMs

¢ DIMM: Dual In-line Memory Module
» A small circuit board that holds memory chips

RRARARARRAABAAARAARRAARRAARRAARRAAANRARRRARARARARANR  MARRRGANREARAARAAARAAANAARANARRRARRARAND

* 64-bit wide data path (72 bit with parity)
« Single sided: 9 chips, each with 8 bit data bus
» 512 Mbit / chip x 8 chips = 512 Mbyte per DIMM
« Dual sided: 18 chips, each with 4 bit data bus
» 256 Mbit / chip x 16 chips = 512 Mbyte per DIMM

I3
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DDR2

» DDR2 achieves high-speed using 4-
bit prefetch architecture e —
« SDRAM cells read/write 4x the Ms—
Array
amount of data as the external bus
* DDR2-533 cell works at the same

SDRAM

Core frequency =100 MHz _ Clock Freq =100 MHz  Data Freq = 100 Mz

frequency as a DDR266 SDRAM or a DORI LS
PC133 SDRAM Ce” Core frequency =100 MHz Clock Freq =100 MHz Data Freq = 200 MHz
Memory 1o Data Bus
Cell s
Arra BUTETS
» This method comes at a price of
increased latency for lower clocks DR I

* DDR2-based systems may perform UV fifas
worse than DDRl_based systems Core frequency =100 MHz  Clock Freq= 200 MHz Data Freq = 400 MHz

g;'lm'y I/O Data Bus
I3
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DDR4

* lower voltage 1.2 V
« higher frequency (2133 MHz)
« higher latency (15 clocks)

e max 128 GB/DIMM

SPEED 1066 MT/s

DENSITY 1Gb -

Technological advancements
B e naabe » 28% 50.3% 100% j, 16.6% 166.5% 300% y, 20% 100% 300%
: ith DDR DECREASE  INCREASE  INCREASE DECREASE  INCREASE  INCREASE DECREASE  INCREASE  INCREASE
starting witl fomDDR  fromDDR from DDR fomDDR2  from DDR2 ~ from DDR2 fomDDR3  from DDR3  from DDR3

o]
TUDelft 59

DDR3

* 30% a power consumption reduction compared to DDR2
» 1.5 V supply voltage, compared to DDR2's 1.8 V or DDR's 2.5 V
* 90 nanometer fabrication technology

« Higher bandwidth
* 8 bit deep prefetch buffer (vs. 4 bit in DDR2 and 2 bit in DDR)

» Transfer data rate
« Effective clock rate of 800—-1600 MHz using both rising and falling
edges of a 400—-800 MHz I/O clock.
* DDR2: 400-800 MHz using a 200—400 MHz I/O clock
* DDR: 200-400 MHz based on a 100—200 MHz I/0O clock

* DDR3 DIMMs
* 240 pins, the same number as DDR2, and are the same size
* Electrically incompatible, and have a different key notch location

%
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Command/
Address B Channel B

Channel A
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High Bandwidth Memory (HBM)

* DRAM stacked memory

Microbump

PHY PHY GPU/CPU/Soc Die

0 e e e e e O e o o N s O
Package Substrate

%
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Memory trends

#Capacity #Bandwidth  -®latency 128X
®
= 100
5
£ 20x
5
[
iEl 10
>
= 1.3%
= I
1999 2003 2006 2008 2011 2013 2014 2015 2016 2017
1,"UDeIft 63

Memory latency over generations

PC-3200 (DDR-400) PC2-6400 (DDR2-800) PC3-12800 (DDR3-1600)
Typical Fast Typical Fast Typical Fast
cycles time cycles time.eycles time .eycleo time cycles time cycles time
toL 3 15ns|2 10ns /5 125ns 4 10ns|9 11.25ns 8 10ns
\nco4  20ns 2 10ns5  |125ns/4  |10ns|9  11.25ns8  |10ns

thp |4 20ns 2 10ns|5 125ns 4 10ns|9 11.25ns 8 10ns

tRas |8 40ns 5 25ns 16 40ns |12 30 ns |27 33.75 ns |24 30 ns

« It is worth noting that the latency improvement over 11 years is
not that large. However, the DDR3 memory does achieve 32
times higher bandwidth.

o http://en.wikipedia.org/wiki/Dynamic_random_access _memo

5
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Limits on DRAM performance

» Read cycle time, the time between successive read operations.
This time decreased from 10 ns for 100 MHz SDRAM to 5 ns for
DDR-400, but has remained relatively unchanged through
DDR2-800 and DDR3-1600 generations. However, the achievable
bandwidth has increased rapidly.

» Another limit is the CAS latency, the time between supplying a
column address and receiving the corresponding data. Again, this
has remained relatively constant at 10-15 ns through the last few
generations of DDR SDRAM.

» The benefits of SDRAM's internal buffering come from its ability to
interleave operations to multiple banks of memory, thereby
increasing effective bandwidth.

3
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SRAM - Static RAM

« Static RAM uses a completely different technology. In static
RAM, a form of flip-flop holds each bit of memory. A flip-flop for a
memory cell takes four or six transistors along with some wiring,
but never has to be refreshed. This makes static RAM significantly
faster than dynamic RAM. However, because it has more parts, a
static memory cell takes up a lot more space on a chip than a
dynamic memory cell. Therefore, you get less memory per chip,
and that makes static RAM a lot more expensive. we

"DD

« http://computer.howstuffworks.com/ram3.htm |, E,“_z g q ,

T Q
o -
i M, 1 BL

1=

=
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SRAM - Static RAM

» True random access

 High speed, low density, high power
* No refresh

» Address not multiplexed

« DDR SRAM
» 2 READs or 2 WRITEs per clock
* Common or Separate I/O
* DDRII: 200MHz to 333MHz Operation; Density: 18/36/72Mb+

* QDR SRAM
* Two separate DDR ports: one read and one write
* One DDR address bus: alternating between the read address
and the write address
* QDRII: 250MHz to 333MHz Operation; Density: 18/36/72Mb+

L3
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SRAM

Circuit Diagram Cell Layout
Word Line

o Ls* pal
i o

BitLine 1

Bit Line 0~ t
N3
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Summary Random Access Memory

* Dynamic RAM (DRAM)
« Each bit is stored in a capacitor
« Uses one capacitor and one transistor per bit
« Slower, but takes up less space in a chip
» Must be refreshed periodically (milliseconds), since the capacitor
leaks

e Static RAM (SRAM)
» Each bit is stored in a type of flip-flop
« Typically takes four or six transistors per bit
« Faster, but takes up more space in a chip
« Retains information as long as power is supplied
 equal access time.

I3
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SRAM vs. DRAM Trends in Memory

DRAM - Dynamic RAM SRAM - Static RAM

Refresh Regular refresh (~1% time) No refresh needed

Address Address muxed: row+ column Address not multiplexed

Access Not true “Random Access” True “Random Access”

density High (1 Transistor/bit) Low (6 Transistor/bit)

Power low high

Speed slow fast

Price/bit low high

Typical usage | Main memory cache
5 5
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I Technology Trends and Performance

Technology Trends
1000 1000000 Capacity
—=-Logic Speed 100000 H—a- Logic
. . 100 *7+ DRAM 10000 -
» Improvements in technology (smaller devices) 2xin 3 years CPU speed 1o | 4% in 3 years
=> DRAM capacities double every two years o :gge'ﬂe';::;x 00 "
; - 1.1% in 3 years apart 10 " _""2xin3years
» Time to read data out of the array improves by only 5% every year , , aa
=> high memory latency (also called the memory wall! o o o o o o o o N
g ry cy ( ry ) RS A N S ,9@ R AR R
» Time to read data out of the column decoder improves by 10% every
year . ]
=> influences bandwidth » Computing capacity: 4x per 3 years
* Moore's Law: Performance is doubled every ~18 months
23 3
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100000 T

Embedded y clock speedsare hitting a wall
10000 Pr B ]
O
"\c,?‘ Memory Performance Gap
5
1000 33

% 3
vy W
100

Latenc) ————

Normalized Growth

External Memo!

o A O » ov o oP o9 o N b O @ N D P OH N DO
$ PP PP PP PP F D P § $ PP
FELFL TSI PSS E ST

“Source: Hennessy and Patterson, 5* Edition
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Cost of DRAM Generations

Average Real $/ GB of DRAM
$100,000.00

$10,000.00 l

\

$1,000.00 ‘\
[+1]
2 "w‘
@ $100.00 *\
$10.00 ———
$1.00
1095 2000 2005 2010 2015

Figure 2: Average $ / GB of DRAM from 1991 to 2019
according to Objective Analysis. Dollars are 2020 dollars.
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Moore’s Law

Transistor count
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Licensed under CC-BY by the authors Hannah Ritchie and Max Roser

5
TUDelft 74

How to increase memory
Bandwidth and Latency?

¢ By increasing the memory width (number of memory chips
and the connecting bus), more bytes can be transferred
together — increases cost

¢ Interleaved memory — since the memory is composed of
many chips, multiple operations can happen at the same
time — a single address is fed to multiple chips, allowing
to read sequential words in parallel

= most increases have already been used and tried...., still a
memory bottleneck due to latency;.... MEMORY WALL

= How is memory used in a program?

22
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Observation: Principle of Locality

e Programs tend to reuse data and instructions they have used
recently.

o A widely held rule of thumb is that a program spends 90% of its
execution time in only 10% of the code. An implication of
locality is that we can predict with reasonable accuracy what
instructions and data a program will use in the near future based
on its accesses in the recent past.

Two different types of locality have been observed:

e Temporal locality states that recently accessed items are likely
to be accessed in the near future.

o Spatial locality says that items whose addresses are near one
another tend to be referenced close together in time.

5
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Spatial Locality

Temporal Locality

@
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%
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Using Locality by Caching

» main memory latency (which affects the cache miss penalty) is
the primary concern of the cache, while main memory
bandwidth is the primary concern of multiprocessors and I/O.

it is generally easier to improve memory bandwidth with new
organizations than it is to reduce latency.

I3
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Cache operation

» CPU requests contents of memory location

» Check cache for this data

« If present, get from cache (fast)

« If not present, read required block from main memory to cache
» Then deliver data from cache to CPU

» Cache includes tags to identify which block of main memory is in
each cache slot

%
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Cache — Main Idea

» The cache holds a small part of the entire memory
* Need to map parts of the memory into the cache

memory

* Main memory is (logically) partitioned into blocks
« Typical block size is 32 to 64 bytes
* Blocks are aligned

» Cache partitioned to cache lines
« Each cache line holds a block
» Only a subset of the blocks is mapped
to the cache at a given time
» The cache views an address as

| Block # | offset |

2
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Cache Lines

A memory request for address X Memory blocks
begins by searching for X in cache

» Lookup speed is important

Yes

1
Load from address 0x0040 %
\

No — Load from memory

If it misses, then a new block is brought in
» Replacement policy is important

— $00|q JO $107

5
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Cache Lookup

» Cache hit
« Block is mapped to the cache —
return data according to block’s offset memory

» Cache miss
« Block is not mapped to the cache
= do a cache line fill
« Fetch block into fill buffer
* may require few bus cycle
« Write fill buffer into cache
+ May need to remove another block 90

91
from the cache to make room for the new block 92
93

OO BRWN =

3
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Core 2 Duo Die Photo

Memory Hierarchy

CcPU
Register
Storage

LLL Areas
Physical RAM Virtual Memory
Storage Device Types
L L Permanent
Storage
Storage Areas

Remote Other

Keyboard

Source Sources.

%
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Cost Access time
< lIns
— off-chip cache ~ 2-3 ¥/MB 5ns
MBs
~— main memory 0.07 $/MB 60ns
GBs
— Disk 0.0004 $/MB 10,000,000ns
TBs
2
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Memory Hierarchy

As you go further, capacity and latency increase

L1 data or
Registers | instruction L2 cache
1 KB Cache 6 MB Disk
1 cycle 128 KB 15 cycles 1000 GB
2 cycles 10M cycles

22
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Memory Hierarchyl_

element

Instructions

Addresses

Register Cache RAM Virtual
:speed
size _
1"‘U Delft 89

Cache lines

» The unit of transfer is called a cache line

» A cache line consists of consecutive memory locations

e T

Like this Not like this

» The size of a cache line is architecture dependent
» AMD Barcelona/Shanghai 64 Bytes
« Intel Nehalem 64 Bytes

L3
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Cache Lines

Typically more than one element at once is transferred
x = a[0]

registers cache

register = a[0]

move a[0]...a[n]

5
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Memory Level Issues

» Caches are working copies, true image is in main memory

» Cache exploits temporal proximity
* recent data/instruction likely to be used again

* Where does true image of data/code reside?
* When cache is written to, how is memory image updated?

» A cache is not big enough to store all data
* How is cache organized and addressed?

» How is data replaced within cache?
* This is called cache replacement policy, and will be discussed next

I3
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Direct Mapped Caches

» Replacement Formula:

» This maps a memory location from main memory directly to a
position in the cache.

5
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Accessing the Cache

Byte address

| 101000

Offset

8-byte words
8=23: 3 offset bits

8 words: 3 index bits

Direct-mapped cache:
each address maps to
a unique address

Sets

Data array

L3
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Cache, Example

* 64 byte cache-size

e Each Cache “line” or “block” holds one word (8 bytes)
« total cache can store 8 words (=64 bytes)

 Byte in cache is addressed by lowest three bits of address
» Cache line is addressed by next 3 bits in address

» Each Cache line has a “tag” matching the remaining 26 bits of the
memory address

%
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The Tag Array
Byte address
| 101000|
Tag
8-byte words
v
Compare
A
Direct-mapped cache:
each address maps to
= a unique address
Tag array Data array
5
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Increasing Line Size

Byte address Alarge cache line size > smaller tag array,
fewer misses because of spatial locality

| 10100000

32-byte cache

Tag \\gﬁset line size or
block size
[32=25]
L

Tag array Data array

%
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Direct Mapped Caches

(virtual) memory memory location:
A(4097) = a(1)+4096%4
cache location:

16 KB A(4097)= a(l)

A(4085..4088)
A(4089..4092)
A(4093..4096)

registers

L3
TUDelft 99

Direct Mapped Caches

» Replacement Formula:

An example:
» Assume that a cache line is 4 words (=16 Bytes)
* Cache size = 16 KB = 16 (line size) * 1024 (# of lines) Bytes
* This corresponds to 4096 32-bit words
» Example: element 5000 goes to cache line ((5000%1024)%4=226)
* We have to load an array A with 8192 32-bit elements:
i.e. twice the size of the cache

5
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Direct mapped caches - Trashing

» A well known side-effect of this design:
data elements that are soon needed are overwritten (trashing)

« Especially when multiple arrays are involved direct mapping can
become very inefficient

 Often the only remedy is to modify the memory mapping, but this
can be non-trivial

» There is a solution....

I3
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Direct Mapped Caches - Trashing

(virtual) memory
COMMON A(4096), B(4096)
I=2 DO I=1, 4096
P =P + A(I)*B(I)
END DO

16 K

A(4089..4092)
A(4093..4096)

Direct Mapped Cache

registers

Trashing: every memory reference results
in a cache miss

%
TUDelft

Fully Associative Caches

» Why are not all caches then fully associative?

Because of cost

« Luckily, a clever alternative (polder model) exists.

103

L3
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Fully Associative Caches

Fully Associative:

» The replacement is now based upon a Least-Recently Used (LRU)
algorithm:

« Data that is oldest (touched) is removed
» In many cases it makes sense to do
« It greatly helps when working with multiple arrays

* Takes longer time to find if a line is already in the cache

102

%
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Set Associative Caches

Set Associative:
» The cache contains several direct mapped caches

» Data can go into one of these caches (called a ‘set’)

» The choice of a set is often (semi-) LRU cache controller

4-way set associative cache

.

paddew"pmlp

I3
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Associativity

Byte address Set associativity > fewer conflicts; wasted power
because multiple data and tags are read
| 10100000
Ta.\g Way-1 Way-2
\ trashing
\ can still
\ occur within
\ \\ one set !
Tag array Compare Data array
5
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« Direct Mapped Cache: The simplest way to allocate the cache to the system memory is to determine how many
cache lines there are (16,384 in our example) and just chop the system memory into the same number of chunks.
Then each chunk gets the use of one cache line. This is called direct mapping. So if we have 64 MB of main

memory addresses, each cache line would be shared by 4,096 memory addresses (64 M divided by 16 K).

Fully Associative Cache: Instead of hard-allocating cache lines to particular memory locations, it is possible to
design the cache so that any line can store the contents of any memory location. This is called fully associative
mapping.

N-Way Set Associative Cache: "N" here is a number, typically 2, 4, 8 etc. This is a compromise between the

direct mapped and fully associative designs. In this case the cache is broken into sets where each set contains "N"
cache lines, let's say 4. Then, each memory address is assigned a set, and can be cached in any one of those 4
locations within the set that it is assigned to. In other words, within each set the cache is associative, and thus the
name.

This design means that there are "N" possible places that a given memory location may be in the cache. The trade-
off is that there are "N" times as many memory locations competing for the same "N" lines in the set. Let's suppose
in our example that we are using a 4-way set associative cache. So instead of a single block of 16,384 lines, we
have 4,096 sets with 4 lines in each. Each of these sets is shared by 16,384 memory addresses (64 M divided by 4
K) instead of 4,096 addresses as in the case of the direct mapped cache. So there is more to share (4 lines instead of

1) but more addresses sharing it (16,384 instead of 4,096).

L3
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Fully associative:
block 12 can go
anywhere

Block 01234567
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Block 01234567
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Block 01234567
no.

Cache
Set Set Set Set
0o 1 2 3
Block frame address
Block 11111111112222222222833
no. 01234567890123456789012345678901
Memory
3
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Cache Mapping

Cache Type Hit Ratio

Search Speed

(N>1) Better as N increases

Direct Mapped Good Best
Fully Associative Best Moderate
N-way Set Associative |Very Good Good

Worse as N increases

I3
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Multi-Level Caches

« If one works well, why not use the same trick again !

* The L2 and L3 have properties that are different from L1
e access time is not as critical for L2 as it is for L1 (every
load/store/instruction accesses the L1)
e the L2 is much larger and can consume more power
per access

* Hence, they can adopt alternative design choices
» serial tag and data access
« high associativity

5
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Memory Hierarchy

As you go further away from the CPU, capacity and latency increase

capaci
pacity
: L1 data or
Registers  instruction L2 cache
1 KB Cache 6 MB Disk
1 cycle 128 KB 15 cycles 1000 GB
2 cycles 10M cycles
2
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Cache levels

o1
* design for minimal hit time

o2
* design for low miss rate to avoid access to main memory

L3
« design for sharing with other cores

o L1 usually smaller than L2
e L1 block size (number of sets) smaller than L2
e L3 much larger than L1

5
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Cache Read and Write Policies

Cache Cache
Read Write
Data is Data is Data is Data is
in the not in the in the not in the
cache cache cache cache
Forward Load Through: Write Through: Write Allocate: Bring
to CPU. Forward the word Write data to both line into cache, then
as cache line is cache and main update it,
filled, memory, -or-
-or- -or- Write No-Allocat
Fill cache line and Write Back: Write Update main memory
then forward word. only.
data to cache only.
Defer main memory
write until block is
flushed.
5
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Cache Summary - hit/miss

e Cache Hit
« Item is found in the cache
* CPU continues at full speed
* Need to verify valid and tag match

» Cache Miss
« Item must be retrieved from memory
* Whole Cache line is retrieved
* CPU stalls for memory access

%
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Cache misses

* cache misses take time
« cache filling and emptying takes take
« getting data from main memory to L3, L2 and L1
« replacement policy

« Can we do something else while waiting for data to
arrive in the cache?

L3
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L1 cache hit rate

: L1 data or
Registers  instruction L2 cache
1 KB Cache 6 MB

1 cycle 128 KB 10 cycles
1 cycles

Load data 100 times
100% hit rate in L1: 100 cycles

99% hitratein L1: 109 cycles 9% slower
95% hit rate in L1: 145 cycles  45% slower

%
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Tolerating Miss Penalty

¢ Out of order execution: can do other useful work while
waiting for the miss — can have multiple cache misses
— cache controller has to keep track of multiple
outstanding misses (non-blocking cache)

¢ Hardware and software prefetching into prefetch buffers
— aggressive prefetching can increase contention for buses

Those techniques will be discussed later today.

I3
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Optimal cache performance

5
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One More Thing.... about memory

2
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Time for some exercise

» Bandwidth and or Latency

e ..../HPCourse/lat_mem_rd

5
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Virtual Memory

e Modern programs operate in “virtual memory”
e Each program thinks it has all of memory to itself
* Fixed sized blocks (“pages”) vs variable sized blocks
("segments”)

o Virtual Memory benefit
o Allow a program that is larger than physical memory to run
e Programmer does not have to manually create overlays
o Allow many programs to share limited physical memory

e Virtual Memory asks for additional work:
e Each virtual memory reference must be translated into a
physical memory reference

22
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Address Translation

* The virtual and physical memory are broken up into pages

8KB page size

| Virtual address |

13
virtual page  page offset
number

| Translated to physical

page number

Physical address

Basic page has a size of 4 KB

5
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Virtual memory

Virtual Memory

0x400000 (4MB)

. - Physical Memory
0x10000 (64KB)

0x00000 ‘4«
Virtual Memory / —
. 1_
0xF000000 (240MB

—— X 0x00000
Disk

Virtual and Physical memory

Virtual Memory Address Translation Physical Memory

L3
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The TLB cache

« In a virtual memory based system, the virtual address needs to
be translated to a physical address by the kernel.

 This address translation is typically a costly operation
e Therefore translations are:
* Performed on a virtual memory page basis

« Buffered in a cache (with the hope to re-use them)

» This cache is often called Translation Lookaside Buffer or TLB for
short

22
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Look-up Table

Virtual address

Virtual page number Page offset

Page table
Physical address

5
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Steps in Handling a Page Fault
page is on
backing store
/\
v
operating
system @
reference
@ trap
load M [i
restart page table
instruction
free frame
reset page bring in
table missing page
physical
e memory
TUDelft 2

Typical TLB size

o Size: 8 - 4,096 entries

o Hit time: 1 clock cycle

® Miss penalty: 10 - 100 clock cycles
e Miss rate: 0.01 - 1%

o Larger pages allow:
o Wider memory coverage
o With fewer address translations
e Varying pages sizes can lead to fragmentation
e E.g., @ memory-hungry program might work with 2 MB pages, but
can oversubscribe available memory with 16 MB pages

5
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The TLB cache

bad for the TLB
non unit stride through the data

VM pag

VERY bad for the TLB
strides through the data which exceed the page size

22
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. = new TLB entry created
. = address already mapped




Putting it all together

1. processor generates memory reference (Id or st)

2. check TLB if - 4. L1 cache miss
virtual mapping is L1-cache
present

5. L2 cache miss

6. L3 cache miss
3. If virtual| Page Table
;12;'::3 'gso_nf; (resides in
pege abe e | memory)
update TLB with

7. main memory hit

the mapping 8. If there is a main memory
miss, then a page fault would be
generated.
5
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Tricks a modern CPU can do

o Instruction Level Parallelism
 Superscalar
» QOut of Order Execution
* Pipelining
« Branch Prediction
« vector instructions

o Multithreading

 Pre Fetching

2
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Going back to the CPU

5
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Fetch-Execution cycle

i
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Superscalar

e A superscalar processor executes more than one instruction
during a clock cycle by simultaneously dispatching multiple
instructions to redundant functional units on the processor.

e Each functional unit is not a separate CPU core but an execution
resource within a single CPU such as an arithmetic logic unit
(ALU), a bit shifter, or a multiplier.

5
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Superscalar
Scalar Pipelined Execution

IF=Operation Fetch

ID=Operation Decode

EX=Execute
- ‘WB=Reg/Mem write back

4 Operations

-Time

Superscalar Execution

Operation-Level
Parallelism

4 Operations
-Time

2
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Superscalar

5
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Is Superscalar Good Enough ?

» A superscalar processor can fetch, decode, execute and retire
instructions in parallel
» Can execute only independent instructions in parallel

» But ... adjacent instructions are usually dependent
 The utilization of the second pipe is usually low
» There are algorithms in which both pipes are highly utilized

» Solution: out-of-order execution

 Execute instructions based on “data flow” rather than program order
« Still need to keep the semantics of the original program

22
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Out of Order Execution

* Make use of cycles that would otherwise be wasted by a certain
type of costly delay. Most modern CPU designs include support for
out of order execution.

» The key concept of 000 processing is to allow the processor to
avoid a class of stalls that occur when the data needed to perform
an operation are unavailable.

5
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Out of Order

1.Instruction fetch

2.Instruction dispatch to an instruction queue (also called instruction buffer or
reservation stations).

3.The instruction waits in the queue until its input operands are available. The
instruction is allowed to leave the queue before earlier, older instructions.

4.The instruction is issued to the appropriate functional unit and executed.
5.The results are queued.
6.0nly after all older instructions have their results written back to the register

file, then this result is written back to the register file. This is called the
graduation or retire stage.

L3
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In Order

1.Instruction fetch.

2.If input operands are available (in registers for instance), the instruction
is dispatched to the appropriate functional unit. If one or more operands is
unavailable during the current clock cycle (generally because they are
being fetched from memory), the processor stalls until they are available.

3.The instruction is executed by the appropriate functional unit.

4.The functional unit writes the results back to the register file.

5
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Data Flow Analysis

* Example:
(1) r1 < r4 / r7 ; assume divide takes 20 cycles
2) r8 < rl + r2
3) r5 <« r5 + 1
g i -~ rg - r3
rd < r5 + - i
8) 7 — 8 * ra In-order execution
L1 o2
Data Flow Graph 3|5 6]
@ @ ® 4
rl r5
9 e Out-of-order execution
1
4
= 3][5] |2]6]
O 4]
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OOOE - General Scheme

Fetch &| —— | Instruction [ —— | Retire
Decode| /= pool — | (commit)
In-order In-order

Out-of-order

» Fetch & decode instructions in parallel but in order, to fill inst. pool
» Execute ready instructions from the instructions pool

« All the data required for the instruction is ready
« Execution resources are available
» Once an instruction is executed

« signal all dependent instructions that data is ready
» Commit instructions in parallel but in-order
« Can commit an instruction only after all preceding instructions (in program
order) have committed

5
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Out of order

A
A
B 3
ho] Y
p .
c
L k)
[$) IS
< 2
1) @
£
A\ 4
A 4
2
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Out Of Order Execution — Summary

+ Advantages
 Help exploit Instruction Level Parallelism (ILP)
* Help cover latencies (e.g., cache miss, divide)
 Superior/complementary to compiler scheduler
» Dynamic instruction window
» Reg Renaming: can use more than the number architectural registers

+ Complex micro-architecture

* Complex scheduler

* Requires reordering mechanism (retirement) in the back-end for:
« Precise interrupt resolution
 Mis-prediction / speculation recovery
* Memory ordering

5
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Pipelining

e
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Pipelining
« Pipelining is a technique whereby multiple instructions are
overlapped in execution.

« It takes advantage of parallelism that exists among the actions
needed to execute an instruction.

 Each step in the pipeline completes a part of the instruction.

« In this way the clock period can be reduced. For example, the
RISC pipeline is broken into five stages.

5
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The Assembly Line

Unpipelined Start and finish a job before moving to the next

I

Pipelining
Dave Patterson’s Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

6PM 7 8 9
|
' Time
. e
a * In this example:
s » Sequential execution takes
K 4 * 90min = 6 hours
* Pipelined execution takes
30+4*40+20 = 3.5 hours
o
r * Pipelining helps bandwidth
d but not latency (90 min)
e
r
slide from Berkeley course cs194
14U Delft 146

Pipelining Instructions

Program

A| B | C
Al B| c Break the job into smaller stages
A| B]|]C
] Al B]| c|
Pipelined
5
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. 2 4 6 8 10 12 14 16 18
order Time T T T T T T T T T
Inst Data
Iw R1, 100(R0) Fetch Fe% ALU Accessr‘eg
Inst Red ALU Data eg
Iw R2, 200(R0) 8ns Fetch Access
Inst
Iw R3, 300(R0) 8ns Fetch
8ns
Program
" . 2 4 6 8 10 12 14
order Time T T T T T T T
Inst Data
IwR1,100(R0) | (oo Red ALU |, Re4
<+—> Inst Data
IwR2,200(R0)  2ns | poeon | [Red ALU | e
+—> Inst Data
Iw R3, 300(R0) 2ns | petch | [R89 ALU | Accessk#
2ns 2ns 2ns 2ns 2ns
Ideal speedup is number of stages in the pipeline.
5
TUDelft 148




Pipeline example

Instr. No. Pipeline Stage
1 IF | ID [ EX |MEM WB
2 IF | ID [ EX |MEM WB
3 IF | ID [ EX MEM|WB
4 IF | ID [ EX [MEM
5 IF [ ID | EX
Gae [1]2]s]af5]e]"

Basic five-stage pipeline in a RISC machine:
e IF = Instruction Fetch,
» ID = Instruction Decode,
* EX = Execute, compute address or operation (add)
* MEM = Memory access, read or store address
¢ WB = Register write back.

5
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4_Stage plpellne Clock Cycle
0 1

2 3 4 5 6 7 8

|

Waiting - .

Instructions . .

] |

W Stage 1: Fetch lE |:|

% Stage 2: Decode & &

E Stage 3: Execute lx

= Stage 4: Write-back & }x{
Completed
Instructions

from: http://en.wikipedia.org/wiki/Instruction_pipeline

Pipelining

« Pipelining does not reduce the latency of single task,
it increases the throughput of entire workload
» Potential speedup = Number of pipe stages
« Pipeline rate is limited by the slowest pipeline stage
= Partition the pipe to many pipe stages
= Make the longest pipe stage to be as short as possible
= Balance the work in the pipe stages
« Pipeline adds overhead (e.g., latches)
» Time to “fill"” pipeline and time to “drain” it reduces speedup
« Stall for dependencies
= Too many pipe-stages start to loose performance
« IPC (Instructions Per Clock) of an ideal pipelined machine is 1
 Every clock one instruction finishes

L3
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Pipeline hazards

« Pipelining introduces an extra layer of complexity than can lead to
other problems (called pipeline hazards). Some of the hazards can
be solved by adding additional hardware.

« This is for specialist in hardware design and we will not discuss
this in much detail.

22
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Pipeline Hazards

 Structural Hazards: Hardware doesn't support two instructions
in the same cycle

« Data Hazards: Instructions can’t be executed since the
source data is not available since still computed by a preceding
instruction

* Load-Use Hazards: source data is not available since data
memory load instruction has not yet completed

¢ Branch Hazards: due to a branch (condition) in the code,
the pipeline must wait until the next instruction is determined.

5
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Branches examples

« Instructions which can alter the flow of instruction execution in a
program

e if (a[i]> 1.0) {}

* do_work(a, nl, n2, parm);
e for (i=0; i<n, i++) {}

e while (eps >= le-3) {}

e return;

L3
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Branches

5
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Techniques for handling branches

INENEEER
x86 Code
CTTTTT T e

V777777
Trace Segment

- Staling RRRERRNG 00009000
« waiting for condition to be computed and then continue with correct branch

« Predication
« All possible branch paths are executed, the correct path is kept and all
others are thrown away.

e Prediction
« try to predict the next if statement based on previous if statement(s).

22
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Multi-threading

5
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Simultaneous Multi-Threading

logical | | logical logical | | logical
CPU CPU CPU CPU
physical physical
CPU CPU
system bus
I3
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Thread-Level Parallelism (TLP)

» Motivation: a single thread leaves a processor under-utilized for most of
the time

» Strategies for thread-level parallelism:

» multiple threads share the same large processor =>
»  reduces under-utilization, efficient resource allocation
»  Simultaneous Multi-Threading (SMT)

» each thread executes on its own mini processor =>
»  simple design, low interference between threads
»  Chip Multi-Processing (CMP)

5
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Hyper-threading (HT) Technology

o HT is SMT
» Makes a single processor appear as 2 logical processors = threads

» Each thread keeps a its own architectural state
» General-purpose registers
 Control and machine state registers

» Each thread has its own interrupt controller
« Interrupts sent to a specific logical processor are handled only by it

» OS views logical processors (threads) as physical processors
» Schedule threads to logical processors as in a multiprocessor system

» From a micro-architecture perspective
» Thread share a single set of physical resources
« caches, execution units, branch predictors, control logic, and buses

22
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How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak throughput is 4 IPC.

H: [ Thread 1
I Thread 2
[_] Thread 3
I I I I e [_Jide

Superscalar Out-of-order Simultaneous
Multithreading
e Superscalar processor has high under-utilization — not enough work every cycle,
especially when there is a cache miss
 Out-of-order can only issue instructions from a single thread in a cycle — can not
find max work every cycle, but cache misses can be tolerated
» Simultaneous multithreading can issue instructions from any thread every cycle —
has the highest probability of finding work for every issue slot

5
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Without SMT, only a single thread can
run at any given time

ﬁ. Do)
[ meeger_|[ - |

I

IIHE.ﬂ

Without SMT, only a single thread can
run at any given time

ﬁ’n”ﬂ

Flogting Point |

|H:ﬂ
1 =E

gUDelﬁ Thread 1: floating pojpt

SMT processor: both threads can run
concurrently

e [ A

1 VA
I || Flogting Point |

BN
EHLL
il ERE

Thread 2:

L3
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But: Can’t simultaneously use the
same functional unit

| eta%’\n’ l |

Int

This scenario is

on a single core

| : | integer unit)

impossible with SMT

(assuming a single

ERE EEEEE] |
1 [ ]
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Prefetching

« Instruction Prefetching
* On a cache miss, prefetch sequential cache lines into stream
buffers
* Branch predictor directed prefetching
e Let branch predictor run ahead
» Data Prefetching - predict future data accesses
* Next sequential
* Stride
* General pattern
» Software Prefetching
* Special prefetching instructions
« Prefetching relies on extra memory bandwidth
* Otherwise it slows down demand fetches

=difficult to do prefectching correct as a programmer

L3
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Multi-Threading story will be
continued

5
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Putting things together

 Loop unrolling

22
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Example: Loop Scheduling

» Using 5-stage in-order pipeline
e The compiler’s job is to minimize stalls

e Assume:
« load has a two-cycle latency (1 stall cycle for the
consumer that immediately follows),
» FP ALU feeding another => 3 stall cycles,
» FP ALU feeding a store => 2 stall cycles,
e int ALU feeding a branch => 1 stall cycle,
« one delay slot after a branch.

5
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Loop Example

for (i=1000; i>0; i--)

x[i] = X[i] +s; Source code

Loop: L.D FO, O(R1) ; FO = array element
stall
ADD.D F4,FO0, F2 ; add scalar

10-cycle
stall hedul
stall schedule
SD F4, 0(R1) ; store result
DADDUI R1,R1,#-8 ; decrement address pointer
stall
BNE R1, R2, Loop ;branchif R1!=R2
stall
L.D | | ADD.D | | -DADDUI| | BNE |
23
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Loop Example

for (i=1000; i>0; i--)
x[il = X[i] + s: Source code
Loop: L.D FO, O(R1) ; FO = array element
ADD.D F4,FO0, F2 ; add scalar
S.D F4, 0(R1) ; store result Assembly code
DADDUI R1,R1,#-8 ; decrement address pointer
BNE R1, R2, Loop ;branchif R1!=R2

(e ] | [

| ADDD | | | |pappul || BnE | |

5
TUDelft 170

Smart Schedule

Loop: L.D FO, O(R1) Loop: L.D FO, O(R1)
stall DADDUI R1, R1,#-8
ADD.D F4,FO0, F2 ADD.D F4,FO0, F2
stall stall
stall BNE R1, R2, Loop
S.D F4, 0(R1) SD F4, 8(R1)
DADDUI R1, R1,#-8
stall
BNE R1, R2, Loop
stall

» By re-ordering instructions, it takes 6 cycles per iteration instead of 10

22
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Smart Schedule

Loop: L.D FO, O(R1)
DADDUI R1, R1,# -8
ADD.D F4, FO0, F2

stall
| LD BNE  Rf1,R2, Loop
SD  F4,8(R1)
DADDUI
ADD.D

BNE

S.D

Loop overhead (BNE, DADDUI): 2 instructions
Actual work (the LD, ADD.D, and S.D): 3 instructions

Can we somehow get execution time to be 3 cycles per iteration?

5
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Loop Unrolling (4 times)

Loop: L.D FO, O(R1)
ADD.D F4, FO, F2
S.D F4, 0(R1)
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D F8, -8(R1)
L.D F10,-16(R1)
ADD.D F12,F10, F2
S.D F12, -16(R1)
L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)
DADDUI R1, R1, #-32
BNE R1,R2, Loop

» Loop overhead: 2 instrs; Work: 12 instrs
* How long will the above schedule take to complete?

2
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Loop Unrolling: solution on user level

» Reduces the number of ‘end of loop’ checks.

e Increases program size

* Requires more registers

« To unroll an n-iteration loop by degree k, we will need (n/k)

iterations of the larger loop, followed by (n mod k) iterations
of the original loop.

5
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Scheduled and Unrolled Loop

Loop: L.D FO, O(R1)
L.D F6, -8(R1)
L.D F10,-16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, 0(R1)
S.D F8, -8(R1)
DADDUI R1, R1, #-32
S.D F12, 16(R1)
BNE R1,R2, Loop
S.D F16, 8(R1)

» Execution time: 14 cycles or 3.5 cycles per original iteration

22
TUDelft 176




Pipeline has similar efficiency as unrollin|

LD ADD.D | | S.D |
DADDUI BNE
LD ADD.D | | SD |
DADDUI BNE
LD ADD.D | | S.D |
DADDUI BNE
LD ADD.D | | SD |
DADDUI BNE
Loop: L.D FO, O(R1) L.D ADD.D |
ADD.D F4, FO, F2
SD F4 OR1) DADDUI BNE
DADDUI R1,R1#-8 LD ADD.D
BNE  R1, R2, Loop
DADDU BNE
5 177
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Vector instructions
SSE2 SSE3 SSE4 AVX ...
<, <><>
m
m
B Instructions
[ pata
W Results
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Software Pipelining

Loop: LD  FO,O(R1) Loop: S.D  F4,18(R1)
ADD.D F4, FO, F2 ADD.D F4, FO, F2
SD  F4,0(R1) —_— LD FO, O(R1)
DADDUI R1,R1#-8 DADDUI R1, R1#-8

BNE R1, R2, Loop BNE R1, R2, Loop

¢ Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion — an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is
almost always in steady state — a sw-pipelined loop can also be unrolled
to reduce loop overhead

» Disadvantages: does not reduce loop overhead, may require more
registers

5
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Software Specific Extensions

» Extend arch to accelerate exec of specific apps

* Example: SSE™ — Streaming SIMD Extensions
« 128-bit packed (vector) / scalar single precision FP (4x32)
« Introduced on Pentium® III on ‘99
» 8 new 128 bit registers (XMM0 — XMM?7)
« Accelerates graphics, video, scientific calculations, ...

» Packed vectorized: Scalar:
~ 128-bits ™ ~ 128-bits ™

x3 x2 x1 x0 x3 x2 x1 x0

+ +
I B B PN

I3
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successor AVX

SSE and AVX-128 types 1 1 2x double

8x 16-bit word

- - - - 4x 32-bit doubleword
- 1x 128-bit doublequadword
AVX-256 types -

[ W W W W . . 8x float
C o o el e

5
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AVX2 2014

SIMD Mode Scalar Mode

L3
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History of vector instructions

£

o
=
>
=
=
%)
]
o
o

1997  MMX E v
1999  SSE v V(x4)
2001  SSE2 v v v
2004 SSE3 128 v v v
2006  SSSE3 v v v
2006 SSE4.1 128 v v v
2008  SSE 4.2 v v Vv
2011 AVX v k8 v(d)
2013 AVX2 256 v v v
2019 AVX-512 v  v(XI6v(x8)
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Dependencies

not all loops can be vectorised

« At start of a vector instruction the (4-8) values of the arrays are
copied into vector registers.

» These (4-8) array values are then used by a vector functional unit
and produces (4-8) output values.

» Within these (4-8) values of the array there must be no
dependencies. The vector functional unit uses the values in the
registers.

22
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Vectorization wrong usage
a[l]=a[0]+b[0]
for (j=0; j<N; j++) {
a[j+1] = a[j] + b[j];  a[2]=b[l]+a[l]

} af[2]=b[1]+a[0]+b[0]
[bro] [br1] [o12) [o13) | Avxo
|aro] oty a2 3] | Avxi

|a[1]=b[0]+a[0] |a[2]=b[1]+j[1] |a[3]=b[2]+a[2] |a[4]=b[3]+a[3] | AVX3

This a[1] is still the original value of a[1] (# a[0]+b[0])

5
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Examples

For (i=1000; i>0; i=i-1)
x[i] = X[i] + s;

For (i=1; i<=100; i=i+1) {
Ali+1] = Ali] + C[il: S1
B[i+1] = B[i] + A[i+1];  S2

}

For (i=1; i<=100; i=i+1) {
Al = Afi] + Bil; S1
B[i+1] = C[i] + D[i]; S2

}
For (i=1000; i>0; i=i-1)
x[i] = x[i-3] +s; S1
23
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Loop Dependencies

« If a loop only has dependencies within an iteration, the loop
is considered parallel => multiple iterations can be executed
together so long as order within an iteration is preserved

» If a loop has dependencies across iterations, it is not parallel
and these dependencies are referred to as “loop-carried”

» Not all loop-carried dependencies imply lack of parallelism

5
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Examples

For (i=1000; i>0; i=i-1)

x[il = X[i] + : No dependences

For (i=1; i<=100; i=i+1) { . S
Ali+1] = Ali] + C[il: 51| S2depends on S1in the same iteration

11— RE A S1 depends on S1 from prev iteration
} Bli+1] = Blil + A1, S2 S2 depends on S2 from prev iteration

For (i=1; i<=100; i=i+1) {
Ali] = Ali] + B[i]; S1| S1depends on S2 from prev iteration
BJi+1] = CJi] + D[il; S2

For (i=1000; i>0; i=i-1) S1 depends on S1 from 3 prev iterations
X[i] = x[i-3] + s; S1 Referred to as a recursion
! Dependence distance 3; limited parallelism

22
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Constructing Parallel /Vector Loops

If loop-carried dependencies are not cyclic (S1 depending on S1 is cyclic),
loops can be restructured to be parallel

For (i=1; i<=100; i=i+1) {
Alil = Ali] + BIil;
B[i+1] = C[i] + DI[i;

}

S1
S2

S1 depends on S2 from prev iteration

AT =A[1] + B[1];
For (i=1; i<=99; i=i+1) {
Bi+1] = C[i] + DI[i];

Ali+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

S3
S4

S4 depends on S3 of same iteration

14UDeIft 189
Summary
- N 7 N N
Pipelining Out-of-order Superscalarity Branch
\ J \ J \ / \_ Prediction /
\
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Summary

e Superscalar: start several instructions per cycle.

e Our of order: reshuffle instructions for optimal use of all functional
units.

e Pipelining: work on instructions in parallel.

 Vectorization: parallel computation on short arrays.

5
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Multi core and all the above

22
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Multi-core architectures

A trend in computer architecture since ~2012:
Replicate multiple processor cores on a single die.

Core 1 Core 2 Core 3 Core 4
register file register file register file register file

ALU

<:| ALU C:| ALU ALU
1L — 30 — 3f — JT

bus interface < >

Multi-core CPU chip

5
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Private vs shared caches?

» Advantages/disadvantages?

2
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The memory hierarchy and cores

« If simultaneous multithreading (software solution) only:
« all caches shared

» Multi-core chips (hardware solution):
* L1 caches private
* L2 caches private in some architectures and shared in others
¢ L3 shared cache among the cores

* Main memory is always shared between all cores.

5
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Private vs shared caches

» Advantages of private:
» They are closer to core, so faster access
» Reduces contention

» Advantages of shared:
» Threads on different cores can share the same cache data
» More cache space available if a single (or a few) high-performance
thread runs on the system

22
TUDelft 196




The cache coherence problem

« Since we have private caches:
How to keep the data consistent across caches?

» Each core should perceive the memory as a monolithic array, shared by
all the cores
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
[ J
|
multi-core chip
Main memory
I3
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Solutions for cache coherence

« This is a general problem with multiprocessors, not limited just to multi-
core
» There exist many solution algorithms, coherence protocols, etc.

« A simple solution:
invalidation-based protocol with snooping

L3
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The cache coherence problem

Sopp @settitdptsi dositiling it dge24 BREEIE tHpy

S

assuming multi-core chip
. } write-through
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Inter-core bus

multi-core chip
inter-core bus
200
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Invalidation protocol with snooping

« Invalidation:

If a core writes to a data item, all other copies of this data item in
other caches are invalidated
* Snooping:
All cores continuously “snoop” (monitor) the bus connecting the
cores.
14U Delft 201

Cache Coherence - Snooping

Data bus
Address bus

Cache
CPU
With a snooping protocol, ALL address traffic on the bus
is monitored by ALL processors
1,"UDe|ft 203

s S

The cache coherence problem

éidisitensiGSinni SettkeRldbtadtdgdeadw copy.

INVALIDATED

invalidati

multi-core chip
request inter-core bus
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Cache Coherence Protocols

* Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

* Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access
of a block before writing by invalidating all other copies
» Write-update: when a processor writes, it updates other
shared copies of that block

I3
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Alternative to invalidate protocol:
update protocol

Core 1 writes x=21660:

x=21660

multi-core chip

broadcasts _

updated assuming

vajue } write-through
TUDelft caches

inter-core bus
205

cache coherency ensures that one always gets the
right value ... regardless of where the data is

Cache

CPU

Same variable is present in
multiple places

L3
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Alternative to snoop:
Directory based coherency

multi-core chip
x=21660 list with who has a copy

206

%
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Invalidation vs Update

» Multiple writes to the same location
« invalidation: only the first time

» update: must broadcast each write
(which includes new variable value)

« Invalidation generally performs better:
it generates less bus traffic

I3
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Current and Future Hardware Modern CPU’s and Systems

* SMT can deal with unused units
« but compiler has to make good code!

» IBM Power
o Intel Xeon
* AMD Zen and Ryzen
* GPGPU's
* FPGA's
* ARM
'igu Delft 209 'ifu Delft 210
I
Power6 Power 10
» Decimal Floating point unit
e In Order execution: S o
- faster clock (4.7 GHz) 2 i
« larger cache 8 SMT, 7 nm z z

198UU09193 |9d (423SN|2 {1039 809E /Il aW {JINS

X

&

2

&

PCleGen5 " PCleGen5 4
signaling|(x16) 48 signaling|(x16)

x

03
2
+
4
o

PowerAXON PowerAXON|

Each socket holds one Power10 single chip module (SCM). An SCM can contain 10, 12, or 15 Powerl10 processor cores.
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l dBM power roadmap

Power Systems
Quarter Century of POWER
Legacy of Leadership Innovation
Driving Client Value

0. RSB4UI Pulsar

Modern UNIX Era

Workstation BT
for B
o s
P2sc
1.0um RSC
L sz
0.351 PC
e
1 B04e
L
&01
1990 1995 2000 2005 2010 2015
-
5
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IBM Power Systems

Processor Technology Roadmap
Continued Investment in POWER

+12 Cores . :M:ont

+SMT8 « New pArchitecture

+2X DPFP A + Direct-attach DDR4

+PCIE Gen 3 - Gend PCle API
= Coprocessor (CAPI) « CAPI 2.0

+Enhanced Prefetch « NVLINK2.0

2014 2016 2017 2019-2020 Future

Tick-Tock

Manufacturing process 1@ Microarchitecture

A5 Westmere 5, lvy Bridge am Broadwell o

32 nm | 22 nm 14 nm

frock . S Tock . JUSSE Tock
~ - L‘ - -- -

.uck

Nehalem ... Sandy Bridge ichit Haswell e Skylake

45nm  sameNeh. 32 nm  CEEE 22 nm  reHaswe 14 nm
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The Intel Nehalem (Core architecture)
Processor

Memory Controller

' Shared L3 Cache | { -
155+ Sl

A Modular Design for Flexibility

%
TUDelft
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Figure 4: Intel Skylake-X Mesh Fabric
Xeon® Processor Scalable Family, 1t Gen AMD

“——
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1MB \
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Source: Intel
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AMD design

MonolithicDie

1/0 1/0 /o 1[0
cpu|cru B cpu|cru
17
cpu [cpu [ cpu [cpy
ceu|cpu [ cpu|cru
=] &9
CPU |cPU CPU |CPU

cpu|cpu [ cpu [cru
=) & & o
cpu |cpu [ U [cPU

cpU |cpu [ cPU |cPu
cPU |cpu [ cPU [cpu

32CDie Cost
1.0X

EPYC MCM

cpu cpuG
cPU | cPy
cpu [cpu
&
cpu | cPy

o
e
CPU [cPu B
e
A

4 x 8C Die Cost
0.59X*

AMD Chiplets

AMD LEADERSHIP PACKAGING
>10x

2.50 HBM MULTICHIP MODULE CHIPLETS X30° PACKAGING

1.Based on AMD

Source: AMD

5
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Traditional Monolithic 15 Gen EPYC 2 Gen EPYC

5 i _ ECENTE
8 > N © ®
-1 k3 I aQ
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FINDING THE OPTIMAL SOLUTION

Chiplet package architecture selection requires balancing a complex equation

[Chiplet die

[Value of modular product)] (Packa

[Chiple

Y [Pow ost of interconnect]
technology cost be

[Engineering complexity of solution]

Interconnect Effici

tectural need for bandwidth, die partition options and package technology
create a multi-disciplinary optimization equation




AMD marketing
AMD ZEN 2017

FUTURE OF COMPUTING

Compute Demand Domain Specific Accelerators

INTEGER

Integer Physical Register File
Compute demand increasing Higher efficiency domain Modular design supported by

specific accelerators required advanced packaging required AU AW AW AW AGU AGU

‘o

32K D-Cache
8 Way

Significant barriers to
traditional scaling

2loads + 1 store
per cycle

5 5
TUDelft TUDelft 226

AMD: Rome (Zen2) and Milan (Zen3) ARM: Advanced RISC Machines

* ARM only licenses its technology as intellectual property, rather
than manufacturing its own CPUs.

» Companies making processors based on ARM's designs.
Intel, Apple, Samsung, Texas Instruments, Analog Devices, Atmel,
Freescale, Nvidia, Qualcomm, STMicroelectronics and Renesas
have all licensed ARM technology.

« Design focussed on low power consumption and mainly used in
handheld devices (also called phones).

L3 I3
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ARM Fujitsu A64FX

CMG (Core Memory Group) R

ARM Fuyjitsu A64FX

CPU Architecture: A64FX e
° Q;Tvsjz-A (AArCh64 onIY) + SVE (Scalable Vector 4 “Common” programing model will be to run each
ension) MPI process on a NUMA node (CMG) with OpenMP-
o FP64/FP32/FP16 (nttps: arm i MPI hybrid programming.

profile/docs) 4 48 threads OpenMP is also supported.
e SVE 512-bit wide SIMD
e # of Cores: 48 + (2/4 for OS)
e Co-design with application developers and high

memory bandwidth utilizing on-package stacked
memory: HBM2(32GiB)

e Leading-edge Si-technology (7nm FinFET), low power
logic design (approx. 15 GF/W (dgemm)), and
power-controlling knobs

e PCle Gen3 16 lanes

e Peak performance
e > 2.7 TFLOPS (>90% @ dgemm)

o Memory B/W 1024GB/s (>80% stream)
« Byte per Flops: approx. 0.4

CMG(Core-Memory-Group): NUMA node
12+1 core

HBM2: 8GiB

® 2019517

S
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ShenWei SW26010 Microprocessor

* 4x (64 CPE + 1 MPE) cores

 64-bit RISC

¢ 1.45 GHz

* 256 bit vectors

« each core 8 flops/cycle => 3.06 Tflop/s

* no-cache

» 128-bit system bus

» DDR3 2133, 4 channels, max 32 GB

» 6 Gflop/Watt => very energy efficient
(most Xeon's ~2 Gflop/Watt)

H- cPE
H- cluser
TTTTT
INEEE]

H o H
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CMG Configuration )
[ ][] o oo ] feore] oo eore]
[ezme] e e e Ceore JLee ]

X-Bar Connection

Network
on Chip

HBM2

Figures from the slide
presented in Hotchips
30 by Fujitsu

Q 2019/5/17
“
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e CMG: 13 cores (12+1) and L2 cache (8MiB 16way) and memory
controller for HBM2 (8GiB)

e X-bar connection in a CMG maximize efficiency for throughput of L2
(>115 GB/s for R, >57 GB/s for W)

e Assistant core is dedicated to run OS demon, I/0, etc

e 4 CMGs support cache coherency by ccNUMA with on-chip directory
( > 115GB/s x 2 for inter-CMGs)

(CMG 12x Computing Copes + 1x Assistant Core

a |
il il

. oo

0 =

L2 Cache 8MiB, 16way

Performance
>2.7TFLOPS

L1 Cache

>11.0TBJs (BF ratio = 4)

L2 Cache
>3.6TBs (BF ratio =1.3)

Memory
1024GBIs (BF ratio =~0.37)

HBM2 8GiB
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Observation: More Processors per socket

o Intel IceLake: 2021, 36 cores
* AMD Rome: 2020, 64 cores, 8 modules
* IBM Power 10: 2021, 15 cores SMT=8

* Arm: 16+ cores

%
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GP-GPU

» Use graphical processors for computational work
» enormous market (games) creates cheap products
« flops are cheap: communication is expensive

* Nvidia
« first generation (G80)

* just a graphical card which also runs some codes
» second generation (tesla, G200)

« graphical card with floating point runs more codes
o third generation (fermi)

» HPC card which can also do graphics very well
« fourth generation (kepler)

» HPC card with cache

L3
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Alternatives to multi-core CPU

» GP-GPU: graphical cards
» Intel Ponte Vecchio ~GPU accelerator
* FPGA

» Special computational boards

5
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AMD story

* Movie:

AMD Building Blocks- A Look Inside Your Personal Computer

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/
HSA_TIRIAS_Whitepaper_Final_1-28-14.pdf

22
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GPU vs CPU

GPU CPU

simple architecture complex architecture

many cores > 1000 a few cores 12-64

energy efficient flops per core high energy flops per core
specialized computing general computing

GDDR DDR

in-order out-of-order, superscalar

branch prediction, SMT

5
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GP-GPU

» GPU usage
« Algorithms and applications using the Fast Fourier Transform
 Audio processing and DSP
« Digital image and video processing
» Raytracing
» Weather forecasting
¢ Neural networks
» Molecular modeling
» Database operations
 Reverse Time Migration (Finite Difference)

A nice introduction can be found at:
http://en.wikipedia.org/wiki/GPGPU]

2
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CPU connected to GPU
~100 GB/s

elocal memory
ebandwidth to reach GPU fine
elatency very high

32 GB 2

~8 GB/s

~300 GB/s

PClIe

5
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Nvidia

Control AU | ALU =

_

CPU GPU

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

http://www.nvidia.com/object/cuda_develop.html
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Fermi (2010)
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Tesla Model P4 P40 P100 P100 P100 V100 V100 V100 T4 A100 A100
Bus PCI-E30 PCI-E30 PCI-E30 PCIE30  SXM HCX-1 PCIE30 SXM2  PCI-E30 PCI-E40  SXM4
GPU GPI04  GPI02  GPIO0  GPIO0  GPIO0  GVIOO  GVIOO  GVIOO  TUIO4  GAID  GAIOO
FP32 Cores 2560 3840 3584 3584 3584 5120 5120 5120 2560 6012 6912
FP64 Cores 640 960 1792 1792 1792 2,560 2560 2,560 - 3456 3456
Tensor Cores = = 5 = = 640 640 640 320 42 42
Base Core Clock Speed 8I0MHz 1303MHz 126MH: L6MHz 1328MHz 823 MHzr 1097 MHz 1372 MHz 585MHz 1265 MHz 1265 MHz
GPU Boost Clock Speed 1063MHz | 1S3IMHz 1303MHz 1303MHz 1480MHz 918 MHr 1224 MHzr 1530MHz 1590MHz 1410MHz 1410 MHz
SMs 200 300 56.0 56.0 56.0 80 80 80 0 108 108
Base FPI6 Tensor Core FPI6 ACC, Teraflops - - - - - ~ > ' . g g
Peak FP16 Tensor Core FP16 ACC, Teraflops - - - - - 100.0 20 1250 651 /624 | 312/624
Base FPI6 Tensor Core FP32 ACC, Teraflops - - - - - g . > . g 2
Peak FP16 Tensor Core FP32 ACC, Teraflops - - - - - 100.0 20 1250 651 /624 | 312/624
Base BFI6 Tensor Core FP32 ACC, Teraflops - - - - - - - - - & :
Peak BFI6 Tensor Core FP32 ACC, Teraflops - - - - - - - - - /624 | 312/624
Base TF32 Tensor Core, Teraflops - - - - - - - - - > :
Peak TF32 Tensor Core, Teraflops = = - 5 - = — = = B6/3L2 | 156/312
Base FP64 Tensor Core, Teraflops 5 - = = = = = = 5 : ¢
Peak FP64 Tensor Core, Teraflops = = 5 = S - = = S 195 105
Base INTS Tensor Core, Teraops B - 5 = = - 5 = B . G
Peak INTS Tensor Core, Teraops - - - - - - - - - 624/1248 | 624/1248
Base INT4 Tensor Core, Teraops s = = = = = = = = - :
Peak INT4 Tensor Core, Teraops - - - - - - - - - 1248/2496 1248/2.496
Base INTS, Teraops 166 400 - - - 3 3 2 > - -
Peak INTS, Teraops 28 470 - - - 502 56.0 628 130.0 - -
Base INT4, Teraops 166 400 - - - g - 2 . - -
Peak INT4, Teraops 28 470 - - - 250 280 312 2600 - -
Base FPI6, Teraflops - - . 2 g : . - - C a
Peak FP16, Teraflops - - 187 187 22 251 280 314 - 780 780
Base BFI6, Teraflops - - g : a G . . - 5 :
Peak BFI6, Teraflops - - 187 187 22 125 140 156 - 390 390
Base FP32, Teraflops i : : B : > : 2 i > :
Peak FP32, Teraflops 55 18 93 93 106 126 140 157 81 195 105
Base FP64, Teraflops i : : : i = : : 5 ~ :
Peak FP64, Teraflops 02 04 47 47 53 62 7.00 7.80 025 970 970
Base INT32, Teraops - - - - - - - - - : 2
Peak INT32, Teraops - - - = - 126 14.00 170 - 1950 19.50
GDDRS or GDDR6/HEM2 Memory 8GB 24GB 12GB 16GB 16GB 16GB  16/32GB  16/32GB  16GB 40GB | 40GB
Memory Clock Speed 30GH: 36GHz 703MHz 703MHz 703MHz S775MHz S775MHz ST75MHz 1250MHz 125MHz 1215MHz
Memory Bandwidth 192 GB/sec 346 GB/sec 540 GB/sec 720 GB/sec 720 GB/sec 900 GB/sec 900 GB/sec 900 GB/sec 320 GB/sec 1555 GB/sec1555 GB/sec
Power Draw S0/5W | 250W | 250W | 250W | 300W  150W | 250W  300W oW 400W | 400W

* Base Teraops or Teraflops unknovn

Fermi ep (dual GPU)

Volta
Pascal 0220
Unified Memory

Stacked DRAM
NVLINK Interconnect

]
54

Dynamic Parallelism
3.0

Fermi

GFLOPS per Watt

Tesla
o
00.4
CUDA

2008 2010 2012 2014

Table overlay: Theoretical DP GFLOPS/W of NVIDIA Tesla cards. Light grey italic text represents my guesses

%
TUDelft

Nvidia Ampere (2021)

» Threads: xxx
« Streaming Multiprocessor (SM) has 64 FP32 units
e There are 128 SM’s
» Mixed floating point format
» 64, 32 and 16-bit FP, Tensor cores ...
* Memory 1000 GB/s of
¢ 16 / 32 GB HBM2 (High bandwidth Memory)
» NVLink: to directly access memory of another GPU or CPU
e 7 nm FinFET
5
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—— —— Ampere’s all 128 SM’s

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

PGl Express 40 Host inertace

irszinsz FRSEFRSE  rros inrszinrez FRSEFRSE  rros
WrszinTs2 FPsAFRad  rres Iwrazwraz FP3AFRSE  rpes

WraziTsz FPa2FRad  Feos Irazinrez FPs2FPad  rrss

wrszins2 FPsAERad  rres Irszitsz FPSAFRaE  rpes
TENSOR CORE TENSOR CORE

wrszinrsz FRSAFRSE  rres iwrszwrsz FPSAFRSE  rres

irszinTss FRRAFRSE  rres iwrsziwrss FRSAFRSE  rres

wrszinTsz FPIAFRSE  Fres IwrsziwTse P32 FPaE  rpes

wrs2iwTsz FPsaFRsd  rres IwtsziwTs2 FPsaERad  rpes

W oW W W W W W gy WowW oW W W W W

[ tommstruction Cache ] || [ LoinstructionCache ]
[ WarpScheduler (32 thread/clk) || [ WarpScheduler (32 thread/clk)
Dispatch Unit (32 threadclk) Dispatch Unit (32 thread/cik)

Register File (16,384 x 32-bit) Register File (16,384 x 32:bit)

wrszinsz FRSAFREE  rres wrszinTse FPSAFRSE  rres
wrszinTs2 FPsAFRsE  rres wrszinTsz FRS2FRad  Fres
WrszinTs2 FPadFRaE  rres wrsziTs2 FP3AERad  rpes
wrazins2 FPIAFRaE  rros IwrazinTsz FP3a EPad  rros
TENSOR CORE TENSOR CORE
IwrazinTss P32 FPad  rres T3z inTaz FPaa kPad  Fres
Iwrazins2 FP3AFRaE  Fros wraziTsz FPadFRad  Fros
wrazinTsz FPSAFRSE  rres T3z inTsz P32 FPad  rpes

wrszinTsz FPSAFRSE  rres wrsziwTsz P2 FPad

% %
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AMD GPU’s: MI200 How does a GPU hide memory latency
AMD INSTINCT™ MI200 SERIES

KFY INNOVATIONS

* GPU’s issue instructions in order

« Issue stalls when instruction arguments are not ready
)

e e < g = L Corcs roR Hrc o o * GPUs switch between threads to hide latency
L | < L J « context switch is free: thread state is partitioned (large
‘ ‘ register file), not stored / restored

ULTRA HIGH BANDWIDTH EIGHT STACKS
DIE INTERCONNECT X OF HBM2E

» Need enough threads to hide latency and saturate the memory
bus.

COHERENT CPU-TO-GPU / a B s 2.5D ELEVATED
INTERCONNECT g FANOUT BRIDGE (EFB)
|

L3 I3
TUDelft TUDelft 248




SM instruction
scheduler

Streaming Time .
Multiprocessor (SM) - )
[_rcache ]/ varp1 | | I_I I] §
Text T — :
Warp 3, 60 -
| | ;
sp [ ] - (0 () E=E
o [ [ - L (1
: —
oo [ —
EE % Readfr‘omdevice r|‘1emory‘ | Context Switching
Arithmetic Operation Write to device memory
Fovere | [ amenn) Foern
—
GPU instructions Execution diverges within a warp
01 2 3 30 31 32 33 34 35 62 63

« Single-Instruction Multiple-Threads (SIMT) model

« A single instruction is issued for a warp (thread-vector) at a time
* NVIDIA GPU: warp = a vector of 32 threads
* AMD GPU: wavefront = a vector ot 64 threads

* warp = group of 32 threads that always execute same

instructions / time

—
—

L]

H

.
—
e

.

.

H

instructions simultaneously. . 3 ¢ i
\A A A \ A 4
b v l v l l v
©NVIDIA 2011
z ) % !
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Intel’s first answer to GPU’s: MIC

Intel® MIC Architecture:
An Intel Co-Processor Architecture

VECTOR VECTOR VECTOR VECTOR
ACORE | IACORE | IACORE | IACORE

INTERPROCESSOR NETWORK

COHERENT  COMERENT COHERENT
CACHE CACHE

COHERENT  COHERENT COHERENT
[ CACHE CACHE

INTERPROCESSOR NETWORK

VECTOR VECTOR VECTOR
IACORE |A CORE pe |A CORE

g
=
Q
5
g
g
T

MEMORY and /0 INTERFACES

Many Integrated Cores, X86 based 16 (single) flops/cycle
Knight Ferry: 32 cores at 1.2 GHz, linked via PCle

5
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Programming Nvidia GPU’s

[=] (float x, float y){ return y +
a*tx; }

A

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)
enddo

import cunumeric as np

def saxpy(a, x, y):
yI:] += a*x

ACCELERATED STANDARD LANGUAGES INCREMENTAL PORTABLE OPTIMIZATION PLATFORM SPECIALIZATION
150 C++, IO Fortran OpenACC, OpenMp cubA
std::transform(par, X, X+, y, ¥, Cpnepm oe A epattd) __global__

std: :transform(par, X, X, y, ¥,
[=] (float x, float y){
return y + a*x;

s

}

#pragma omp target data map(x,y) {
std::transform(par, X, X+, y, y,

[=1 (float x, float y){
return y + a¥x;

s

}

void saxpy (int n, float a,
float *x, float *y) {
int i = blockIdx.x*blockDim.x +
threadIdx.x;
1f (1 < n) yIi] += a*x[i];

1
int main(void) {

cudaMemcpy (d X, X, ...);
cudaMemcpy (d_y, ¥, ---);

Saxpy<<< (N+255) /256, 256>>> (...} ;

cudaMemcpy (y, d y, .-.);

L3
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Intel’s latest Ponte Vecchio

Ponte Vecchio

Upto 128 Highest Compute 128 Xe
i X& HPC based GPU

i Density ¢
RavUt’:a‘tcSmg socket&node Cores F

P — g
——

Upto64MB  Up1c408MB

L1cache
in 2 Stacks

Upto 8
Fully Connected

PUs
Unified Fabric

E]E \w— Intel 7
[=][=] TSMC N5

EMIB Foveros TSMCN7 e

Technology

%
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OpenACC

» Open standard for addressing the acceleration of Fortran, C and
C++ applications

Originally designed by Cray, PGI and Nvidia
Directives can be ignored on systems without accelerator
Can be used to target accelerators from Nvidia, AMD and Intel

http://www.openacc-standard.or

I3
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Which accelerator?

* HPC market too small and likely that only one accelerator will
dominate HPC

» Vector based accelerators

« Flops/Watt an important factor

5
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FPGA

* Field-programmable gate array

» Adjust the architecture to the needs of your algorithm
e Invented 1984

 Used heavily in embedded and real-time systems

» Occasionally Use in supercomputers like Cray XD1, SGI RASC,
Convey, SRC computing

* Programmability!

< An overview can be found at: [http://en.wikipedia.org/wiki/Field-programmable_gate_array]

2
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Intel Sandy Bridge
Core 17 3960X
(6 core)

AMD 7970 NVIDIA Fermi NVIDIA Kepler K20
(1,280 work-item) (1,536 CUDA cores) (2,880 CUDA cores)

Parallel programming skills are needed to program these chips.

5
TUDelft 258

Application Acceleration Interface

RapidArray
Transport
Core

— ADDR(20:0)—> 0
HEE 50—

%<—Q(35:n)—J QDR
RAP %—ADDR(ZO:O)—» | SRAM
.E—D(ss:o)—>
.34—0(35:0)— s
=%—ADDR(20:0)—> |
i e ——Pe50—
RapidArray laq—n(ss:o)— 3
]
\ TEX11
v PRO
+ XC2VP30 running at 200 MHz.
* 4QDRIIRAM with over 400 HSTL-I I/O at 200 MHz DDR (400 MTransfers/s).
16 bit simplified HyperTransport I/F at 400 MHz DDR (800 MTransfers/s.)
+ QDR and HT I/F take up <20 % of XC2VP30. The rest is i for user
I3
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FPGA Development Flow

0100810101
1010101011
I 0100101011 I d
0101011010
Implement OT0T0TI0Le Downloa
0110101010 — -

Binary File

Synplicity,

Leonardo,

Precision,
Xilinx ISE

Xilinx ISE From Command line

or Application

VHDL, Simulate

Verilog,

Cc

Xilinx
ChipScope
Modelsim

I3
TUDelft

The future in 2000

—+—before 2001
—<2001 ITRS
-=-2007 ITRS

-+-2011 ITRS
B
o N
] 2510
ge
[
1 o RO e e S B QA KT St
) 1000
7 5 — e
1§ ow 2006 2011 2016 2021
100
1 r S Sy
10
1985 19%0 1995 2000 2005 200
] Figure 3: Frequency scaling roadmap.
Doubling time: 3 years Year
5
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Looking at the future

5
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Looming Power Crisis

10,000,000

Figure courtesy of Kunle Olukotun, Lance -/
Hammond, Herb Sutter, and Burton Smi

A

100,000 L/
* New Constraints

— Power limits clock rates ~ 10:00°

— Cannot squeeze more
performance from ILP 1,000
(complex cores) either!

* But Moore’s Law continues!

1,000,000

LI

— What to do with all of those /
transistors if everything else is /'*
flat-lining? 10 s /4 -

— Now, #cores per chip doubles /{7 4 ﬁn"ﬁ ok
every 18 months instead of . '/’ A/({ ETRnto s
clock frequency! T 7 3 - Gl Speed v

# Perf/Clock (ILP)
I

1970 1975 1980 1985 1990 1995 2000 2005 2010

* The “Free Lunch” is over!

22
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Limitation of chip design

* Size
» Speed

* Power

5
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Processor Technology Trends

» Shrinking of transistor sizes: 250nm (1997) =>
130nm (2002) => 65nm (2007) => 45nm (2009) => 32nm (2010)
=> 22 nm (2011/12) => 14 nm (2017/18) => 7 nm (2019/20)

» Transistor density increases by 35% per year and die size
increases by 10-20% per year... more cores!

« Transistor speed improves linearly with size
(complex equation involving: voltages, resistance's, capacitances, ...)
and lead to clock speed improvements!

2
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Wire delay _ 130

, 150nm N

S
Projected fraction of chip reachable # ane cycle with an 8FO4 clock period.
< >

20mm

5
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I Metal

© & Elkctric Field

~ View from above

More detailed picture of a typical J-FET.

22
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MOSFET

» Transistor shrinking leads to
« area of gate gets smaller
« thinner gate-oxide gives stronger electric fields that allows faster
switching (higher processor clock).
* at 45 nm the gate di-electric is 0.9 nm thick : size of a single Si0O2

molecule.
Gate Gate
oxide O terminal
Drain Source
terminal terminal

5
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JFET -transistor

Vos ID =0
—
|-~
MR
| | )
Sourge - r)D rain
| P-type Gate |
V;s
7;’ N-type Channel
P-type Gate \ -
Gate T_ayer
When Vpg == V=the
channel closes “Pinched-off”
2
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Shrinking transistors

Side view Top view
«— Llg—

ST - dOXI TD ;
— Lg Ly
|

Scaling factor &

«— élg—> .
i 5 P oz n
<SLlg
| | L
14UDeIft 270
Leakage

e The gate is the electrical connection that controls the MOS
switch. The gate is separated from the rest of the MOS transistor by
an insulating layer. As this layer gets thinner, the transistor
performance improves. However, at a certain point, the gate is so
thin that it leaks electrons.

/" — Ideal switch
-- Multigate transistor
A —- - Leaky transistor

22
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short channel effects

Gate Gat Short-channel
|:|u—1 ate effects:
‘\:“\‘:_'_-_'_';_'_'_-_-_'_-_-_'_’:/',," '\:‘C:_-_-_’:/,/' Threshold-voltage
- 4 e = shift
Lack of pinch-off
Ib [ Increased leakage
current
Increase of output
Vos i conductance
5
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High-k
ay &
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Element Size x Supply Voltage
7

V approaching zero more leakage

0.5um

Supply Voltage (V)
N ® A O O

0.35um
|
0.18um .1
S 0.13um
I I 90nm
T 45nm
o T T T T T T T T
1992 1994 1996 1998 2000 2002 2004 2006 2008
Year
fuDelft Source:Semiconductor Industry Association (SIA), US 274

Inversion

Gate Layer

Oxide

Depletion
Region
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» Time for a Disney movie

5
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What is Happening Now?

* Moore’s Law 1000
« Silicon lithography will improve by 2x every 18 mth
= Double number of transistors per chip every 18 mth “é 100

* CMOS Power
Total Power = V2 * f* C +V * I f
active power passive power

 As we reduce feature size Capacitance (C)
decreases proportionally to transistor size

+ Enables increase of clock frequency ( f) 1
proportionally to Moore’s law lithography
improvements, with same power use

« This is called “Fixed Voltage Clock Frequency
Scaling” (Borkar "99)

Power Density (Wic

10000

e Since ~90nm
. 2 *f* C ~= Ileakage
* Can no longer take advantage of frequency sca
because passive power (V * I,

< Result is recent clock-frequency stall reﬂected in
Patterson Graph at right

s e D)

00 |

1978 1380 1982 1984 1988 1988 1990 1902 1994 1006 1998 2003 2002 2004 2008

SPEC_Int benchmark performance since

e
TUDelft 1978 from Patterson & Henness)2

Physical limitations: Power

» The most difficult problem is to control power dissipation.

~280 watts is considered a maximum power output of a
processor.

As we pack more transistors, the power output goes up and
better cooling is necessary.

current leakage increases with smaller chip design

Power = C * f * V2 ~ area * frequency * Voltage?

5
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Developments Transistors

22
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fin-FET

A Silicon
. S~
Oxide Fin

Silicon Substrate

5
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The nm story

Contact

L3
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gate-all-around (2020)

Gate-all-around
control structure Drain

nanowire stack 5x /

Source

Si bulk
wafer

5
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Where are we headed and Why?

e Modern trends:

» Clock speed improvements are not increasing
» power constraints
» already doing less work per stage

« Difficult to further optimize a single core for performance

* Multi-cores: each new processor generation will accommodate
more cores

« Integrated of functionality on the die:
* memory controller
o direct connect to other processor(s)
* PCI
» network interface chip (NIC)...

22
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Why multi-core

» Not enough ILP (Instruction Level Parallelism), adding more will
not get faster runtimes
« all ILP has already been explored the last 20 years

« Signal propagation delay >> transistor delay

* Power consumption Pactive ~ C * f * V2 ~ f3

5
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Trends

» Frequency scaling is now prevented by physical constraints
» Heat (too much of it and too hard to dissipate)
» Power Consumption (too high)
» Current leakage problems

e Future performance gains will come from
» Hyperthreading
» Multicore
» Cache

o This requires better and parallel software !

L3
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Frequency Scaling

speed
gy — 0.87
1.0
— ——1 pow
0.51
freq [speed pow freq [spee freq [spee:
1.20 |1.13| 1.51 0.80 |0.87| Pow 0.80 | 0.87| Pow
0.51 0.51
20% higher freq. 20% lower freq. 20% lower freq.
Two cores
5
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40 Years of Microprocessor Trend Data

107 Transi
v ransistors
A A
Y o Ais s ] thousan)
Y Yaua )
10° s Single-Thread
v Performance
ot A;A‘., 0d3’ (SpecINT x 10%)
xcien
an aatl w ||*. Frequency (MHZ

103 o ala. k..a;gul ............................... _

. F Il : Typical Power
102 e e----~---v--~-yv;}v%;s;' - (Watts)

A .:‘l vv' y vy
1 - vy V.V }V Number of
10 T  m Y . :‘t . Logical Cores
A v v Vv vy 4
10° —* : RO T Ty ryw—. oy -
i
1970 1980 1990 2000 2010 2020
Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
5
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Huge Power for Exascale systems

10,000
If these trends continue,
an Exaflop computer will BG/Q (est,
1,000 require 50-100 MW of [] Test)
ower in 2018 B
L 5-6C
BG, ry
100 XF5-4C
E XT3-2C XT4-2C
S~
'8
0 10 XT;
Power3 ¢
XP%SO Powerd & ORNL
1
XPS35 i BlueGene
¢ A RoadRunner
0 T T T T T T T T T T T T 1
L 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018_
e d
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Power management on modern cores

» PM ensure that cores do not overheat and remain functional for a longer
time.

» Modern processors (x86) tend to be power limited rather than frequency
limited

« Different workloads (i.e., executed instruction sequences) will generate
different amounts of power consumption in the processor. This can grow
quite large.

 Current processors from AMD and Intel contain dedicated microcontrollers
that administer power management.
If changes in the operating scenario cause any one parameter to approach
its limit, the controller must throttle the processor’s performance to
compensate. These adjustments can happen every millisecond.

2
TUDelft 291

It’s not that bad

500 POWER CONSUMPTION #so0

14
13 - TOP10 _
12 =

=il

2

5 7

: 8

a 4 -
3
2
1
0 El
Vv
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PROCESSOR LEAKAGE POWER DISTRIBUTION (AT HIGH VOLTAGE & HIGH TEMPERATURE)

15%

2
g

&

PERCENTAGE OF UNITS

g
4%
16%
18%

2 8 2 2 2 2 2 2
8 R & & ®8 =8 H &

36%
38%
40%
42%

LEAKAGE POWER AS A PERCENTAGE OF TOTAL POWER
Figure 1- Leakage power distribution for an undisclosed AMD product based on a 14nm FinFET process.
» hardware performance varies ~30% within the same processor

» The same factors that are required to make transistors switch faster (higher
frequency) also increase leakage.
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PROCESSOR LEAKAGE POWER VERSUS TEMPERATURE (AT HIGH VOLTAGE)

30%
20%

10%

LEAKAGE POWER AS
% OF TOTAL POWER

0%
o o o o
R < 3

DIE TEMPERATURE (°C)

80

Figure 2 - Leakage power over temperature for a typical sample of an undisclosed AMD product based on a 14nm FinFET process.

 Heat affects transistor operating characteristics

5
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turbo-boost

Dual-Core Turbo

Four-Core Turbo

Single-Core Turbo

« allows the power management controller to dynamically provide the best
performance (frequency) possible for the specific operating scenario in real-
time.

L3
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(intel” Intel® Extreme Tuning Utility

7] Thermal Throttling
No

10 Minutes.

[l stop Monitors I Show All

%
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Third Generation Intel Xeon Scalable Processor Family "Ice Lake" Value Analysis

3
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©2021 ServeTheHome.com

Model [$/core__|Family |13 Cache (MB) |Cores |Th se Freq (GHz) q (GHz) Price (SUSD) [TDP in Watts|Max SGX Enclave |UPI Links [uPt DDR4 speed
s380 [T 202 [Platinum 60 40 | 80 | __aamen 2 5,099 512 3 [11.267/5|pDRa-3200 Yes
83630 [BI 177 [Platinum 57 s | 76 2 512 3 [11.267/s |DDR4-3200 Yes
8368 B 1166 [platinum 57 38 76 | 2 512 3 [11.267/5|pDR4-3200 Yes
s360v [B ] 131 [Platinum 54 36 [ 2 [ | 2 6 3 [11.267/s|DDR4-3200 Yes
s358p | 123 [Platinum a8 2 | & [ 2 8 3 [|11.2GT/s |DDR4-3200 Yes
8358 | 123 [platinum 8 2 | o[BI ) 2 ) 3 [11.267/5|0DR4-3200 Yes
83525 ] 126 [Platinum a3 32 | 64 [BE T 3l4] 2 E 4,046 205 512 3 [11.267/5 [DDR4-3200 Yes
83527 96 |Platinum 54 % | 7~ [ ] 21 35 2 350 195 8 3 [11.26T/s |DDR4-2933 Yes
s3s2v [§ | 108 [platinum a8 2 [ & | — sl 2 3,450 205 64 3 [11.2GT/s |DDR4-3200 Yes
6354 | 136 |Gold 3 18 | 36 [ E .61 2 2,485 205 64 3 [11.26T/s |pDR4-3200 Yes
6348 ] 110 [Gold 42 28 | s6 .51 2 3,072 235 64 3 [11.2GT/5|DDR4-3200 Yes
6325 |8 | 144 |Gold 36 6 [ 32 X 2 2,300 205 64 3 [11.267/s|DDR4-3200 Yes
6342 |B ] 105 |Gold 36 2 | a8 5 2 2529|230 ) 3 [11.267/s |DDRe-3200 Yes
6338n [B] 87 |Gold 48 2 | & ] .51 2 I 2,795 185 64 3 [11.267/s |DDRA-2667 Yes
63387 |5 | 114 |Gold 36 22 | a8 " 2 [ 2,72 165 6 3 [11.267/5|DDR4-3200 Yes
6338 [B1 82 [Gold 48 32 64 .2| 2 [ 2,612 205 64 3 [11.2GT/s |DDR4-3200 Yes
6336 61 82 |Gold 36 2 | a3 [EEE ] T34 2 1977] 185 ) 3 [11.267/s |DDRe-3200 Yes
6334 [BE 277|Gold 18 8 16 [E 3.7 2 2,214 165 64 3 [11.267/s |pDR4-3200 Yes
6330N 18| 72 |Gold 42 28 s6 [ | 34 2 2,029 165 64 3 [11.2GT/s |DDR4-2667 Yes
6330 68 |Gold 42 28 s6 W 5.1} 2 1,894 205 [ 3 |11.2GT/s |DDR4-2933 Yes
6326 81 [Gold % 16 | 32 (IS 3.5 2 1300] 185 ) 3 [11.267/5 [DDR4-3200 Yes
53207 ] 86 |Gold 30 20 [ 0 B ] 3.5 2 [ 1727|150 ) 3 [11.26T/s [DDR4-2993 Yes
'ﬁ 60 |Gold 39 % | 52 ] 38 2 |8 1555 185 6 3 [11.267/5|0DR4-2923 Yes
53185 69 [Gold 36 2 [ s [ 304 2 [ 1,667 165 512 3 [11.26T/s [DDR4-2933 Yes
2 6 3 [11.067/s |DDR&-2667 Yes
2 64 3 11.2 GT/s |DDR4-2933 Yes
2 64 3 11.2 GT/s |DDR4-2933 Yes
2 64 & 11.2 GT/s |DDR4-2933 Yes
2 8 2 |10.4GT/s |DDR4-2667 No
2 8 2 |10.4GT/s |DDR4-2667 Yes
2 8 2 |10.4GT/s |DDR4-2667 No
2 8 2 |10.4GT/s |DDR4-2667 No
2 8 2 |10.4GT/s |DDR4-2667 No
1 ) DDR4-2933 Yes
1 ) DDR4-3200 Yes
64 DDR4-3200




Questions

e Is Multicore really the answer?
* FPGAs? Quantum computing?
* What else might be waiting in the wings

« What about advances in circuit fabrication?
* alternatives to Si: SOI, Hafnium doping, plastics
* optical wires, photonic communication
* superconducting

* What about memory?
« Its starting to consume more space than CPU cores!
* Packaging changes (3D Stacking? Optical Interfaces?)

5
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Quantum computing

« Claims to solve NP-Complete Problems
« traveling salesman problem
* Graph Coloring Problem: can you color a graph using k = 3 colors
such that no adjacent vertices have the same color?
* one algorthm can solve all NP-complete problems

* NP-Complete Problems
« solution is easy to verify
* number of compute steps grows exponentially with problem size

» Quantum computing also leads to a better understanding of
quantum physics.

Quantum computing

o |1)

= |0)

b o
b stones

qubits can be in a superposition of all the

clasically allowed states
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Superconducting

» Cryogenic Computer Complexity

Tianhe2
K-Computer * L4
.
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Top Computers
DOE Exascale Goal
2017

e dvetoared

~ 4 Kelins (-270 °C)

cPU

PA Controller
a

@ Superconducting Projected

IEEE Trans. Appl. Supercond.,

vol. 23, 1701610,2013

The hardest is to develop high-density, high-efficiency, low-latency, cryogenic memory.
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Memory

» Extend Hierarchy with another layer between DRAM and HardDisk
* SSD/FLASH layer

» Extend / Replace DRAM to non-volatile memory
Technology latency slow down
DRAM 20 - 50 Nanoseconds 1X
NVM (MRAM, other new 5 - 3000 nanoseconds 1/4X - 60X
technologies)
SSD (NAND flash) 20,000 - 40,000 nanoseconds | 1000X - 8000X
Magnetic disk 3,000,000 - 6,000,000 150,000X - 1,200,000X
nanoseconds
5
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Complexity - Memory

2015 2020

L1/L2 cache ~1lns L1/L2 cache ~1lns

HBM ~10ns/~1TB/s/~10GB

~100ns / ~80 GB/s / ~100GB ~100 ns / ~80 GB/s / ~100GB

(\IYNEDP G ~1 usec / ~10GB/s / ~1TB
~100 usec/~10GB/s/~1TB
NAND SSD ~100 usec / ~10 GB/s / ~10 TB
Fast HHD ~10 msec / ~100 MB/s / ~10 TB Fast HHD ~10 msec / ~100 MB/s / ~100 TB

Developments in Memory

« 3D packing of memory elements
* Hybrid Memory Cube (HMC)
HMC uses standard DRAM cells, buthivt has more data banks.

31/ Wide Data Path
«—DRAM €= Micron

&

Open-Silicon N High-Speed Link

Logic Chip €= Open-Silicon option
for customization
working with Micron

« High Bandwidth Memory (HBM)
HMB2 DRAM chips are 8Gb each, and they can be stacked up to 8
high, yielding an 8GB 256GB/s lan

5
TUDelft 302

HPE The machine

&
(5]

0;

* Memristors
* fuse memory and storage,
* flatten complex data hierarchies,
* bring processing closer to the data,
* embed security control points throughout the hardware and software
stacks
* crapping the distinction between storage and memory.

&
O

A single large store of memory based on HP's memristors will
both hold data and make it available for the processor.

A Dream not come true.

2
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What about Europe?

European Chips Act (8-2-2022)

* €43 billion euros of public and private investments

» Become a leader in this field beyond research and technology in design,
manufacturing and packaging of advanced chips, to secure its supply of
semiconductors and to reduce its dependencies.

EUROPEAN CHIPS ACT

The European Chips Act will ensure that the EU strengthens its semiconductors ecosystem, increases its resilience, as well as
ensure supply and reduce external dependencies.

e B & &
&/ )
1. Strengthen Europe’s 2. Build and reinforce 3. Put in place a 4. Address the skills 5. Develop an in-depth
research and technology capacity to innovate in framework to increase shortage, attract understanding of the
leadership towards the design, manufacturing production capacity new talent and support global semiconductor
smaller and faster chips and packaging of to 20% of the global the emergence of a supply chains
advanced chips market by 2030 skilled workforce
% :
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Advise for programmers

to be continued...

2
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What is
PRACE PRACE? PRACE

COMPUTER SCIENCE
& EMERGING
TECHNOLOGIES

PRACE, the Partnership for Advanced Computing in Europe, provides'
access to Europe’s world class High Performance Computing Research
Infrastructure (RI), enabling scientists and researchers from academia
and industry to carry out complex and excellent experiments and
simulations that address society’s grand challenges.

-I’-‘U Delft ’7 www.prace-ri.eu
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IO interface and hardware

22
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IO Interfaces

» CPU interface and interaction with IO storage device(s)
- SATA (Serial ATA)
» SCSI (Serial Attached S)
» PCle, NVMe

 Hard drive
* magnetic disks
* SSD

ATA: 16 wires of data in parallel
SATA: serial transport line through 2 wires

5
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» Magnetic: rotating disk slow access
» 125 MB/s max
« cheap $0.04/GB

« Solid State Disks (SSD)
» 250 MB/s read
« Fast in (random) IO operations per seconds
 expensive $0.5/GB

2
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Cost Access time
on-chip cache < ins
— off-chip cache ~ 2:5 $/MB 5ns
MBs
B mainmemory 007 $/MB 60ns
Y GBs

0.000008 $/MB
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Exercise: 1 Cycles

» Counting cycles of basic operations; addition, multiplication,
division, ...

» On your git clone: cd HPCourse/Cycles
¢ Check the README for instructions.

o Links:
http://en.wikipedia.org/wiki/Streaming SIMD_Extensions

22
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Exercise 2: Memory hierarchy Exercise 3: Memory latency

» Measuring the memory bandwidth of your computer. « Measuring the latency of memory hierarchy
* On your git clone: cd HPCourse/LoadStore « On your git clone: cd HPCourse/lat_mem_rd
e Check the README for instructions. » Check the README for instructions.
» The program produces an ASCII output file which contains the « The program produces an ASCII output file which contains the
result. result: Mbytes, nanoseconds, cycles
* Results can be plotted with gnuplot, (set style data linespoints) « Sent interesting results (ASCII files) to janth@xs4all.nl
» Sent interesting results (ASCII files) to janth@xs4all.nl « additional information:
http://www.bitmover.com/Imbench/lat_mem_rd.8.html
"l"U Delft 313 'ifu Delft 314




