
Type to enter text

Challenge the future

Delft

University of

Technology

Ty
p
e

to
e

Computer Architecture
Design and Implementation

Jan Thorbecke

Contents

• Building Blocks

• Costs

• Memory hierarchy

• CPU

• Multi-core CPU

• Future hardware

2

computer operational view

3

input

&inout

restartflag=‘last'

output_length=1

output_offset=64

restart_length=1restart_length_unit=‘m'

restart_offset=64

logfile_outfreq=10

use_means=.false/

0000000 7.84591e-40 7.0364965e+20 1.3286279e+17 447423.97

0000020 57247.57 1.6518076e+20 -7.192747e+07 1.8853762e+12

0000040 -11355.574 1.1393394e+34 -6.1850577e-12 -2.387168e+12

0000060 8.9824295e+20 -3.2442542e-33 1.647548e+13 -4.303315e-38

0000100 -0.007226125 -6.107097e-30 -1.1544513e-11 -1.4199844e+26

0000120 1.4287924e+13 1.4418019 -5.887722e+29 34.29949

0000140 3.3966643e+12 -1.01864254e+24 1.3792539e-14 3.060593e+19

0000160 -1.15023225e-23 4.849417e+29 4.2062223e-30 -5.1670653e+08

0000200 -4.2334977e+29 2.1343113e-35 -5.277797e+23 1.448689e+23

0000220 -8.4205204e-32 -6.0436352e+26 3.511487e+14 -1.2022021e-11

0000240 -4.502977e-13 1.8198349e+37 -1.23402734e+27 3.84026e-21

0000260 -16330.127 1.8608851e+38 1.9425412e-17 -5.8042446e-07

<latexit sha1_base64="aliz95pa/zWc1UQZAXsJ9oL6H78=">AAACenicbVDLTttAFJ2YlkKgENolmysiEFUesqsIuqmE6KZLqAggxal1PRmTEeOHZq4RkZXP60f0G9jCrouOHaOWx5FGOnPOPbpXJ8yUNOS6vxvO0pu3y+9WVptr6+83NltbH85NmmsuhjxVqb4M0QglEzEkSUpcZlpgHCpxEV5/K/2LG6GNTJMzmmViHONVIiPJkawUtIIo8H72YA++AvhnU0EYIPyAUu1AF3y/WdKi4xtCPYeedQqvO5n/k8po7zEb1tmit3CbQavt9t0K8JJ4NWmzGifBVmPJn6Q8j0VCXKExI8/NaFygJsmVmDf93IgM+TVeiZGlCcbCjIuqiTnsWmUCUartSwgq9f9EgbExszi0kzHS1Dz3SvE1b5RT9GVcyCTLSSR8sSjKFVAKZa0wkVpwUjNLkGtpbwU+RY2cbPmvXdCFel1FymtNF8o/hrdVbd7zkl6S889976A/OB20j47rAlfYNtth+8xjh+yIfWcnbMg4+8Xu2D17aPxxdpxPTmcx6jTqzEf2BM7gL6wLvD8=</latexit>

f´
1 “ ⇥aRf`

1 ,

f`‹
1 ´ f`‹

1,d “ ´⇥bRf´‹
1

output

What’s in the black box?

4

CPU

Lets build a compute system

FPU ALU

branch

memory

decoder

This is called a Von Neumann Architecture
5

IO

6

A Typical Compute Server

CPU’s

memory

disks
media

graphics

 An entire wafer is produced and chopped into dies that undergo

testing and packaging

7

Wafers and dies:production of chips Yield, defect, density and die size

8

Die errors

9

Introduction 1

THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS: 2021
COPYRIGHT © 2021 IEEE. ALL RIGHTS RESERVED.

YIELD ENHANCEMENT
1. INTRODUCTION
The Yield Enhancement focus area is dedicated to activity ensuring that semiconductor manufacturing set up is optimized
towards identifying, reducing, and avoiding yield-relevant defects and contamination.

Yield in most industries has been defined as the number of products made divided by the number of products that can be
potentially made. In the semiconductor industry, yield is represented by the functionality and reliability of integrated
circuits produced on the wafer surfaces. During the manufacturing of integrated circuits yield loss is caused, for example,
by defects, faults, process variations, and design. The relationship of defects and yield, and an appropriate yield-to-defect
correlation, is critical for yield enhancement.

The Yield Enhancement (YE) chapter will display the current advanced and next generation future requirements for high
yielding manufaFWXULQJ� RI� 0RUH�0RRUH� DV� ZHOO� DV� 0RUH� WKDQ�0RRUH� SURGXFWV� VHSDUDWHG� LQ� ³FULWLFDO� SURFHVV� JURXSV´�
including microelectromechanical (MEMS), back-end processes, e. g., packaging. Consequently, an inclusion of material
specifications for Si, SiC, GaN, etc., are considered.

In the manufacturing of integrated circuits yield loss is related to a variety of sources. During processes such as
implantation, etching, deposition, planarization, cleaning, lithography, etc., failures responsible for yield loss occur.
Several examples of contamination and mechanisms responsible for yield loss are listed in the following: a) airborne
molecular contamination (AMC), b) airborne particular contamination (APC) of organic or inorganic matter caused by the
environment, personnel or by the tools, c) process induced defects as scratches, cracks, and particles, overlay faults, and
stress, d) process variations resulting, e.g., in differing doping profiles or layer thicknesses, e) the deviation from design,
due to pattern transfer from the mask to the wafer, results in deviations and variations of layout and critical dimensions,
and f) diffusion of atoms through layers and in the semiconductor bulk material.

The determination of defects and yield, and an appropriate yield to defect correlation are essential for yield enhancement.
The specification of tools for defect detection and classification of defect for root cause analysis addresses the technology
requirements for More Moore and More than Moore. Out of two typical types of defects, systematic and random, Yield
Enhancement focuses on random ones, related to the areas of technology responsible for contamination control, as shown
in Figure YE-1.

Figure YE-1 Random Yield Area of Focus

IEEE IRDS: INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS.
2021 UPDATE “YIELD ENHANCEMENT”.

14 nm introduced in 2017

10

6 MiB shared
L2 cache

Bus

FSB

core 1

core 2

Intel Penryn dual-core die (45 nm)

11

Each dual-core Penryn chip has 410 million transistors into a space of 107 mm²

Haswell quad core 22nm 2013

12

Skylake 14 nm 2018

13

Haswell Chip

14

Cascade Lake

15 16

Integrated Circuit Cost Examples

• A 30 cm diameter wafer cost $200-$700 in 2015

• Such a wafer yields about 366 good 1 cm2 dies and 1014 
good 0.49 cm2 dies (note the effect of area and yield)

Progress

17

Intel generation manufacturing
process

transistor count die size

Pentium (P5) 0.80µm 3.1M 294 mm2

Pentium 4
 0.18µm 42M 217 mm2

Nehalem 4-core
 45 nm 731M 263 mm2

SandyBridge 8-core 32 nm 2270M 434 mm2

Haswell 18-core 22 nm 5560M 661 mm2

Broadwell 22-core 14 nm 7200M 456 mm2

Sapphire Rapids 56-
core

10 nm ~20000M 1600 mm2

The AMD Opteron Processor

Dedicated
Memory Bus

64KB

64KB

1 MB
Up to 19.2 GB/s

I/O

Native 32 & 64
bit x86

compatibility

18

L1

Instruction 
Cache

64KB

44-entry

Load/Store

Queue

L2

Cache

1 MB

16-way assoc

L1

Data 
Cache

64KB

2-way assoc

Crossbar

Memory

Controller

HyperTransportTM

System

Request

Queue

Fetch

Int Decode & Rename

µOPs

36-entry FP scheduler

FADD FMISCFMUL

Branch

Prediction

Instruction Control Unit (72 entries)

Fastpath Microcode Engine
Scan/Align

FP Decode & Rename

AGU

ALU

AGU

ALU

MULT

AGU

ALU

Res Res Res

B
us

 U
ni

t

9-way Out-Of-Order execution

16 instruction bytes fetched per cycle

§ 36 entry FPU instruction scheduler

§ 64-bit/80-bit FP Realized throughput (1 Mul + 1 Add)/cycle: 1.9 FLOPs/cycle

§ 32-bit FP Realized throughput (2 Mul + 2 Add)/cycle: 3.4+ FLOPs/cycle

AMD Opteron Processor

19

Instruction sets

• Instructions to tell the hardware what to do.

• Brief overview of instructions before we dive deeper into the
hardware.

20

Instruction sets

• ISA: An instruction set, or instruction set architecture (ISA), is the part of the
computer architecture related to programming, including the native data
types, instructions, registers, addressing modes, memory architecture,
interrupt and exception handling, and external I/O. An ISA includes a
specification of the set of opcodes (machine language), the native commands
implemented by a particular CPU design.

• Categories of ISA
▪ CISC (X86)
▪ RISC
▪ VLIW
▪ MISC
▪ EPIC
▪ vector processor
▪ SIMD
▪ Flynn's Taxonomy
▪ orthogonal instruction set

21

Don’t worry we are not going to program in it.

22

ISA Considerations

• Code size

• Long instructions take more time to fetch

• Longer instructions require a larger memory

• Important in small devices, e.g., cell phones

• Number of instructions (IC)

• Reducing IC reduce execution time

• At a given CPI (clocks cycles per instruction) and frequency

• Code “simplicity”

• Simple HW implementation

• Higher frequency and lower power

• Code optimization can better be applied to “simple code”

CISC

• Definition: Pronounced "sisk" and standing for Complex Instruction
Set Computer, is a Microprocessor Architecture that aims at achieving
complex operations with single instructions and favors the richness of
the instruction set (typically as many as 200 unique instructions) over
the speed with which individual instructions are executed.

4/28/2008
Computer Architecture & Design (6200)

Class Presentation 3

Why should I know about CISC?
• Today’s computers still use processors which are based on CISC

designs

• It has been a prominent architecture since 1978 (x86)

• x86_64: 64 bit version of the x86 instruction set

24

RISC

• RISC - Reduced Instruction Set Computer

• The idea: simple instructions enable fast hardware

• load-store architecture

• Characteristic

• A small instruction set, with only a few instructions formats

• Simple instructions

• execute simple tasks

• Most of them require a single cycle (with pipeline)

• ALU operations on registers only

• Memory is accessed using Load and Store instructions only

• Many orthogonal registers

• Fixed length instructions

• Examples: MIPSTM, SparcTM, AlphaTM, PowerTM

4/28/2008 8

Main Memory

G e n e r a l
P u r p o s e
Registers

ALU

RISC/CISC Example

4/28/2008 9

Consider following task of Multiplication

15

20

Operands:

M[2:3]	=	operand	1	(15)

M[5:2]	=	operand	2	(20)

Task	:	Multiplication

Result: M[2:3] <= result

The CISC Approach
• Instruction	:	

 MULT 2:3, 5:2

Operations:

• Loads the two operands into

separate registers

• Multiplies the operands in the

execution unit

• Then stores the product in the some

temporary register

• Stores value back to memory

location 2:3

4/28/2008 10

• MULT is what is known as a "complex instruction."

• Operates directly on the computer's memory banks

• Does not require the programmer to explicitly call any loading or storing

functions.

• closely resembles a command in a higher level language.

 e.g. a ‘C’ statement "a = a * b."

4/28/2008 11

The RISC Approach
• Instructions	:	

 LW		 A, 2:3 
LW 	 B, 5:2 
MULT 	 A, B 
SW	2:3 A

• Operations:

• Load operand1 into register A

• Load operand2 into register B

• Multiply the operands in the

execution unit and store result in A

• Store value of A back to memory

location 2:3

• These set of Instructions is known as a “Reduced Instructions."

• Cannot Operate directly on the computer's memory banks

• Requires the programmer to explicitly call any loading or storing functions.

• RISC processors only use simple instructions that can be executed within one

clock cycle

4/28/2008 17

• The terms RISC and CISC have become less meaningful with the
continued evolution of both CISC and RISC designs and
implementations.

• Modern x86 processors also decode and split more complex
instructions into a series of smaller internal "micro-operations" which
can thereby be executed in a pipelined (parallel) fashion, thus
achieving high performance on a much larger subset of instructions.

Developments Top 20 instructions of x86

30

More than 50% of all code
is dedicated to moving
things between registers
and memory (MOV),
passing arguments,
saving registers (PUSH,
POP), and calling
functions (CALL).

Computer Architecture

31 32

A Simple Computer Architecture
CPU program counter ++

main memory

decoder

Bus

control
unit

cache memory

FPU ALU

registers

Register Array
• All modern CPU’s have an array of registers

• usually at least 32 general purpose registers (128 bit wide)

• frequently some registers have dedicated use

• Characteristics of registers

• usually contain one computer word

• can be accessed in one CPU cycle

• Functions of registers

• serve as source of operands

• serve as destination of results

• temporarily store intermediate results

• serve as index registers to access arrays (stack pointer)

• Specialized registers

• floating point registers

• store constants ….frequently used values

The Program Counter (PC)

• stores address of next instruction to execute

• must be incremented after each instruction

• may be changed by function call or jump

• controls flow of program execution

program counter ++

Arithmetic Logic Unit (ALU)

• performs arithmetic and logical functions

• works on integers

• add, subtract, multiply, divide, complement, shift…etc.

• function performed is determined by the control signals received

• will have input and output latches to hold operands and results

ALU

Floating Point Unit (FPU)

36

• mainly for addition, multiplication and sometimes division

• works on floating point numbers

• higher order functions like divide, sqrt are emulated in software:
for example using a series expansion approximation based on the
basic operations add and mul

• has its own set of registers it can use

• SSE and AVX instructions (SIMD) can do more than one operation
in a clock cycle

FPU

Memory Buffer (Cache)

• A distinct memory positioned between the CPU and Main Memory

• holds values to be transferred between main memory and the
CPU

• both data or instructions can be stored in cache

• values to be written to memory

• machines are capable of transferring more than a single word
called a cache line; usually 8 bytes (64 bits)

cache memory

Decoder

• Decode the instructions that are sent to the microprocessor.

• It can decode and optimise the order of instructions before it
sends them to the execution unit to be run.

38

decoder

Control Unit

• provides control signals necessary to control the hardware of the
CPU

• control signals are needed to control functions of various
hardware units and to direct the flow of information within the
CPU.

• Directs the operation of the processor: It tells the computer's
memory, arithmetic/logic unit and input and output devices how
to respond to a program's instructions

control
unit The Fetch-Execute Cycle

• The steps that the control unit carries out in executing a program are:

	(1) Fetch the next instruction to be executed from memory.

	(2) Decode the opcode.

	(3) Read operand(s) from main memory, if any.

	(4) Execute the instruction and store results.

	(5) Go to step 1.

This is known as the fetch-execute cycle.

40

Memory Unit

• Main Memory

• used to store programs (instructions) and data

• volatile: requires power to maintain the stored information

• usually uses DRAM… Dynamic Random Access Memory

• most memory is byte addressable

• can retrieve a single byte per memory access

• can be organised to access a full word or multiple words per

access.

main memory Bus structure

• CPU bus structure

• a bus is an ‘path’ connecting the various functional units within
the CPU

• capable of transmitting one entire word in parallel

• will consist of one word length of ‘wires’ or data paths

• the CPU will have multiple buses to improve the information
transfer options within the CPU to maximize the flexibility and
parallelism of the system

Bus

Memory direct connected

43

Memory Design

• Types of memory

• DRAM

• SRAM

• Access speed

• latency

• bandwidth

• Amount of storage

• Fabrication costs

44

Memory differences

• Volatile: fast access but non permanent

‣ static RAM

‣ dynamic RAM (must be refreshed regularly)

• Permanent writable: (very) slow write access but permanent

‣ magnetic (hard-drive, magnetic tape, etc)

‣ SSD (Solid State Drive)

‣ FLASH (page write access)

‣ EEPROM

‣ CD, DVD

• Permanent non writable

‣ ROM

‣ PROM

45

Memory Types volatile

• SDRAM: Synchronous Dynamic-RAM used for main memory

• SRAM: Static-RAM used for cache

• Registers: direct accessible

Memory locations are arranged linearly in consecutive order. Each
numbered locations corresponds to a word. The unique number
that identifies each word is referred to as its address.

46

DRAM memory cell

• Word line selects cell for reading or writing

To write, the bit line is charged with logic 1 or 0

To read, sensitive amplifier circuits detect small changes in bit line.

• storage cells consist of  
one capacitor and transistor per data bit

Reading discharges the capacitor.

47

DRAM

• A DRAM memory cell

GND

Word Line

Bit Line

Capacitor

• Word line selects cell for reading or writing

• To write, the bit line is charged with logic 1 or 0

• To read, sensitive amplifier circuits detect small
changes in bit line.

• Reading discharges the capacitor.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

2-1/2D Organization of a 64-Word by
One-Bit RAM

48

000

100

010

110

001

101

011

111

49

1M DRAM = 1024 x 1024 array of bits

10 row address bits

arrive first

10 column address bits

arrive next

Subset of bits

returned to CPU

1024 bits

are read out

Row Access Strobe (RAS)

Column Access Strobe (CAS)

Column decoder

50

Basic DRAM chip

• Addressing sequence

• Row address and then RAS# asserted

• RAS# to CAS# delay

• Column address and then CAS# asserted

• DATA transfer

Row

latch

Row

address

decoder

Column addr

decoder

Column latchCAS#

RAS# Data

Memory

array

Memory address bus

Addr

51

Addressing sequence

• Access sequence

• Put row address on data bus and assert RAS#

• Wait for RAS# to CAS# delay (tRCD)

• Put column address on data bus and assert CAS#

• DATA transfer

• Pre-charge

tRAC–Access time

RAS/CAS delay

Precharge delay

RAS#

Data

A[0:7]

CAS#

Data n

Row i Col n Row jX

CL - CAS latency
X

RAM Latency: "tCAS-tRCD-tRP-tRAS"

• tCAS
The number of clock cycles needed to access a certain column of Data in SDRAM. CAS Latency, or
simply CAS, is known as Column Address Strobe Latency, sometimes referred to as tCL.

tRCD (RAS to CAS Delay)
The number of Clock cycles needed between a Row Address Strobe (RAS) and a CAS. It is the time
required between the computer defining the row and column of the given memory block and the actual
read or write to that location. Stands for Row address to Column address Delay.

tRP (RAS Precharge)
The number of clock cycles needed to terminate access to an open row of memory, and open access to
the next row. Stands for Row precharge time.

tRAS
The minimum number of clock cycles needed to access a certain row of data in RAM between the data
request and the precharge command. Known as Active to Precharge Delay.

RAM speeds are given by the four numbers above. So, for example, latency values given as 2.5-3-3-8
would indicate tCAS=2.5, tRCD=3, tRP=3, tRAS=8. (Note that 0.5 values of latency (such as 2.5) are
only possible in Double data rate RAM, where two parts of each clock cycle are used)

52

Latency

• Memory latency is traditionally quoted using two measures:

• access time is the time between when a read is requested
and when the desired word arrives

• cycle time is the minimum time between requests

Cycle time is greater than access time because the memory
needs the address lines to be stable between accesses.

53 54

DRAM Properties

• The RAS and CAS bits share the same pins on the chip (multiplex)

• Column Address Strobe dictates how many clocks the memory waits

before sending data on.

• Each bit loses its value after a while – hence, each bit has to be refreshed
periodically:

This is done by reading each row and writing the value back (hence,
dynamic random access memory) – causes variability in memory
access time

• SDRAM runs Synchronously with the clock of the processor and the
system bus.

55

DDR-SDRAM

• 2n-prefetch architecture

• The DRAM cells are clocked at the same speed as SDR SDRAM

• Internal data bus is twice the width of the external data bus

• Data capture occurs twice per clock cycle

• Lower half of the bus sampled at clock rise

• Upper half of the bus sampled at clock fall

• Uses 2.5V (vs. 3.3V in SDRAM)

• Reduced power consumption

0:n-1

n:2n-1

0:n-1

200MHz clock

0:2n-1SDRAM

Array

56

DIMMs

• DIMM: Dual In-line Memory Module

• A small circuit board that holds memory chips

• 64-bit wide data path (72 bit with parity)

• Single sided: 9 chips, each with 8 bit data bus

• 512 Mbit / chip × 8 chips ⇒ 512 Mbyte per DIMM

• Dual sided: 18 chips, each with 4 bit data bus

• 256 Mbit / chip × 16 chips ⇒ 512 Mbyte per DIMM

57

DDR2
• DDR2 achieves high-speed using 4-

bit prefetch architecture

• SDRAM cells read/write 4× the

amount of data as the external bus

• DDR2-533 cell works at the same

frequency as a DDR266 SDRAM or a
PC133 SDRAM cell

• This method comes at a price of
increased latency for lower clocks

• DDR2-based systems may perform
worse than DDR1-based systems

58

DDR3
• 30% a power consumption reduction compared to DDR2

• 1.5 V supply voltage, compared to DDR2's 1.8 V or DDR's 2.5 V

• 90 nanometer fabrication technology

• Higher bandwidth

• 8 bit deep prefetch buffer (vs. 4 bit in DDR2 and 2 bit in DDR)

• Transfer data rate

• Effective clock rate of 800–1600 MHz using both rising and falling

edges of a 400–800 MHz I/O clock.

• DDR2: 400–800 MHz using a 200–400 MHz I/O clock

• DDR: 200–400 MHz based on a 100–200 MHz I/O clock

• DDR3 DIMMs

• 240 pins, the same number as DDR2, and are the same size

• Electrically incompatible, and have a different key notch location

DDR4

• lower voltage 1.2 V

• higher frequency (2133 MHz)

• higher latency (15 clocks)

• max 128 GB/DIMM

59

DDR5

60

High Bandwidth Memory (HBM)

• DRAM stacked memory

61

Memory latency over generations

• It is worth noting that the latency improvement over 11 years is
not that large. However, the DDR3 memory does achieve 32
times higher bandwidth.

• http://en.wikipedia.org/wiki/Dynamic_random_access_memory

62

Memory trends

63

Limits on DRAM performance

• Read cycle time, the time between successive read operations.
This time decreased from 10 ns for 100 MHz SDRAM to 5 ns for
DDR-400, but has remained relatively unchanged through
DDR2-800 and DDR3-1600 generations. However, the achievable
bandwidth has increased rapidly.

• Another limit is the CAS latency, the time between supplying a
column address and receiving the corresponding data. Again, this
has remained relatively constant at 10–15 ns through the last few
generations of DDR SDRAM.

• The benefits of SDRAM's internal buffering come from its ability to
interleave operations to multiple banks of memory, thereby
increasing effective bandwidth.

64

SRAM – Static RAM

• Static RAM uses a completely different technology. In static
RAM, a form of flip-flop holds each bit of memory. A flip-flop for a
memory cell takes four or six transistors along with some wiring,
but never has to be refreshed. This makes static RAM significantly
faster than dynamic RAM. However, because it has more parts, a
static memory cell takes up a lot more space on a chip than a
dynamic memory cell. Therefore, you get less memory per chip,
and that makes static RAM a lot more expensive.

• http://computer.howstuffworks.com/ram3.htm

•

65

SRAM

66

67

SRAM – Static RAM
• True random access

• High speed, low density, high power

• No refresh

• Address not multiplexed

• DDR SRAM

• 2 READs or 2 WRITEs per clock

• Common or Separate I/O

• DDRII: 200MHz to 333MHz Operation; Density: 18/36/72Mb+

• QDR SRAM

• Two separate DDR ports: one read and one write

• One DDR address bus: alternating between the read address

and the write address

• QDRII: 250MHz to 333MHz Operation; Density: 18/36/72Mb+

Summary Random Access Memory

• Dynamic RAM (DRAM)

• Each bit is stored in a capacitor

• Uses one capacitor and one transistor per bit

• Slower, but takes up less space in a chip

• Must be refreshed periodically (milliseconds), since the capacitor

leaks

• Static RAM (SRAM)

• Each bit is stored in a type of flip-flop

• Typically takes four or six transistors per bit

• Faster, but takes up more space in a chip

• Retains information as long as power is supplied

• equal access time.

68

69

SRAM vs. DRAM

DRAM – Dynamic RAM SRAM – Static RAM

Refresh Regular refresh (~1% time) No refresh needed

Address Address muxed: row+ column Address not multiplexed

Access Not true “Random Access” True “Random Access”

density High (1 Transistor/bit) Low (6 Transistor/bit)

Power low high

Speed slow fast

Price/bit low high

Typical usage Main memory cache

Trends in Memory

70

71

• Improvements in technology (smaller devices)

=> DRAM capacities double every two years

• Time to read data out of the array improves by only 5% every year

 => high memory latency (also called the memory wall!)

• Time to read data out of the column decoder improves by 10% every
year

=> influences bandwidth

Technology Trends

72

Technology Trends and Performance

• Computing capacity: 4× per 3 years

• Moore’s Law: Performance is doubled every ~18 months

2× in 3 years

1.1× in 3 years

CPU speed
and Memory
speed grow
apart 2× in 3 years

4× in 3 years

73 74

Moore’s Law

Cost of DRAM Generations

75 76

• By increasing the memory width (number of memory chips

 and the connecting bus), more bytes can be transferred

 together – increases cost

• Interleaved memory – since the memory is composed of

 many chips, multiple operations can happen at the same

 time – a single address is fed to multiple chips, allowing

 to read sequential words in parallel

➡ most increases have already been used and tried...., still a 
memory bottleneck due to latency;…. MEMORY WALL

➡ How is memory used in a program?

How to increase memory

Bandwidth and Latency?

• Programs tend to reuse data and instructions they have used
recently.

• A widely held rule of thumb is that a program spends 90% of its
execution time in only 10% of the code. An implication of
locality is that we can predict with reasonable accuracy what
instructions and data a program will use in the near future based
on its accesses in the recent past.

Two different types of locality have been observed:

• Temporal locality states that recently accessed items are likely

to be accessed in the near future.

• Spatial locality says that items whose addresses are near one

another tend to be referenced close together in time.

Observation: Principle of Locality

77 78

79

Using Locality by Caching

• main memory latency (which affects the cache miss penalty) is
the primary concern of the cache, while main memory
bandwidth is the primary concern of multiprocessors and I/O.

it is generally easier to improve memory bandwidth with new
organizations than it is to reduce latency.

80

Cache operation

• CPU requests contents of memory location

• Check cache for this data

• If present, get from cache (fast)

• If not present, read required block from main memory to cache

• Then deliver data from cache to CPU

• Cache includes tags to identify which block of main memory is in

each cache slot

81

Cache Lines

82

Memory blocks

⁞

Cache

Lots of blocks →

Load from address 0x0040
In

cache
?

No — Load from memory

Yes

?

A memory request for address X
begins by searching for X in cache

• Lookup speed is important

If it misses, then a new block is brought in

• Replacement policy is important

83

Cache – Main Idea

• The cache holds a small part of the entire memory

• Need to map parts of the memory into the cache

• Main memory is (logically) partitioned into blocks

• Typical block size is 32 to 64 bytes

• Blocks are aligned

• Cache partitioned to cache lines

• Each cache line holds a block

• Only a subset of the blocks is mapped  

to the cache at a given time

• The cache views an address as

Block # offset

1

2

3

4

5

6

.

.

.

90

91

92

93

.

.

.

memory

cache

91

90

5
3

84

Cache Lookup

• Cache hit

• Block is mapped to the cache –  

return data according to block’s offset

• Cache miss

• Block is not mapped to the cache  
⇒ do a cache line fill

• Fetch block into fill buffer

• may require few bus cycle

• Write fill buffer into cache

• May need to remove another block  

from the cache to make room for the new block

1

2

3

4

5

6

.

.

.

90

91

92

93

.

.

.

memory

cache

91

90

5
3

85

Core 2 Duo Die Photo

L2 Cache

Memory Hierarchy

86

A typical memory hierarchy

on-chip cache
KBs

off-chip cache
MBs

main memory
GBs

Disk
TBs

Cost

2.5 $/MB

0.07 $/MB

0.0004 $/MB

Access time

5ns

60ns

10,000,000ns

< 1ns

87

CPU

L1 data or

instruction

Cache

128 KB

2 cycles

As you go further, capacity and latency increase

88

Memory Hierarchy

Registers

1 KB

1 cycle

L2 cache

6 MB

15 cycles

Memory

8 GB

300 cycles
Disk

1000 GB

10M cycles

Memory Hierarchy

89

CPU

Data

Instructions

Addresses

Register Cache RAM Virtual

speed

size

page

lineelement
Cache Lines

90

CPU

registers cache

Typically more than one element at once is transferred
x = a[0]

move a[0]...a[n]
register = a[0]

fast
slow

• The unit of transfer is called a cache line

• A cache line consists of consecutive memory locations

• The size of a cache line is architecture dependent

• AMD Barcelona/Shanghai 64 Bytes

• Intel Nehalem 64 Bytes

Cache lines

91

.....

.....

.....

.....
.....
.....

.....

.....

Not like thisLike this

Memory Level Issues

• Caches are working copies, true image is in main memory

• Cache exploits temporal proximity

• recent data/instruction likely to be used again

• Where does true image of data/code reside?

• When cache is written to, how is memory image updated?

• A cache is not big enough to store all data

• How is cache organized and addressed?

• How is data replaced within cache?

• This is called cache replacement policy, and will be discussed next

Direct Mapped Caches

• Replacement Formula:

• This maps a memory location from main memory directly to a
position in the cache.

93

cache location = (memory address) modulo (cache size in lines)

Cache, Example

• 64 byte cache-size

• Each Cache “line” or “block” holds one word (8 bytes)

• total cache can store 8 words (=64 bytes)

• Byte in cache is addressed by lowest three bits of address

• Cache line is addressed by next 3 bits in address

• Each Cache line has a “tag” matching the remaining 26 bits of the
memory address

95

Accessing the Cache

8-byte words

8=23 : 3 offset bits

 101000

Direct-mapped cache:

each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array
Sets

Offset

96

The Tag Array

8-byte words

 101000

Direct-mapped cache:

each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

97

Increasing Line Size

32-byte cache

line size or

block size

[32=25]

 10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size à smaller tag array,

fewer misses because of spatial locality

Direct Mapped Caches

• Replacement Formula:

An example:

• Assume that a cache line is 4 words (=16 Bytes)

• Cache size = 16 KB = 16 (line size) * 1024 (# of lines) Bytes

• This corresponds to 4096 32-bit words

• Example: element 5000 goes to cache line ((5000%1024)%4=226)

• We have to load an array A with 8192 32-bit elements:  

i.e. twice the size of the cache

98

cache location = (memory address) modulo (cache size in lines)

Direct Mapped Caches

99

A(1)

A(2)

...

...

A(4095)

A(4096)

A(4097)

...

...

...

A(8189)

A(8190)

A(8191)

A(8192)

...

(virtual) memory memory location:

A(4097) = a(1)+4096*4

cache location:

A(4097)= a(1)

A(1..4)

A(5..8)

...

...

A(4085..4088)

A(4089..4092)

A(4093..4096)

Direct Mapped Cache

16 KB

registers

A(1)

CPU

Direct mapped caches - Trashing

• A well known side-effect of this design: 
 data elements that are soon needed are overwritten (trashing)

• Especially when multiple arrays are involved direct mapping can
become very inefficient

• Often the only remedy is to modify the memory mapping, but this
can be non-trivial

• There is a solution....

100

A(1..4)

A(5..8)

...

...

...

A(4089..4092)

A(4093..4096)

B(1..4)A(1..4)

Direct Mapped Caches - Trashing

101

A(1)

A(2)

...

...

A(4095)

A(4096)

B(1)

...

...

...

B(4093)

B(4094)

B(4095)

B(4096)

(virtual) memory
COMMON A(4096), B(4096)
DO I=1, 4096
 P = P + A(I)*B(I)
END DO16 KB

Trashing: every memory reference results

in a cache miss

registers

B(1)

Direct Mapped Cache

A(1)

CPU

I=1I=2

A(1..4)

A(2)

Fully Associative Caches

Fully Associative:

• The replacement is now based upon a Least-Recently Used (LRU)
algorithm:

• Data that is oldest (touched) is removed

• In many cases it makes sense to do

• It greatly helps when working with multiple arrays

• Takes longer time to find if a line is already in the cache

102

Fully Associative Caches

• Why are not all caches then fully associative?

Because of cost

• Luckily, a clever alternative (polder model) exists.

103

Set Associative Caches

Set Associative:

• The cache contains several direct mapped caches

• Data can go into one of these caches (called a ‘set’)

• The choice of a set is often (semi-) LRU

104

cache controller

4-way set associative cache direct m
apped

105

Associativity

 10100000

Byte address

Tag

Data arrayTag array

Set associativity à fewer conflicts; wasted power

 because multiple data and tags are read

Way-1 Way-2

Compare

trashing
can still
occur within
one set !

106

C.1 Introduction

!

C

-

7

Q1: Where Can a Block Be Placed in a Cache?

Figure C.2 shows that the restrictions on where a block is placed create three
categories of cache organization:

!

If each block has only one place it can appear in the cache, the cache is said to
be

direct mapped

. The mapping is usually

(Block address)

MOD

 (Number of blocks in cache)

!

If a block can be placed anywhere in the cache, the cache is said to be

fully
associative

.

!

If a block can be placed in a restricted set of places in the cache, the cache is

set associative

. A

set

 is a group of blocks in the cache. A block is first mapped
onto a set, and then the block can be placed anywhere within that set. The set
is usually chosen by

bit selection;

 that is,

(Block address)

MOD

(Number of sets in cache)

 Figure C.2 This example cache has eight block frames and memory has 32 blocks.

The three options for caches are shown left to right. In fully associative, block 12 from
the lower level can go into any of the eight block frames of the cache. With direct
mapped, block 12 can only be placed into block frame 4 (12 modulo 8). Set associative,
which has some of both features, allows the block to be placed anywhere in set 0 (12
modulo 4). With two blocks per set, this means block 12 can be placed either in block 0
or in block 1 of the cache. Real caches contain thousands of block frames and real mem-
ories contain millions of blocks. The set-associative organization has four sets with two
blocks per set, called

two-way set associative

. Assume that there is nothing in the cache
and that the block address in question identifies lower-level block 12.

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Block
no.

Block
no.

Block
no.

Set
0

Set
1

Set
2

Set
3

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block

Block frame address

no.

Cache

Memory

• Direct Mapped Cache: The simplest way to allocate the cache to the system memory is to determine how many

cache lines there are (16,384 in our example) and just chop the system memory into the same number of chunks.

Then each chunk gets the use of one cache line. This is called direct mapping. So if we have 64 MB of main

memory addresses, each cache line would be shared by 4,096 memory addresses (64 M divided by 16 K).

• Fully Associative Cache: Instead of hard-allocating cache lines to particular memory locations, it is possible to

design the cache so that any line can store the contents of any memory location. This is called fully associative

mapping.

• N-Way Set Associative Cache: "N" here is a number, typically 2, 4, 8 etc. This is a compromise between the

direct mapped and fully associative designs. In this case the cache is broken into sets where each set contains "N"

cache lines, let's say 4. Then, each memory address is assigned a set, and can be cached in any one of those 4

locations within the set that it is assigned to. In other words, within each set the cache is associative, and thus the

name. 

This design means that there are "N" possible places that a given memory location may be in the cache. The trade-

off is that there are "N" times as many memory locations competing for the same "N" lines in the set. Let's suppose

in our example that we are using a 4-way set associative cache. So instead of a single block of 16,384 lines, we

have 4,096 sets with 4 lines in each. Each of these sets is shared by 16,384 memory addresses (64 M divided by 4

K) instead of 4,096 addresses as in the case of the direct mapped cache. So there is more to share (4 lines instead of

1) but more addresses sharing it (16,384 instead of 4,096).

107

Cache Mapping

108

Cache Type Hit Ratio Search Speed

Direct Mapped Good Best

Fully Associative Best Moderate

N-way Set Associative
(N>1)

Very Good

Better as N increases

Good

Worse as N increases

109

Multi-Level Caches

• If one works well, why not use the same trick again !

• The L2 and L3 have properties that are different from L1

• access time is not as critical for L2 as it is for L1 (every

 load/store/instruction accesses the L1)

• the L2 is much larger and can consume more power

 per access

• Hence, they can adopt alternative design choices

• serial tag and data access

• high associativity

Cache levels

• L1

• design for minimal hit time

• L2

• design for low miss rate to avoid access to main memory

• L3

• design for sharing with other cores

• L1 usually smaller than L2

• L1 block size (number of sets) smaller than L2

• L3 much larger than L1

110

CPU

L1 data or

instruction

Cache

128 KB

2 cycles

As you go further away from the CPU, capacity and latency increase

111

Memory Hierarchy

Registers

1 KB

1 cycle

L2 cache

6 MB

15 cycles

Memory

8 GB

300 cycles
Disk

1000 GB

10M cycles

capacity

Cache Read and Write Policies

112

Cache Summary - hit/miss

• Cache Hit

• Item is found in the cache

• CPU continues at full speed

• Need to verify valid and tag match

• Cache Miss

• Item must be retrieved from memory

• Whole Cache line is retrieved

• CPU stalls for memory access

CPU

L1 cache hit rate

114

L1 data or

instruction

Cache

128 KB

2 cycles

Registers

1 KB

1 cycle

L2 cache

6 MB

10 cycles

L1 data or

instruction

Cache

128 KB

1 cycles

Load data 100 times

100% hit rate in L1: 100 cycles

99% hit rate in L1: 109 cycles

95% hit rate in L1: 145 cycles

9% slower

45% slower

Cache misses

• cache misses take time

• cache filling and emptying takes take

• getting data from main memory to L3, L2 and L1

• replacement policy

• Can we do something else while waiting for data to
arrive in the cache?

115 116

Tolerating Miss Penalty

• Out of order execution: can do other useful work while

 waiting for the miss – can have multiple cache misses

 – cache controller has to keep track of multiple

 outstanding misses (non-blocking cache)

• Hardware and software prefetching into prefetch buffers

 – aggressive prefetching can increase contention for buses

Those techniques will be discussed later today.

Optimal cache performance

• Re-use data in the cache

• This is using temporal locality

• Use all the data in one cache line

• This is using spatial locality

117

Time for some exercise

• Bandwidth and or Latency

• …./HPCourse/lat_mem_rd

118

One More Thing…. about memory

119

Virtual Memory

• Modern programs operate in “virtual memory”

• Each program thinks it has all of memory to itself

• Fixed sized blocks (“pages”) vs variable sized blocks

(“segments”)

• Virtual Memory benefit

• Allow a program that is larger than physical memory to run

• Programmer does not have to manually create overlays

• Allow many programs to share limited physical memory

• Virtual Memory asks for additional work:

• Each virtual memory reference must be translated into a

physical memory reference

120

121

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page

number

Translated to physical

page number

Physical address

13

Basic page has a size of 4 KB

Virtual and Physical memory

122

Virtual Memory Physical Memory Address Translation

Virtual memory
Learning to Play Well With Others

0x00000

0x10000 (64KB)

Stack

Heap

(Physical) Memorymalloc(0x20000)

Learning to Play Well With Others

Stack

Heap

(Physical) Memory

Stack

Heap

0x00000

0x10000 (64KB)

Learning to Play Well With Others

Stack

Heap

Virtual Memory

0x00000

0x10000 (64KB)

Physical Memory

0x00000

0x10000 (64KB)

Stack

Heap

Virtual Memory

0x00000

0x10000 (64KB)

Learning to Play Well With Others

Stack

Heap

Virtual Memory

0x00000

0x400000 (4MB)

Physical Memory

0x00000

0x10000 (64KB)

Stack

Heap

Virtual Memory

0x00000

0xF000000 (240MB)

Disk
(GBs)

• In a virtual memory based system, the virtual address needs to
be translated to a physical address by the kernel.

• This address translation is typically a costly operation

• Therefore translations are:

• Performed on a virtual memory page basis

• Buffered in a cache (with the hope to re-use them)

• This cache is often called Translation Lookaside Buffer or TLB for
short

The TLB cache

124

Look-up Table

125

Page offsetVirtual page number

Page table

Main memory

Physical address

Virtual address

Typical TLB size

• Size: 8 - 4,096 entries

• Hit time: 1 clock cycle

• Miss penalty: 10 - 100 clock cycles

• Miss rate: 0.01 - 1%

• Larger pages allow:

• Wider memory coverage

• With fewer address translations

• Varying pages sizes can lead to fragmentation

• E.g., a memory-hungry program might work with 2 MB pages, but

can oversubscribe available memory with 16 MB pages

126

Steps in Handling a Page Fault

127

The TLB cache

128

physical memory

bad for the TLB

non unit stride through the data

= new TLB entry created

= address already mapped

physical memory

VERY bad for the TLB

strides through the data which exceed the page size

VM page

Putting it all together

129

processor

TLB

Page Table

(resides in

memory)

L1-cache

L2-cache

L3-cache

Main Memory

Disk

1. processor generates memory reference (ld or st)

2. check TLB if
virtual mapping is
present

3 . I f v i r t u a l
mapping is not
p re sen t , go t o
page table, retrieve
m a p p i n g , a n d
update TLB with
the mapping

4. L1 cache miss

5. L2 cache miss

6. L3 cache miss

7. main memory hit

8. If there is a main memory
miss, then a page fault would be
generated.

Going back to the CPU

130

Tricks a modern CPU can do

• Instruction Level Parallelism

• Superscalar

• Out of Order Execution

• Pipelining

• Branch Prediction

• vector instructions

• Multithreading

• Pre Fetching

131

Fetch-Execution cycle

132

fetch / decode

read from memory

execute

write back

Superscalar

•A superscalar processor executes more than one instruction
during a clock cycle by simultaneously dispatching multiple
instructions to redundant functional units on the processor.

• Each functional unit is not a separate CPU core but an execution
resource within a single CPU such as an arithmetic logic unit
(ALU), a bit shifter, or a multiplier.

133

Superscalar

134

scheduler

read register

execute

write back

fetch / decode

retire

read read read

scheduler

fetch / decode

ALU FP data

write write write

retire

Superscalar

135 136

Is Superscalar Good Enough ?

• A superscalar processor can fetch, decode, execute and retire
instructions in parallel

• Can execute only independent instructions in parallel

• But … adjacent instructions are usually dependent

• The utilization of the second pipe is usually low

• There are algorithms in which both pipes are highly utilized

• Solution: out-of-order execution

• Execute instructions based on “data flow” rather than program order

• Still need to keep the semantics of the original program

Out of Order Execution

137

• Make use of cycles that would otherwise be wasted by a certain
type of costly delay. Most modern CPU designs include support for
out of order execution.

• The key concept of OoO processing is to allow the processor to
avoid a class of stalls that occur when the data needed to perform
an operation are unavailable.

In Order

1.Instruction fetch.

2.If input operands are available (in registers for instance), the instruction
is dispatched to the appropriate functional unit. If one or more operands is
unavailable during the current clock cycle (generally because they are
being fetched from memory), the processor stalls until they are available.

3.The instruction is executed by the appropriate functional unit.

4.The functional unit writes the results back to the register file.

138

Out of Order

1.Instruction fetch 

2.Instruction dispatch to an instruction queue (also called instruction buffer or
reservation stations).

3.The instruction waits in the queue until its input operands are available. The
instruction is allowed to leave the queue before earlier, older instructions.

4.The instruction is issued to the appropriate functional unit and executed.

5.The results are queued.

6.Only after all older instructions have their results written back to the register
file, then this result is written back to the register file. This is called the
graduation or retire stage.

139

Data Flow Analysis

• Example:

	 (1) r1 ← r4 / r7 ; assume divide takes 20 cycles

	 (2) r8 ← r1 + r2

	 (3) r5 ← r5 + 1

	 (4) r6 ← r6 - r3

	 (5) r4 ← r5 + r6

	 (6) r7 ← r8 * r4

1
3
4

5
2

6

In-order execution

1
3
4

5 2 6

Out-of-order execution

1 3 4

2 5

6

Data Flow Graph

r1 r5 r6

r4r8

141

OOOE – General Scheme

• Fetch & decode instructions in parallel but in order, to fill inst. pool

• Execute ready instructions from the instructions pool

• All the data required for the instruction is ready

• Execution resources are available

• Once an instruction is executed

• signal all dependent instructions that data is ready

• Commit instructions in parallel but in-order

• Can commit an instruction only after all preceding instructions (in program

order) have committed

Fetch &

Decode

Instruction

pool

Retire

(commit)

In-order In-order

Execute

Out-of-order

142

Out Of Order Execution – Summary

• Advantages

• Help exploit Instruction Level Parallelism (ILP)

• Help cover latencies (e.g., cache miss, divide)

• Superior/complementary to compiler scheduler

• Dynamic instruction window

• Reg Renaming: can use more than the number architectural registers

• Complex micro-architecture

• Complex scheduler

• Requires reordering mechanism (retirement) in the back-end for:

• Precise interrupt resolution

• Mis-prediction / speculation recovery

• Memory ordering

Out of order

143

scheduler

read register

execute

write back

fetch / decode

retire

ou
t-

of
-o

rd
er

in
st

ru
ct

io
n

flo
w

Pipelining

144

Pipelining

• Pipelining is a technique whereby multiple instructions are
overlapped in execution.

• It takes advantage of parallelism that exists among the actions
needed to execute an instruction.

• Each step in the pipeline completes a part of the instruction.

• In this way the clock period can be reduced. For example, the
RISC pipeline is broken into five stages.

145

• In this example:

• Sequential execution takes

4 * 90min = 6 hours

• Pipelined execution takes

30+4*40+20 = 3.5 hours

• Pipelining helps bandwidth
but not latency (90 min)

slide from Berkeley course cs194

A

B

C

D

6 PM 7 8 9

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

Dave Patterson’s Laundry example: 4 people doing laundry

	 wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

146

Pipelining

147

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined

148

Pipelining Instructions

Ideal speedup is number of stages in the pipeline.

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

. ..

Inst

Fetch Reg ALU RegData

Access
Inst

Fetch Reg ALU RegData

Access

Inst

Fetch

Inst

Fetch Reg ALU RegData

Access
Inst

Fetch Reg ALU RegData

Access

Inst

Fetch Reg ALU RegData

Access

2 ns

2 ns

2 ns 2 ns 2 ns 2 ns 2 ns

8 ns

8 ns

8 ns

Time
Program

execution

order

lw R1, 100(R0)

lw R2, 200(R0)

lw R3, 300(R0)

Time
Program

execution

order

lw R1, 100(R0)

lw R2, 200(R0)

lw R3, 300(R0)

Pipeline example

Basic five-stage pipeline in a RISC machine:

• IF = Instruction Fetch,

• ID = Instruction Decode,

• EX = Execute, compute address or operation (add)

• MEM = Memory access, read or store address

• WB = Register write back.

149

4-stage pipeline

150

from: http://en.wikipedia.org/wiki/Instruction_pipeline

151

Pipelining

• Pipelining does not reduce the latency of single task,  
it increases the throughput of entire workload

• Potential speedup = Number of pipe stages

• Pipeline rate is limited by the slowest pipeline stage

⇒ Partition the pipe to many pipe stages

⇒ Make the longest pipe stage to be as short as possible

⇒ Balance the work in the pipe stages

• Pipeline adds overhead (e.g., latches)

• Time to “fill” pipeline and time to “drain” it reduces speedup

• Stall for dependencies

⇒ Too many pipe-stages start to loose performance

• IPC (Instructions Per Clock) of an ideal pipelined machine is 1

• Every clock one instruction finishes

Pipeline hazards

• Pipelining introduces an extra layer of complexity than can lead to
other problems (called pipeline hazards). Some of the hazards can
be solved by adding additional hardware.

• This is for specialist in hardware design and we will not discuss
this in much detail.

152

Pipeline Hazards

• Structural Hazards: Hardware doesn’t support two instructions
in the same cycle

• Data Hazards: Instructions can’t be executed since the
source data is not available since still computed by a preceding
instruction

• Load-Use Hazards: source data is not available since data
memory load instruction has not yet completed

• Branch Hazards: due to a branch (condition) in the code,
the pipeline must wait until the next instruction is determined.

153

Branches

154

155

Branches examples

• Instructions which can alter the flow of instruction execution in a
program

• if (a[i]> 1.0) {}
• do_work(a, n1, n2, parm);
• for (i=0; i<n, i++) {}
• while (eps >= 1e-3) {}
• return;

156

Techniques for handling branches

• Stalling

• waiting for condition to be computed and then continue with correct branch

• Predication

• All possible branch paths are executed, the correct path is kept and all

others are thrown away.

• Prediction

• try to predict the next if statement based on previous if statement(s).

Multi-threading

157 158

Thread-Level Parallelism (TLP)

• Motivation: a single thread leaves a processor under-utilized for most of
the time

• Strategies for thread-level parallelism:

• multiple threads share the same large processor =>

‣ reduces under-utilization, efficient resource allocation

‣ Simultaneous Multi-Threading (SMT)

• each thread executes on its own mini processor =>

‣ simple design, low interference between threads

‣ Chip Multi-Processing (CMP)

Simultaneous Multi-Threading

159 160

Hyper-threading (HT) Technology
• HT is SMT

• Makes a single processor appear as 2 logical processors = threads

• Each thread keeps a its own architectural state

• General-purpose registers

• Control and machine state registers

• Each thread has its own interrupt controller

• Interrupts sent to a specific logical processor are handled only by it

• OS views logical processors (threads) as physical processors

• Schedule threads to logical processors as in a multiprocessor system

• From a micro-architecture perspective

• Thread share a single set of physical resources

• caches, execution units, branch predictors, control logic, and buses

161

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak throughput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every cycle,
especially when there is a cache miss

• Out-of-order can only issue instructions from a single thread in a cycle – can not
find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every cycle –
has the highest probability of finding work for every issue slot

Superscalar Out-of-order Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

162

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tr
ol

Bu
s

Thread 1: floating point

Without SMT, only a single thread can
run at any given time

163

Without SMT, only a single thread can
run at any given time

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tr
ol

Bu
s

Thread 2: 
integer operation

164

SMT processor: both threads can run
concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tr
ol

Bu
s

Thread 1: floating pointThread 2: 
integer operation

165

But: Can’t simultaneously use the
same functional unit

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tr
ol

Bu
s

Thread 1Thread 2

This scenario is 
impossible with SMT 
on a single core 
(assuming a single
integer unit)

IMPOSSIBLE

Multi-Threading story will be
continued

166

167

Prefetching

• Instruction Prefetching

• On a cache miss, prefetch sequential cache lines into stream

buffers

• Branch predictor directed prefetching

• Let branch predictor run ahead

• Data Prefetching - predict future data accesses

• Next sequential

• Stride

• General pattern

• Software Prefetching

• Special prefetching instructions

• Prefetching relies on extra memory bandwidth

• Otherwise it slows down demand fetches

➡difficult to do prefectching correct as a programmer

Putting things together

• Loop unrolling

168

169

Example: Loop Scheduling

• Using 5-stage in-order pipeline

• The compiler’s job is to minimize stalls

• Assume:

• load has a two-cycle latency (1 stall cycle for the

 consumer that immediately follows),

• FP ALU feeding another => 3 stall cycles,

• FP ALU feeding a store => 2 stall cycles,

• int ALU feeding a branch => 1 stall cycle,

• one delay slot after a branch.

BNEDADDUI

170

Loop Example

for (i=1000; i>0; i--)

 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element

 ADD.D F4, F0, F2 ; add scalar

 S.D F4, 0(R1) ; store result

 DADDUI R1, R1,# -8 ; decrement address pointer

 BNE R1, R2, Loop ; branch if R1 != R2

Source code

Assembly code

L.D

ADD.D

S.D

171

Loop Example

for (i=1000; i>0; i--)

 x[i] = x[i] + s; Source code

Loop: L.D F0, 0(R1) ; F0 = array element

 stall

 ADD.D F4, F0, F2 ; add scalar

 stall

 stall

 S.D F4, 0(R1) ; store result

 DADDUI R1, R1,# -8 ; decrement address pointer

 stall

 BNE R1, R2, Loop ; branch if R1 != R2

 stall

10-cycle

schedule

BNEDADDUIL.D ADD.D S.D

172

Smart Schedule

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10

Loop: L.D F0, 0(R1)

 stall

 ADD.D F4, F0, F2

 stall

 stall

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 stall

 BNE R1, R2, Loop

 stall

Loop: L.D F0, 0(R1)

 DADDUI R1, R1,# -8

 ADD.D F4, F0, F2

 stall

 BNE R1, R2, Loop

 S.D F4, 8(R1)

Smart Schedule

173

BNE

DADDUI

L.D

ADD.D

S.D

Loop: L.D F0, 0(R1)

 DADDUI R1, R1,# -8

 ADD.D F4, F0, F2

 stall

 BNE R1, R2, Loop

 S.D F4, 8(R1)

Loop overhead (BNE, DADDUI): 2 instructions

Actual work (the LD, ADD.D, and S.D): 3 instructions

Can we somehow get execution time to be 3 cycles per iteration?

174

Loop Unrolling: solution on user level

• Reduces the number of ‘end of loop’ checks.

• Increases program size

• Requires more registers

• To unroll an n-iteration loop by degree k, we will need (n/k)

iterations of the larger loop, followed by (n mod k) iterations

of the original loop.

175

Loop Unrolling (4 times)

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 L.D F6, -8(R1)

 ADD.D F8, F6, F2

 S.D F8, -8(R1)

 L.D F10,-16(R1)

 ADD.D F12, F10, F2

 S.D F12, -16(R1)

 L.D F14, -24(R1)

 ADD.D F16, F14, F2

 S.D F16, -24(R1)

 DADDUI R1, R1, #-32

 BNE R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs

• How long will the above schedule take to complete?

176

Scheduled and Unrolled Loop

Loop: L.D F0, 0(R1)

 L.D F6, -8(R1)

 L.D F10,-16(R1)

 L.D F14, -24(R1)

 ADD.D F4, F0, F2

 ADD.D F8, F6, F2

 ADD.D F12, F10, F2

 ADD.D F16, F14, F2

 S.D F4, 0(R1)

 S.D F8, -8(R1)

 DADDUI R1, R1, # -32

 S.D F12, 16(R1)

 BNE R1,R2, Loop

 S.D F16, 8(R1)

• Execution time: 14 cycles or 3.5 cycles per original iteration

177

Pipeline has similar efficiency as unrolling

L.D ADD.D S.D

DADDUI BNE

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D ADD.D

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

…

…

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

178

Software Pipelining

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

Loop: S.D F4, 16(R1)

 ADD.D F4, F0, F2

 L.D F0, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

• Advantages: achieves nearly the same effect as loop unrolling, but

 without the code expansion – an unrolled loop may have inefficiencies

 at the start and end of each iteration, while a sw-pipelined loop is

 almost always in steady state – a sw-pipelined loop can also be unrolled

 to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more

 registers

Vector instructions

SSE2 SSE3 SSE4 AVX …

179 180

Software Specific Extensions
• Extend arch to accelerate exec of specific apps

• Example: SSETM – Streaming SIMD Extensions

• 128-bit packed (vector) / scalar single precision FP (4×32)

• Introduced on Pentium® III on ’99

• 8 new 128 bit registers (XMM0 – XMM7)

• Accelerates graphics, video, scientific calculations, …

• Packed vectorized:	 	 	 	 Scalar:

x0x1x2x3

y0y1y2y3

x0+y0x1+y1x2+y2x3+y3

+

128-bits

x0x1x2x3

y0y1y2y3

x0+y0---

+

128-bits

successor AVX

181

History of vector instructions

182

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

(x4)

(x2)

(x8) (x4)

(x16) (x8)

45

2019

AVX2 2014

183

Dependencies

not all loops can be vectorised

• At start of a vector instruction the (4-8) values of the arrays are
copied into vector registers.

• These (4-8) array values are then used by a vector functional unit
and produces (4-8) output values.

• Within these (4-8) values of the array there must be no
dependencies. The vector functional unit uses the values in the
registers.

184

Vectorization wrong usage

185

for (j=0; j<N; j++) {
a[j+1] = a[j] + b[j];

}

a[1]=b[0]+a[0]	 a[2]=b[1]+a[1] a[3]=b[2]+a[2] a[4]=b[3]+a[3]

b[0]	 b[1] b[2] b[3]

a[0]	 a[1] a[2] a[3]

AVX0

AVX1

AVX3

a[1]=a[0]+b[0]

a[2]=b[1]+a[1]
a[2]=b[1]+a[0]+b[0]

This a[1] is still the original value of a[1] (≠ a[0]+b[0])

186

Loop Dependencies

• If a loop only has dependencies within an iteration, the loop

 is considered parallel => multiple iterations can be executed

 together so long as order within an iteration is preserved

• If a loop has dependencies across iterations, it is not parallel

 and these dependencies are referred to as “loop-carried”

• Not all loop-carried dependencies imply lack of parallelism

187

Examples

For (i=1000; i>0; i=i-1)

 x[i] = x[i] + s;

For (i=1; i<=100; i=i+1) {

 A[i+1] = A[i] + C[i]; S1

 B[i+1] = B[i] + A[i+1]; S2

}

For (i=1; i<=100; i=i+1) {

 A[i] = A[i] + B[i]; S1

 B[i+1] = C[i] + D[i]; S2

}

For (i=1000; i>0; i=i-1)

 x[i] = x[i-3] + s; S1

188

Examples

For (i=1000; i>0; i=i-1)

 x[i] = x[i] + s;

For (i=1; i<=100; i=i+1) {

 A[i+1] = A[i] + C[i]; S1

 B[i+1] = B[i] + A[i+1]; S2

}

For (i=1; i<=100; i=i+1) {

 A[i] = A[i] + B[i]; S1

 B[i+1] = C[i] + D[i]; S2

}

S2 depends on S1 in the same iteration

S1 depends on S1 from prev iteration

S2 depends on S2 from prev iteration

S1 depends on S2 from prev iteration

For (i=1000; i>0; i=i-1)

 x[i] = x[i-3] + s; S1

S1 depends on S1 from 3 prev iterations

Referred to as a recursion

Dependence distance 3; limited parallelism

No dependences

189

Constructing Parallel/Vector Loops

If loop-carried dependencies are not cyclic (S1 depending on S1 is cyclic),

 loops can be restructured to be parallel

For (i=1; i<=100; i=i+1) {

 A[i] = A[i] + B[i]; S1

 B[i+1] = C[i] + D[i]; S2

}

A[1] = A[1] + B[1];

For (i=1; i<=99; i=i+1) {

 B[i+1] = C[i] + D[i]; S3

 A[i+1] = A[i+1] + B[i+1]; S4

}

B[101] = C[100] + D[100];

S1 depends on S2 from prev iteration S4 depends on S3 of same iteration

Summary

• Superscalar: start several instructions per cycle.

• Our of order: reshuffle instructions for optimal use of all functional
units.

• Pipelining: work on instructions in parallel.

• Vectorization: parallel computation on short arrays.

190

Computer Architecture – A Reminder

1

2

3

4

Pipelining

1

2

3

4

Out-of-order

1 2

3 4

Superscalarity

5

6

1

2

3

4

Branch

3’

4’

Software & Services GroupIntel Confidential

Pipelining Out-of-order Superscalarity Branch
Prediction

A3 A2 A1 A0A3 A2 A1 A0

B3 B2 B1 B0B3 B2 B1 B0

A3•B3 A2•B2 A1•B1 A0•B0A3•B3 A2•B2 A1•B1 A0•B0

•

=
SIMD

12

Summary

191

Multi core and all the above

192

193

Multi-core architectures
• A trend in computer architecture since ~2012: 

Replicate multiple processor cores on a single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

194

The memory hierarchy and cores

• If simultaneous multithreading (software solution) only:

• all caches shared

• Multi-core chips (hardware solution):

• L1 caches private

• L2 caches private in some architectures and shared in others

• L3 shared cache among the cores

• Main memory is always shared between all cores.

195

Private vs shared caches?

• Advantages/disadvantages? 

196

Private vs shared caches

• Advantages of private:

• They are closer to core, so faster access

• Reduces contention

• Advantages of shared:

• Threads on different cores can share the same cache data

• More cache space available if a single (or a few) high-performance

thread runs on the system

197

The cache coherence problem

• Since we have private caches: 
How to keep the data consistent across caches?

• Each core should perceive the memory as a monolithic array, shared by
all the cores

Core 2 reads xCore 1 reads x

Core 1 Core 2 Core 3 Core 4

Caches
 Caches
 Caches
 Caches

Main memory

x=15213

Suppose variable x initially contains 15213

The cache coherence problem

multi-core chip

198

Caches

x=15213

Caches

x=15213

Caches

x=21660

Main memory

x=21660

assuming  
write-through  
caches

Caches
x=15213

Core 1 writes to x, setting it to 21660Core 2 attempts to read x… gets a stale copy

199

Solutions for cache coherence

• This is a general problem with multiprocessors, not limited just to multi-
core

• There exist many solution algorithms, coherence protocols, etc.

• A simple solution: 
invalidation-based protocol with snooping

Inter-core bus

inter-core bus

Core 1 Core 2 Core 3 Core 4

Caches
 Caches
 Caches
 Caches

Main memory

x=15213

multi-core chip

200

201

Invalidation protocol with snooping

• Invalidation: 
If a core writes to a data item, all other copies of this data item in
other caches are invalidated

• Snooping:  
All cores continuously “snoop” (monitor) the bus connecting the
cores.

202

The cache coherence problem

Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

Caches

x=15213

Caches

x=15213

Caches
 Caches

Main memory

x=15213

multi-core chip

inter-core bus

Caches

x=21660

Main memory

x=21660

sends 
invalidation 
request

Caches
Caches

x=15213

INVALIDATED

Core 1 writes to x, setting it to 21660 After invalidation:Core 2 reads x. Cache misses, and loads the new copy.

Caches

x=21660

Address bus

203
71

Cache

CPU

Memory

With a snooping protocol, ALL address traffic on the bus
is monitored by ALL processors

Cache Coherence - Snooping

Data bus

204

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track

 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing

 status of that block – all cache controllers monitor the

 shared bus so they can update the sharing status of the

 block, if necessary

‣ Write-invalidate: a processor gains exclusive access  
 of a block before writing by invalidating all other copies

‣ Write-update: when a processor writes, it updates other

 shared copies of that block

205

Alternative to invalidate protocol:
update protocol

Core 1 writes x=21660:

broadcasts 
updated 
value

assuming  
write-through  
caches

Core 1 Core 2 Core 3 Core 4

Caches

x=21660

Caches

x=21660

Caches
 Caches

Main memory

x=21660

multi-core chip

inter-core bus

UPDATED

206

Alternative to snoop:

Directory based coherency

Core 1 Core 2 Core 3 Core 4

Caches

x=21660

Caches

x=21660

Caches
 Caches

Main memory

x=21660

multi-core chip

s
s
 s
 s

list with who has a copy1

2

207
71

Cache

CPU

Memory

same variable is present in

multiple places

cache coherency ensures that one always gets the
right value ... regardless of where the data is

208

Invalidation vs Update

• Multiple writes to the same location

• invalidation: only the first time

• update: must broadcast each write  

 (which includes new variable value)

• Invalidation generally performs better: 
 it generates less bus traffic

Current and Future Hardware

209

Modern CPU’s and Systems

• IBM Power

• Intel Xeon

• AMD Zen and Ryzen

• GPGPU’s

• FPGA’s

• ARM

210

Power6

• Decimal Floating point unit

• In Order execution:

• faster clock (4.7 GHz)

• larger cache

• SMT can deal with unused units

• but compiler has to make good code!

211

Power 10

212

52 IBM Power E1080: Technical Overview and Introduction

! PCIe Version 5.0 interface

To support external I/O connectivity and access to internal storage devices, the Power10
processor provides differential Peripheral Component Interconnect Express version 5.0
interface busses (PCIe Gen 5) with a total of 32 lanes. The lanes are grouped in two sets
of 16 lanes that can be used in one of the following configurations:

– 1 x16 PCIe Gen 4
– 2 x8 PCIe Gen 4
– 1 x8, 2 x4 PCIe Gen 4
– 1 x8 PCIe Gen 5, 1 x8 PCIe Gen 4
– 1 x8 PCIe Gen 5, 2 x4 PCIe Gen 4

Figure 2-2 shows the Power10 processor die with several functional units labeled. Note, 16
SMT8 processor cores are shown, but only 10-, 12-, or 15-core processor options are
available for Power E1080 server configurations.

Figure 2-2 The Power10 processor chip (Die photo courtesy of Samsung Foundry)

8 SMT, 7 nm

Each socket holds one Power10 single chip module (SCM). An SCM can contain 10, 12, or 15 Power10 processor cores.

IBM power roadmap

213

IBM roadmap

214

Intel

215

Tick-Tock

216

217

The Intel Nehalem (Core architecture)
Processor

A Modular Design for Flexibility

M 
i 
s 
c 
  
I 
O

M 
i 
s 
c 
  
I 
O

Q 
P 
I 
  
1

Q 
P 
I 
  
0

Memory Controller

Core Core Core CoreQ 
u 
e 
u 
e

Shared L3 Cache

QPI: Intel® QuickPath
Interconnect (Intel® QPI)

Skylake 2018

218

219

 AMD Optimizes EPYC Memory with NUMA

 March 2018 Copyright © 2018 TIRIAS Research. All Rights Reserved Page 4

By partitioning one socket into multiple NUMA nodes,
sub-NUMA optimization can keep tasks on cores close to
the memory controller, just like EPYC. NUMA reduces
memory latencies and reduces cross-die data traffic,
EHFDXVH�,QWHO¶V�Manhattan Mesh (Figure 4) has no
diagonal connections.

In an ideal software runtime environment, every
processor socket would have enough memory to satisfy
all the threads the OS schedules in each socket. But that
is not the case for many modern workloads. Sometimes a
data set is too large to be contained in the memory
attached to a single socket, no matter that cores allocated
to process the data can reside in one socket. Sometimes,
workloads compete for local resources and create local
bottlenecks.

With dual socket configurations, latency for memory
access between sockets will have a significant latency
penalty when memory accesses cross a socket-to-socket interconnect, whether that interconnect
is AMD Infinity Fabric or Intel QPI. With dual-socket designs, from either AMD or Intel, a
NUMA scheduler should place threads and data on cores in the same socket to reduce latencies,
otherwise data requests between sockets results in higher latencies.

Figure 4: Intel Skylake-X Mesh Fabric

Source: Intel

What is Non-Uniform
Memory Access (NUMA)?
A multiprocessing (multi-die)
architecture in which each processor is
attached to its own local memory (called
a NUMA domain) but can also access
memory attached to another processor.

,W�LV�FDOOHG�³QRQ-XQLIRUP´�EHFDXVH�D�
memory access to the local memory has
lower latency (memory in its NUMA
domain) than when it needs to access
PHPRU\�DWWDFKHG�WR�DQRWKHU�SURFHVVRU¶V�
NUMA domain.

The advantage of this architecture is that
it provides multiprocessor scalability,
adds more memory bandwidth with the
addition of more processor, and reduces
the memory contention for CPUs if they
are competing for access across a
common bus (shared front-side bus).

AMD

220

AMD design

221

 AMD Optimizes EPYC Memory with NUMA

 March 2018 Copyright © 2018 TIRIAS Research. All Rights Reserved Page 2

Figure 2: EPYC Multi-Chip Yield Tradeoff

Source: AMD

AMD Design Choices
The company built the EPYC processors using multiple Zeppelin die for scalable server systems.
A multi-die approach is advantageous, because it allows AMD to build a server processor with a
high core count, memory bandwidth, and I/O without a more expensive and low-yielding chip
manufacturing process. The resulting MCM solution is also designed to be scalable, allowing
AMD to offer a full range of server processors and a leading-edge high performance PC
processor (Threadripper), plus a variation of the Zeppelin die that was used as a high-
performance PC processor (Ryzen).

The EPYC package consists of four 213 mm2 Zeppelin die. The aggregate of those four die is
852 mm2 of silicon area per SDFNDJH��7KDW�GLH�VL]H�LV�DFWXDOO\�WRR�ELJ�WR�EXLOG�XVLQJ�WRGD\¶V�
optical lithography techniques. AMD estimates that if EPYC was built as a (hypothetical)
monolithic die, it could remove some of the inter-die IF and PHY, and some additional logic for
a ~10% size savings. Removing about 10% from the 852 mm2 theoretical die reduces it to about
777 mm2, which can fit inside an optical reticle. Still the 777 mm2 die would have relatively low
yields, because there is an inverse-exponential reduction in yield with larger die size. Using
$0'¶V�KLVWRULFDO�\LHOG�PRGHO�DQG�SURGXFWLRQ�GHIHFW�GHQVLW\��$0'�HVWLPDWHG�WKDW�WKH�IRXU�
smaller die were less than 60% of the cost of the one large die (Figure 2). Using multiple smaller
die has an inherent higher yield and, thereby, a cost advantage.

The tradeoff for using multiple die is that there is additional latency for memory access between
the die across the package. The Infinity Fabric connections between packages (Figure 3) are
distributed across the four Zeppelin die for balance. Modern operating systems support NUMA
and manage the variable latencies, as explained below.

https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-With-NUMA.pdf

Text

AMD Chiplets

222

Text

223

Text

224

AMD marketing

225

AMD ZEN 2017

226

AMD: Rome (Zen2) and Milan (Zen3)

• 7nm Zen 3 cores

227

ARM: Advanced RISC Machines

• ARM only licenses its technology as intellectual property, rather
than manufacturing its own CPUs.

• Companies making processors based on ARM's designs.  
Intel, Apple, Samsung,Texas Instruments, Analog Devices, Atmel,
Freescale, Nvidia, Qualcomm, STMicroelectronics and Renesas
have all licensed ARM technology.

• Design focussed on low power consumption and mainly used in
handheld devices (also called phones).

228

ARM Fujitsu A64FX

229

&38�$UFKLWHFWXUH��$��);
z $UPY����$��$$UFK���RQO\����69(��6FDODEOH�9HFWRU�
([WHQVLRQ�
z)3���)3���)3����KWWSV���GHYHORSHU�DUP�FRP�SURGXFWV�DUFKLWHFWXUH�D�
SURILOH�GRFV�

z 69(�����ELW�ZLGH�6,0'�
z ��RI�&RUHV������������IRU�26�

� ͞�ŽŵŵŽŶ͟�ƉƌŽŐƌĂŵŝŶŐ�ŵŽĚĞů�ǁŝůů�ďĞ�ƚŽ�ƌƵŶ�ĞĂĐŚ�
DW/�ƉƌŽĐĞƐƐ�ŽŶ�Ă�EhD��ŶŽĚĞ�;�D'Ϳ�ǁŝƚŚ�KƉĞŶDWͲ
DW/�ŚǇďƌŝĚ�ƉƌŽŐƌĂŵŵŝŶŐ͘

� ϰϴ�ƚŚƌĞĂĚƐ�KƉĞŶDW�ŝƐ�ĂůƐŽ�ƐƵƉƉŽƌƚĞĚ͘

�D';�ŽƌĞͲDĞŵŽƌǇͲ'ƌŽƵƉͿ͗�EhD��ŶŽĚĞ
ϭϮнϭ�ĐŽƌĞ�

z &R�GHVLJQ�ZLWK�DSSOLFDWLRQ�GHYHORSHUV�DQG�KLJK�
PHPRU\�EDQGZLGWK�XWLOL]LQJ�RQ�SDFNDJH�VWDFNHG�
PHPRU\��+%0����*L%�

z /HDGLQJ�HGJH�6L�WHFKQRORJ\���QP�)LQ)(7����ORZ�SRZHU�
ORJLF�GHVLJQ �DSSUR[�����*)�:��GJHPP����DQG�
SRZHU�FRQWUROOLQJ�NQREV

z 3&,H *HQ�����ODQHV
z 3HDN�SHUIRUPDQFH
z !�����7)/236��!����#�GJHPP�
z 0HPRU\�%�:�����*%�V��!����VWUHDP�
z %\WH�SHU�)ORSV���DSSUR[������

,�DϮ͗�ϴ'ŝ�
ϮϬϭϵͬϱͬϭϳ

ARM Fujitsu A64FX

230

&0*��&RUH�0HPRU\�*URXS�
z &0*�����FRUHV��������DQG�/��FDFKH���0L%���ZD\��DQG�PHPRU\�
FRQWUROOHU�IRU�+%0����*L%�

z ;�EDU�FRQQHFWLRQ�LQ�D�&0*�PD[LPL]H�HIILFLHQF\�IRU�WKURXJKSXW�RI�/��
�!����*%�V�IRU�5��!���*%�V�IRU�:�

z $VVLVWDQW�FRUH�LV�GHGLFDWHG�WR�UXQ�26�GHPRQ��,�2��HWF
z ��&0*V�VXSSRUW�FDFKH�FRKHUHQF\�E\�FF180$ ZLWK�RQ�FKLS�GLUHFWRU\�
��!����*%�V�[���IRU�LQWHU�&0*V�

&ŝŐƵƌĞƐ�ĨƌŽŵ�ƚŚĞ�ƐůŝĚĞ�
ƉƌĞƐĞŶƚĞĚ�ŝŶ�,ŽƚĐŚŝƉƐ
ϯϬ�ďǇ�&ƵũŝƚƐƵ

ϮϬϭϵͬϱͬϭϳ

ShenWei SW26010 Microprocessor

• 4x (64 CPE + 1 MPE) cores

• 64-bit RISC

• 1.45 GHz

• 256 bit vectors

• each core 8 flops/cycle => 3.06 Tflop/s

• no-cache

• 128-bit system bus

• DDR3 2133, 4 channels, max 32 GB

• 6 Gflop/Watt => very energy efficient  

(most Xeon’s ~2 Gflop/Watt)

231

Text

232

233

Observation: More Processors per socket

• Intel IceLake: 2021, 36 cores

• AMD Rome: 2020, 64 cores, 8 modules

• IBM Power 10: 2021, 15 cores SMT=8

• Arm: 16+ cores

Alternatives to multi-core CPU

• GP-GPU: graphical cards

• Intel Ponte Vecchio ~GPU accelerator

• FPGA

• Special computational boards

234

GP-GPU

• Use graphical processors for computational work

• enormous market (games) creates cheap products

• flops are cheap: communication is expensive

• Nvidia

• first generation (G80)

• just a graphical card which also runs some codes

• second generation (tesla, G200)

• graphical card with floating point runs more codes

• third generation (fermi)

• HPC card which can also do graphics very well

• fourth generation (kepler)

• HPC card with cache

235

AMD story

• Movie: 
 
AMD Building Blocks- A Look Inside Your Personal Computer

236

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/
HSA_TIRIAS_Whitepaper_Final_1-28-14.pdf

GPU vs CPU

237

GPU CPU

simple architecture complex architecture

many cores > 1000 a few cores 12-64

energy efficient flops per core high energy flops per core

specialized computing general computing

GDDR DDR

in-order out-of-order, superscalar

branch prediction, SMT

CPU connected to GPU

238

CPU

GPU

N

S

•local memory

•bandwidth to reach GPU fine

•latency very highm

em
or

y

m
em

oryPCIe

~300 GB/s

~8 GB/s

~100 GB/s

32 GB

6 GB

GP-GPU

• GPU usage

• Algorithms and applications using the Fast Fourier Transform

• Audio processing and DSP

• Digital image and video processing

• Raytracing

• Weather forecasting

• Neural networks

• Molecular modeling

• Database operations

• Reverse Time Migration (Finite Difference)

A nice introduction can be found at:

http://en.wikipedia.org/wiki/GPGPU]

239

 Chapter 1. Introduction to CUDA

CUDA Programming Guide Version 2.0 3

computation – exactly what graphics rendering is about – and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control, as schematically illustrated by Figure 1-2.

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control; and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

The CUDA programming model is very well suited to expose the parallel
capabilities of GPUs. The latest generation of NVIDIA GPUs, based on the Tesla
architecture (see Appendix A for a list of all CUDA-capable GPUs), supports the
CUDA programming model and tremendously accelerates CUDA applications.

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Nvidia

240

http://www.nvidia.com/object/cuda_develop.html

Fermi (2010)

241

NVLink

242

243

Nvidia Ampere (2021)

• Threads: xxx

• Streaming Multiprocessor (SM) has 64 FP32 units

• There are 128 SM’s

• Mixed floating point format

• 64, 32 and 16-bit FP, Tensor cores …

• Memory 1000 GB/s of

• 16 / 32 GB HBM2 (High bandwidth Memory)

• NVLink: to directly access memory of another GPU or CPU

• 7 nm FinFET

244

245

Ampere’s all 128 SM’s

246

AMD GPU’s: MI200

247

How does a GPU hide memory latency

248

• GPU’s issue instructions in order

• Issue stalls when instruction arguments are not ready

• GPUs switch between threads to hide latency

• context switch is free: thread state is partitioned (large

register file), not stored / restored

• Need enough threads to hide latency and saturate the memory
bus.

Text

249

Text

250

Programming

GPU instructions

• Single-Instruction Multiple-Threads (SIMT) model

• A single instruction is issued for a warp (thread-vector) at a time

• NVIDIA GPU: warp = a vector of 32 threads

• AMD GPU: wavefront = a vector ot 64 threads

• warp = group of 32 threads that always execute same
instructions simultaneously.

251 Programming 252

© NVIDIA 2011

Execution diverges within a warp

in
st

ru
ct

io
ns

 /
tim

e

3 2 1 31 30 0 35 34 33 63 62 32

Intel’s first answer to GPU’s: MIC

253

Many Integrated Cores, X86 based

Knight Ferry: 32 cores at 1.2 GHz, linked via PCIe

16 (single) flops/cycle

Intel’s latest Ponte Vecchio

254

Programming Nvidia GPU’s

255

OpenACC

256

• Open standard for addressing the acceleration of Fortran, C and  
C++ applications

Originally designed by Cray, PGI and Nvidia

Directives can be ignored on systems without accelerator

Can be used to target accelerators from Nvidia, AMD and Intel

http://www.openacc-standard.org/

Which accelerator?

• HPC market too small and likely that only one accelerator will
dominate HPC

• Vector based accelerators

• Flops/Watt an important factor

257

You can see the need for scalability 

•   Assert that a strong scaling execu7on model is 
required to run on future massively parallel 
devices 

Intel Sandy Bridge 

Core I7 3960X 

(6 core) 

NVIDIA Fermi 

(1,536 CUDA cores) 

AMD 7970 

(1,280 work‐item) 

NVIDIA Kepler K20 

(2,880 CUDA cores) 

258

Parallel programming skills are needed to program these chips.

FPGA

• Field-programmable gate array

• Adjust the architecture to the needs of your algorithm

• Invented 1984

• Used heavily in embedded and real-time systems

• Occasionally Use in supercomputers like Cray XD1, SGI RASC,
Convey, SRC computing

• Programmability!

• An overview can be found at: [http://en.wikipedia.org/wiki/Field-programmable_gate_array]

259

Application Acceleration Interface
User 
Logic

ADDR(20:0)
D(35:0)
Q(35:0)

TX

RX

RapidArray

ADDR(20:0)
D(35:0)
Q(35:0)

ADDR(20:0)
D(35:0)
Q(35:0)

ADDR(20:0)
D(35:0)
Q(35:0)

RapidArray

Transport

Core
QDR RAM

Interface Core

QDR
SRAM

RAP

• XC2VP30 running at 200 MHz.

• 4 QDR II RAM with over 400 HSTL-I I/O at 200 MHz DDR (400 MTransfers/s).

• 16 bit simplified HyperTransport I/F at 400 MHz DDR (800 MTransfers/s.)

• QDR and HT I/F take up <20 % of XC2VP30. The rest is available for user applications.

260

FPGA Development Flow

VHDL, 
Verilog,
C

Modelsim

Synplicity, 
Leonardo, 
Precision, 
Xilinx ISE

Xilinx ISE

Simulate

ImplementSynthesize HDL

Xilinx  
ChipScope

From Command line
or Application

Cores

Download

Verify

RAP I/F, 
QDR RAM I/F 0100010101

1010101011
0100101011
0101011010
1001110101
0110101010

Binary File

Metadat
a

Looking at the future

262

The future in 2000

263 264

Looming Power Crisis

• New Constraints

– Power limits clock rates

– Cannot squeeze more

performance from ILP
(complex cores) either!

• But Moore’s Law continues!

– What to do with all of those

transistors if everything else is
flat-lining?

– Now, #cores per chip doubles
every 18 months instead of
clock frequency!

• The “Free Lunch” is over!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

Limitation of chip design

• Size

• Speed

• Power

265

• 2003 IEEE International Solid-State Circuits Conference 0-7803-7707-9/03/$17.00 ©2003 IEEE

Figure 9.6.2: Projected fraction of chip reachable in one cycle with an 8FO4 clock period.

Wire delay

266

Projected fraction of chip reachable in one cycle with an 8FO4 clock period.

267

Processor Technology Trends

• Shrinking of transistor sizes: 250nm (1997) =>  
130nm (2002) => 65nm (2007) => 45nm (2009) => 32nm (2010)  
=> 22 nm (2011/12) => 14 nm (2017/18) => 7 nm (2019/20)

• Transistor density increases by 35% per year and die size

 increases by 10-20% per year… more cores!

• Transistor speed improves linearly with size  
(complex equation involving: voltages, resistance's, capacitances, …) 
and lead to clock speed improvements!

268

MOSFET

• Transistor shrinking leads to

• area of gate gets smaller

• thinner gate-oxide gives stronger electric fields that allows faster

switching (higher processor clock).

• at 45 nm the gate di-electric is 0.9 nm thick : size of a single SiO2

molecule.

269

Shrinking transistors

270

JFET-transistor

271

Leakage

• The gate is the electrical connection that controls the MOS
switch. The gate is separated from the rest of the MOS transistor by
an insulating layer. As this layer gets thinner, the transistor
performance improves. However, at a certain point, the gate is so
thin that it leaks electrons.

272

short channel effects

273

Element Size x Supply Voltage  
 

Source:Semiconductor Industry Association (SIA), US 274

V approaching zero more leakage

275 276

• Time for a Disney movie

277

Physical limitations: Power

• The most difficult problem is to control power dissipation.

~280 watts is considered a maximum power output of a
processor.

As we pack more transistors, the power output goes up and
better cooling is necessary.

current leakage increases with smaller chip design

Power = C * f * V2 ~ area * frequency * Voltage2

278

• Moore’s Law

• Silicon lithography will improve by 2x every 18 mth

• Double number of transistors per chip every 18 mth

• CMOS Power

Total Power = V2 * f * C + V * Ileakage

 active power passive power

• As we reduce feature size Capacitance (C)
decreases proportionally to transistor size

• Enables increase of clock frequency (f)
proportionally to Moore’s law lithography
improvements, with same power use

• This is called “Fixed Voltage Clock Frequency
Scaling” (Borkar `99)

• Since ~90nm

• V2 * f * C ~= V * Ileakage

• Can no longer take advantage of frequency scaling
because passive power (V * Ileakage) dominates

• Result is recent clock-frequency stall reflected in
Patterson Graph at right

279

What is Happening Now?

SPEC_Int benchmark performance since
1978 from Patterson & Hennessy Vol 4.

Developments Transistors

280

fin-FET

281

gate-all-around (2020)

282

The nm story

283 284

Where are we headed and Why?
• Modern trends:

• Clock speed improvements are not increasing

‣ power constraints

‣ already doing less work per stage

• Difficult to further optimize a single core for performance

• Multi-cores: each new processor generation will accommodate
more cores

• Integrated of functionality on the die:

• memory controller

• direct connect to other processor(s)

• PCI

• network interface chip (NIC)…

Why multi-core

• Not enough ILP (Instruction Level Parallelism), adding more will
not get faster runtimes

• all ILP has already been explored the last 20 years

• Signal propagation delay >> transistor delay

• Power consumption Pactive ~ C * f * V2 ~ f3

285 Institutionen för informationsteknologi | www.it.uu.se MC 14 © Erik Hagersten| user.it.uu.se/~eh

PDC
Summer
School
2010

Example: Freq. Scaling

freq
1.20

speed
1.13

pow
1.51

freq
0.80

speed
0.87 pow

0.51

freq
0.80

speed
0.87 pow

0.51

pow
0.51

speed
0.87

20% higher freq. 20% lower freq. 20% lower freq.
Two cores

1.0

Frequency Scaling

286

Trends
• Frequency scaling is now prevented by physical constraints

‣ Heat (too much of it and too hard to dissipate)

‣ Power Consumption (too high)

‣ Current leakage problems

• Future performance gains will come from

‣ Hyperthreading

‣ Multicore

‣ Cache

• This requires better and parallel software !

287 288

Current Technology will require huge
amounts of power for Exascale systems

If�these�trends�continue,�
an Exaflop computer willan�Exaflop computer�will�
require�50�100�MW�of�

power�in�2018

9 CAS2K9 September 13, 2009

289

Huge Power for Exascale systems It’s not that bad

290

Power management on modern cores

• PM ensure that cores do not overheat and remain functional for a longer
time.

• Modern processors (x86) tend to be power limited rather than frequency
limited  

• Different workloads (i.e., executed instruction sequences) will generate
different amounts of power consumption in the processor. This can grow
quite large.

• Current processors from AMD and Intel contain dedicated microcontrollers
that administer power management.  
If changes in the operating scenario cause any one parameter to approach
its limit, the controller must throttle the processor’s performance to
compensate. These adjustments can happen every millisecond.

291

Text

292

• hardware performance varies ~30% within the same processor

• The same factors that are required to make transistors switch faster (higher

frequency) also increase leakage.

Text

293

• Heat affects transistor operating characteristics

294

turbo-boost

295

• allows the power management controller to dynamically provide the best
performance (frequency) possible for the specific operating scenario in real-
time.

296

297

Questions

• Is Multicore really the answer?

• FPGAs? Quantum computing?

• What else might be waiting in the wings

• What about advances in circuit fabrication?

• alternatives to Si: SOI, Hafnium doping, plastics

• optical wires, photonic communication

• superconducting

• What about memory?

• Its starting to consume more space than CPU cores!

• Packaging changes (3D Stacking? Optical Interfaces?)

Programming

Quantum computing

298

Programming

Quantum computing

• Claims to solve NP-Complete Problems

• traveling salesman problem

• Graph Coloring Problem: can you color a graph using k ≥ 3 colors

such that no adjacent vertices have the same color?

• one algorthm can solve all NP-complete problems

• NP-Complete Problems

• solution is easy to verify

• number of compute steps grows exponentially with problem size

• Quantum computing also leads to a better understanding of
quantum physics.

299

Program Manager: Dr. Marc Manheimer; E-mail: marc.manheimer@iarpa.gov

Cryogenic Computer Complexity (C3)

• Prototype will have a simple SIMD-type architecture
• Goals and metrics derived with IC partners to provide high

value insights into the technology

The ultimate program goal is a prototype superconducting
computer that will enable the IC to evaluate the technology

The power, space, and cooling infrastructure required by
computer facilities is an impediment to upgrading facilities
and to engineering the next generation of supercomputers

Title

C3 is divided into two thrusts, one to develop energy-efficient
cryogenic memory, and the other to develop the logic,
interconnects and system plan

• Exascale-and-beyond computing for less than 20 MW of electricity may be

impossible to attain with conventional semiconducting technology.

• Supercomputers based on cryogenic superconducting technology may be
an energy efficient path forward.

The Path to the Next Generation of High Performance Computers

Performance predictions for superconducting computing are
based on key technology advantages and developments.

• Near zero-energy interconnect

• New ideas for energy-efficient cryogenic memory

• New zero static power dissipation logic

• Engineering solution for data ingress and egress

• High reliability cryogenic refrigerators

Program began in September. Key performers are:

• Cryogenic memory:

• Logic, Systems, Interconnect:

• With superconducting circuit fabrication

provided by MIT Lincoln Laboratory

• And independent test and

evaluation by NIST, Boulder

There are two key questions that this program needs to
answer in order to be a success.

• Can we build an energy efficient superconducting computer at scale
that is useful for solving intelligence community problems?

• Is this computer sufficiently better than a computer based on
conventional technology that we want to build it?

Accomplishments to date

Lincoln Laboratory has been upgrading its niobium fabrication facility over
the past year. The facility has made two noteworthy achievements.

• The Lincoln Laboratory niobium foundry is now the most advanced

niobium foundry in the world, with sub-micrometer-scale feature size,
100 MA/m2 junction critical current density, eight metallization layers,
and full layer planarization

• Lincoln Laboratory has fabricated the most complex fully-functioning

digital superconducting circuit, containing more than 40,000
Josephson junctions; the most complex fully-functioning chip with more
than 70,000 Josephson junctions.

2 Pm
8 niobium layer cross-section

Junction Layers

Wiring Layers

Program Manager: Dr. Marc Manheimer; E-mail: marc.manheimer@iarpa.gov

Cryogenic Computer Complexity (C3)

• Prototype will have a simple SIMD-type architecture
• Goals and metrics derived with IC partners to provide high

value insights into the technology

The ultimate program goal is a prototype superconducting
computer that will enable the IC to evaluate the technology

The power, space, and cooling infrastructure required by
computer facilities is an impediment to upgrading facilities
and to engineering the next generation of supercomputers

Title

C3 is divided into two thrusts, one to develop energy-efficient
cryogenic memory, and the other to develop the logic,
interconnects and system plan

• Exascale-and-beyond computing for less than 20 MW of electricity may be

impossible to attain with conventional semiconducting technology.

• Supercomputers based on cryogenic superconducting technology may be
an energy efficient path forward.

The Path to the Next Generation of High Performance Computers

Performance predictions for superconducting computing are
based on key technology advantages and developments.

• Near zero-energy interconnect

• New ideas for energy-efficient cryogenic memory

• New zero static power dissipation logic

• Engineering solution for data ingress and egress

• High reliability cryogenic refrigerators

Program began in September. Key performers are:

• Cryogenic memory:

• Logic, Systems, Interconnect:

• With superconducting circuit fabrication

provided by MIT Lincoln Laboratory

• And independent test and

evaluation by NIST, Boulder

There are two key questions that this program needs to
answer in order to be a success.

• Can we build an energy efficient superconducting computer at scale
that is useful for solving intelligence community problems?

• Is this computer sufficiently better than a computer based on
conventional technology that we want to build it?

Accomplishments to date

Lincoln Laboratory has been upgrading its niobium fabrication facility over
the past year. The facility has made two noteworthy achievements.

• The Lincoln Laboratory niobium foundry is now the most advanced

niobium foundry in the world, with sub-micrometer-scale feature size,
100 MA/m2 junction critical current density, eight metallization layers,
and full layer planarization

• Lincoln Laboratory has fabricated the most complex fully-functioning

digital superconducting circuit, containing more than 40,000
Josephson junctions; the most complex fully-functioning chip with more
than 70,000 Josephson junctions.

2 Pm
8 niobium layer cross-section

Junction Layers

Wiring Layers

Programming

Superconducting

• Cryogenic Computer Complexity

The hardest is to develop high-density, high-efficiency, low-latency, cryogenic memory.

300

Memory

• Extend Hierarchy with another layer between DRAM and HardDisk

• SSD/FLASH layer

• Extend / Replace DRAM to non-volatile memory

301

Developments in Memory

• 3D packing of memory elements

• Hybrid Memory Cube (HMC)  

HMC uses standard DRAM cells, but it has more data banks.

• High Bandwidth Memory (HBM) 
HMB2 DRAM chips are 8Gb each, and they can be stacked up to 8
high, yielding an 8GB 256GB/s lan

302

Text

303

Complexity – Memory

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HHD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~1 TB

~10 msec / ~100 MB/s / ~10 TB

2015

~10 msec / ~100 MB/s / ~100 TB

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HHD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~10 TB

HBM ~10 ns / ~1TB/s / ~10GB

NVM (3D Xpoint) ~1 usec / ~10GB/s / ~1TB

2020
HPE The machine

• Memristors

• fuse memory and storage,

• flatten complex data hierarchies,

• bring processing closer to the data,

• embed security control points throughout the hardware and software

stacks

• crapping the distinction between storage and memory.

A single large store of memory based on HP’s memristors will
both hold data and make it available for the processor.

A Dream not come true.

304

European Chips Act (8-2-2022)

• €43 billion euros of public and private investments

• Become a leader in this field beyond research and technology in design,

manufacturing and packaging of advanced chips, to secure its supply of
semiconductors and to reduce its dependencies.

•

Programming

What about Europe?

305

© European Union, 2022
Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39).
For any use or reproduction of elements that are not owned by the European Union, permission may need to be sought directly from the respective rightholders. All images © Getty Images
Plus / iStock / DigitalVision Vectors, Unsplash – Laura Ockel

Up
da

te
d

20
22

-0
2-

08

EUROPEAN CHIPS ACT
The European Chips Act will ensure that the EU strengthens its semiconductors ecosystem, increases its resilience, as well as
ensure supply and reduce external dependencies.

The Chips Act proposes:

• Investments in next-generation technologies

• Access across Europe to design tools and pilot lines for the prototyping, testing and experimentation of
cutting-edge chips

• Certification procedures for energy-efficient and trusted chips to guarantee quality and security for critical applications

• A more investor-friendly framework for establishing manufacturing facilities in Europe

• Support for innovative start-ups, scale-ups and SMEs in accessing equity finance

• Fostering skills, talent and innovation in microelectronics

• Tools for anticipating and responding to semiconductors shortages and crises to ensure security of supply

• Building semiconductor international partnerships with like-minded countries

1. Strengthen Europe’s
research and technology

leadership towards
smaller and faster chips

2. Build and reinforce
capacity to innovate in

the design, manufacturing
and packaging of
advanced chips

3. Put in place a
framework to increase

production capacity
to 20% of the global

market by 2030

4. Address the skills
shortage, attract

new talent and support
the emergence of a

skilled workforce

5. Develop an in-depth
understanding of the
global semiconductor

supply chains

The Chips Act should result in additional public and private investments of more than €15 billion.

These investments will complement:

• existing programmes and actions in research & innovation in semiconductors (Horizon Europe, Digital Europe
programme)

• announced support by Member States.
In total, more than €43 billion of policy-driven investment will support the Chips Act until 2030, which will be
broadly matched by long-term private investment.

Short term
Anticipate, coordinate and prepare

for future chips crisis to ensure rapid
response to disruptions in supply chains.

Medium term
Strengthen design and

manufacturing capacities
in Europe.

Long term
Maintain Europe’s technological
leadership through transfer of

knowledge from R&D to production.

BOOK ISBN 978-92-76-47288-9 doi:10.2759/133232 KK-01-22-087-EN-C
PDF ISBN 978-92-76-47242-1 doi:10.2759/197183 KK-01-22-087-EN-N

Programming

PRACE

306

Advise for programmers

307

Get ready for multi-core

to be continued...

IO interface and hardware

308

IO Interfaces

• CPU interface and interaction with IO storage device(s)

• SATA (Serial ATA)

• SCSI (Serial Attached S)

• PCIe, NVMe

• Hard drive

• magnetic disks

• SSD

ATA: 16 wires of data in parallel

SATA: serial transport line through 2 wires

309

The Problem With Disk: It’s Sloooooowww

on-chip cache
KBs

off-chip cache
MBs

main memory
GBs

Disk
TBs

Cost

2.5 $/MB

0.07 $/MB

0.000008 $/MB

Access time

5ns

60ns

10,000,000ns

< 1ns

Hard Disks

310

• Magnetic: rotating disk slow access

• 125 MB/s max

• cheap $0.04/GB

• Solid State Disks (SSD)

• 250 MB/s read

• Fast in (random) IO operations per seconds

• expensive $0.5/GB

311

Exercise: 1 Cycles

• Counting cycles of basic operations; addition, multiplication,
division, ...

• On your git clone: cd HPCourse/Cycles

• Check the README for instructions.

• Links:

http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

312

Exercise 2: Memory hierarchy

• Measuring the memory bandwidth of your computer.

• On your git clone: cd HPCourse/LoadStore

• Check the README for instructions.

• The program produces an ASCII output file which contains the
result.

• Results can be plotted with gnuplot, (set style data linespoints)

• Sent interesting results (ASCII files) to janth@xs4all.nl

313

Exercise 3: Memory latency

• Measuring the latency of memory hierarchy

• On your git clone: cd HPCourse/lat_mem_rd

• Check the README for instructions.

• The program produces an ASCII output file which contains the
result: Mbytes, nanoseconds, cycles

• Sent interesting results (ASCII files) to janth@xs4all.nl

• additional information: 
http://www.bitmover.com/lmbench/lat_mem_rd.8.html

314

