
Type to enter text

Challenge the future

Delft
University of
Technology

Operating Systems
Design and Function

Jan Thorbecke

Operating System (OS) Contents
• What is and does and OS

• system and kernel functions

• Processes

• File systems
• Storage

• Unix and Linux

• Windows

• Handy commands in Linux

2

system and application programs

Four Components Computer System

user
n

user
1

user
3

user
2

operating System

hardware

IO fdelmodc compiler text

Operating System Definition

• OS is a resource allocator
• Manages all resources

• Decides between conflicting requests for efficient and fair resource
use

• OS is a control program
• Controls execution of programs to prevent errors and improper

use of the computer

• OS for protection and security
• The owners of information stored in a multiuser or networked

computer system may want to control use of that information,
concurrent processes should not interfere with each other

4

Managing resources

5

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

• Three most common APIs are

• Win32 API for Windows,

• POSIX API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and

• Java API for the Java virtual machine (JVM)

• Why use APIs rather than system calls?

6

Example of System Calls

7

• System call sequence to copy the contents of one file to another file

System Call Implementation

• Typically, a number associated with each system call

• System-call interface maintains a table indexed according to these numbers

• look for unistd.h in linux or http://www.linfo.org/system_call_number.html

• The system call interface invokes intended system call in OS kernel and
returns status of the system call and any return values

• The caller need know nothing about how the system call is
implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into libraries included

8

API – System Call – OS Relationship

9

Types of System Calls

• Process control

• load execute, wait, allocate/free memory, create process, ..

• File management

• create, open, close, read, write,

• Device management

• request device, read write, get set, attach detach

• Information maintenance

• get set time/date, process file attributes

• Communications

• create connection, send receive, transfer,

10

OS Implementations

11

Layered Approach

• The operating system is divided into a number of layers (levels),
each built on top of lower layers. The bottom layer (layer 0), is
the hardware; the highest (layer N) is the user interface.

• With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

12

Layered Operating System

13

Example: layered TCP/IP stack

14

UNIX

• The UNIX OS consists of two separable parts

• Systems programs

• The kernel

• Consists of everything below the system-call interface and above the

physical hardware
• Provides the file system, CPU scheduling, memory management, and other

operating-system functions; a large number of functions for one level

15

UNIX System Structure

16

Virtual Machines

• A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system
kernel as though they were all hardware

• A virtual machine provides an interface identical to the
underlying bare hardware

• The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory

17

Virtual Machines

18

The Java Virtual Machine

19

Service handling by OS

• External devices (keyboard, printer, mouse, harddisk, …) ask for a
service from the OS

• How does the OS know it has something to do?

• Polling
Operating system periodically checks each device if it needs a service

• extra overhead, while it might not be needed
• Interrupt

Each device can signal the OS. When interrupt signalled, processor
executes a routine called an interrupt handler to deal with the
interrupt

• No overhead when no requests pending

20

Polling vs Interrupts

• “Polling is like picking up your phone every few seconds to see if
you have a call. Interrupts are like waiting for the phone to ring.”

• Interrupts win if processor has other work to do and event
response time is not critical.

• Polling can be better if processor has to respond to an event
ASAP.

• May be used in device controller that contains dedicated secondary
processor.

21

Transfer of Control via Interrupt

22

0
1

i
i+1

N

user process interrupt process handler

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.

• Interrupt architecture must save the address of the interrupted
instruction.

• Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused either by an error
or a user request.

• Most operating system are interrupt driven.

23

Interrupt Timeline

24

Context Switch
• When CPU switches to another process, the system must save

the state of the old process and load the saved state for the
new process

• Context-switch time is overhead; the system does no useful
work while switching

• Time dependent on hardware support

25

Context Switch

26

running

waitingr

wrunning

r

runningw

Small side-step:
Interrupts and parallelization

27

Why specialized massive parallel system engineers
(10.000+ cores) pay special attention to kernel
interrupts?

"The Case of the Missing Supercomputer Performance."

http://hpc.pnl.gov/people/fabrizio/papers/sc03_noise.pdf

Process and Context Switching

• Processor (CPU) runs one process at a time
• To run a process, set the program counter (PC).
• When the processor switches from one process to another it performs

a context switch
• Context switch: swap out the context of currently running process

and swap in the context of the process to start running

• The operating system is made up of processes.
• When an application is running, the OS is not in the CPU.
• The OS only runs

• When the timer goes off because an application has been running long
enough and it is someone else’s turn.

• When it is explicitly called from the application to do something.
• When an interrupt has occurred (e.g. page fault)

28

Noise Illustration for a Serial Application

29

Application execution time

System time, or Noise

For a serial job, the performance “degradation” caused by noise is
simply the additional elapsed time due to time spent on system
activity

Effect of Noise in a Parallel Application

30

Synchronization

Idle time due to noise
on rank 0

(synchronization
overhead)

Noise on rank 0

Pathological Noise in a Parallel
Application

31

• In each synchronization interval, one rank experiences a noise
delay

• Because the ranks synchronize, all ranks experience all of the
delays

• In this worst-case situation, the performance degradation due
to the noise is multiplied by the number of ranks.

• Noise events that occur infrequently on any one rank (core)
occur frequently in the parallel job

Synchronization overhead amplifies the noise

Trimming OS – Standard Linux
Server

Linux Kernel

Portmap

sshd

slpd

nscd

resmgrd

powersaved

cupsd

kdm

cron mingetty(s)

qmgr master

pickup

ndbd

…

init

klogd

Text

FTQ Plot of Stock SuSE (most daemons
removed)

Time - Seconds

C
ou

nt

Linux on a Diet – CNL

Linux Kernel

ALPS
client syslogd

Lustre
Client init

klogd

Text

FTQ plot of CNL
https://rt.wiki.kernel.org/index.php/FTQ

Time - Seconds

C
ou

nt

Another small side step: GPU’s

• Context switch and GPU’s

• GPU’s have thousands of cores and have to work on 100 of
thousands tasks at the same time to be efficient.

• How can they switch between tasks?

• If a wavefront / warp block stalls (e.g. data dependency) CU’s can
quickly context switch to another wavefront / warp.

36

37

38

I/O Performance

• I/O can be a major factor in system performance:

• Demands CPU to execute device driver, kernel I/O code

• Context switches due to interrupts

• Data copying

• Network traffic especially stressful

39

Kernel I/O Subsystem

• Buffering - store data in memory while transferring between
devices

• To cope with device speed mismatch

• To cope with device transfer size mismatch

• To maintain “copy semantics”

40

Buffer Cache

41

main memory

file data

file dataUser
Kernel

write ()

user
buffer

system
buffer
cache

flush

user data staged in cache
before physical write occurs

periodically flushed
dirty buffers to devices

physical blocks
may need to be
read prior to write

Buffer Cache

• Advantages of buffered IO requests

• A system call IO request can access data already stored in system
cache buffers much faster than it can read from disk.

• The system buffer cache will buffer ‘ill-formed’ user IO requests.
which makes IO programming much easier

• Allows true parallel access to files from multiple threads without the
disk ever being accessed

• Disadvantages of buffered IO requests

• buffer management creates system overhead

• user data is vulnerable until flushed to the device(s).

42

I/O optimization

• Application tuning

• A-synchronous IO

• System tuning

• striped disks

• RAID (discussed later)

43

Blocking and Nonblocking I/O

• Blocking - process suspended until I/O completed

• Easy to use and understand

• Insufficient for some needs

• Asynchronous - process runs while I/O executes

• A bit more difficult to use

• I/O subsystem signals process when I/O completed

• IO can be fully overlapped with processing

• see man aio

44

Asynchronous IO

45

main memory

file data

file dataUser
Kernel

aio_write

user
buffer

system
buffer
cache

process continues immediately
without waiting for IO completion

kernel can send signal notifying
user of IO completion

Standard Sequential I/O

Asynchronous IO

Compute I/O Compute I/O Compute I/O Compute I/O

Time

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Asynchronous I/O

Two I/O Methods

Synchronous Asynchronous

47

Processes

48

Process State

• As a process executes, it changes state
• new: The process is being created
• running: Instructions are being executed

• waiting: The process is waiting for some event to occur
• ready: The process is waiting to be assigned to a processor
• terminated: The process has finished execution

• top and ps command

49

Diagram of Process State

50

Process queue’s

120 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

queue. In the absence of any priority scheme, this can be a simple first-in-first-out
queue. When a running process is removed from execution, it is either terminated
or placed in the Ready or Blocked queue, depending on the circumstances. Finally,
when an event occurs, any process in the Blocked queue that has been waiting on
that event only is moved to the Ready queue.

 This latter arrangement means that, when an event occurs, the OS must scan
the entire blocked queue, searching for those processes waiting on that event. In a
large OS, there could be hundreds or even thousands of processes in that queue.
Therefore, it would be more efficient to have a number of queues, one for each
event. Then, when the event occurs, the entire list of processes in the appropriate
queue can be moved to the Ready state (Figure 3.8b).

 One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for
each priority level. The OS could then readily determine which is the highest-prior-
ity ready process that has been waiting the longest.

Dispatch

Time-out

Event wait

Event 1 wait

Event 2 wait

Event n wait

Event
occurs

Ready queue

Blocked queue

Admit
Release

Processor

Dispatch
ReleaseReady queue

Admit
Processor

Time-out

Event 1 queue
Event 1
occurs

Event 2
occurs

Event n
occurs

Event 2 queue

Event n queue

(a) Single blocked queue

(b) Multiple blocked queues

Figure 3.8 Queueing Model for Figure 3.6

Operating Systems - Internals and Design Principles 7th ed - W. Stallings (Pearson, 2012)

Show on command line

• top with ID of parents (PPID) and ID of processes (PID(PGRP))

52

Communication

• between processes within the same kernel

• between processes running in different kernels

53

system space
message buffer

user space

Communications approaches

54

user space

shared memoryP Q

pointer pointer

P Q

M

M M

send(&m) receive(&m)

Forms of Communication

• Direct

• message goes from sender to receiver

• Indirect

• message goes through an intermediate named object

55

56

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 8Ja
n’

01

Direct communication continued

In this form of communication the interconnection
between the sender and receiver has the following
characteristics:
• A link is established automatically, but the processes

need to know each other’s identity.
• A unique link is associated with the two processes.
• Each pair of processes has only one link between them.
• The link is usually bi-directional, but it can be uni-

directional.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 9Ja
n’

01

Indirect communication
In case of indirect communication, messages are sent
to mailboxes, which are special repositories. A
message can then be retrieved from this repository.

– send (A, message). Send a message to mailbox A.
– receive (A, message). Receive a message from

mailbox A.
This form of communication decouples the sender
and receiver, thus allowing greater flexibility.
Generally, a mailbox is associated with many senders
and receivers. In some systems, only one receiver is
(statically) associated with a particular mailbox; such
a mailbox is often called a port.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 0Ja
n’

01

Indirect communication continued

A process that creates a mailbox is the owner
(sender). Mailboxes are usually managed by the
system.
The interconnection between the sender and receiver
has the following characteristics:
• A link is established between two processes only if they

“ share” a mailbox.
• A link may be associated with more than two processes.
• Communicating processes may have different links

between them, each corresponding to one mailbox.
• The link is usually bi-directional, but it can be uni-

directional.

 Copyright © 1998-2001 by Eskicioglu & Marsland IPC 1 1Ja
n’

01

Message passing by ‘ ‘picture’’

Indirect communication

Direct communication

A
‘‘to B’’

B
‘‘from A’’

C

A B

‘‘from P’’

‘‘to P’ ’

Pport

‘‘to M’ ’

‘‘from M’’

C

A B

M mailbox

D

Synchronization with messages

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous
• Blocking send has the sender block until the message is

received
• Blocking receive has the receiver block until a message is

available
• Non-blocking is considered asynchronous

• Non-blocking send has the sender send the message and
continue

• Non-blocking receive has the receiver receive a valid message
or null

57

blocking non-blocking

58

• Many hardware cores are available ,much more process are
running on the system:

• How to place the workload?

Process Placement

59

346 J. Antony, P.P. Janes, and A.P. Rendell

4.4 Placement Distribution Algorithm

An algorithm for the placement distribution model is presented in Algorithm 1.
The PDM requires a graph G, which represents the layout of memory M, proces-
sor nodes N and a set I of ordered processor to memory or memory to processor
data movements for a set of data quantities D. These inputs are used to traverse
over all possible configurations per thread of both thread and memory placement

Algorithm 1. The Placement Distribution Model
1: N ← {node1, node2, . . . , nodei} The set of all processor nodes
2: M← {mem1, mem2, . . . , memj} The set of memory nodes
3: L ← { link1, link2, . . . , linkk} The set of all links between nodes
4: T ← { data1, data2, . . . , datal} The set of data quantities
5: E ← N x M Cartesian product denoting data movement
6: G ←<E,L> Graph G representing memory and processor layout
7: D ←{<x, y> |x ∈ T, y ∈ M} A data quantity x resides in memory location y
8: I ← E x D Set of inputs for thread, memory placement
9: I ≡ {<e, f> | e =<n,m>∈ E, f =<x,y>∈ D}

10: W (l) | l ∈ L Weight matrix W
11: C(x, y) Cost matrix C

Require: <n,m>∈ E
12: procedure OptPath(<n,m>) Optimal path from n to m where n, m ∈ E
13: Use appropriate alogrithm or heuristic
14: return {<x,y> |x, y ∈ L} to get path between <n,m>
15: end procedure

Require: x ∈ D ∀x ∈ Q
Require: <x,y>∈ L ∀ <x,y>∈ P
16: procedure FlowSize(Q, P) Compute cost of moving data items across link P
17: cost ← 0
18: for all (link ∈ P) do
19: for all (qty ∈ Q) do
20: cost ← cost + | qty | ∗W (link)
21: end for
22: end for
23: return cost
24: end procedure

25: procedure ComputeDistribution
26: Q′ ← {x | x ∈ D} Set of data quantities of interest
27: for all (i ∈ I) do Loop over input I (i ≡<e,f>)
28: links ← OptPath(e) where e ∈ i Get the optimal path for a given e
29: for all ((j ← links) ∧ (f ∈ i)) do Loop over links and use f ∈<e,f>
30: C(i, j) = C(i, j) + F lowSize(Q′, j)
31: end for
32: end for
33: end procedure

Placement

Scheduling

• OS measures performance (Performance Monitoring Unit,
LowLevelCache)

• Based on performance migrates jobs to different part of the
machine.

• NonUniformMemoryAccess machines: memory placement is as
important: place process as close as possible to the memory they
use.

61

Memory placement policies

• First fit: first available node

• Best fit: node with smallest available memory

• Worst fit: node with largest available memory

• First touch placement

• Round Robin

62

Placement tools for users

numactl --hardware
list of available hardware

taskset –-cpu-list <cpus> <command>
places jobs on requested cpu’s

numactl --membind=2 <program>
==> places on memory of node 2

numactl —-interleave=all
==> allocate all memory dimms(4k block)

63

First touch example

64

g1_m1 = (float ***)calloc(ny, sizeof(float **));
for (i1=0; i1<ny; i1++){
 g1_m1[i1] = (float **)calloc(nx, sizeof(float *));
 for (i2=0; i2<nx; i2++) {
 g1_m1[i1][i2] = (float *)calloc(nz, sizeof(float));
}

……

#pragma omp parallel
for (i1=0; i1<ny; i1++){
for (i2=0; i2<nx; i2++)
for (i3=0; i3<nz; i3++)
 a[i1][i2][i3] = p[i1][i2][i3] + C1* p[i1-1][i2][i3+1]
 + …

First touch example

65

thread thread

memory channel

First touch example

66

g1_m1 = (float ***)calloc(ny, sizeof(float **));
#pragma omp parallel
for (i1=0; i1<ny; i1++){
 g1_m1[i1] = (float **)calloc(nx, sizeof(float *));
 for (i2=0; i2<nx; i2++) {
 g1_m1[i1][i2] = (float *)calloc(nz, sizeof(float));
}

……

#pragma omp parallel
for (i1=0; i1<ny; i1++){
for (i2=0; i2<nx; i2++)
for (i3=0; i3<nz; i3++)
 a[i1][i2][i3] = p[i1][i2][i3] + C1* p[i1-1][i2][i3+1]
 + …

First touch example

67

thread thread

memory channel

runtime improved from 576 to 80 seconds using 128 threads

File-System organization

68

File Attributes (inode metadata)

• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size

• Protection – controls who can do reading, writing, executing

• Time, date, and user identification – data for protection,
security, and usage monitoring

• Information about files are kept in the directory structure, which
is maintained on the disk

69

Linux command line for inode info

• ls -i /proc/cpuinfo (prints inodes number)

• stat /usr/bin/gcc

• df -ih

70

4026531851 /proc/cpuinfo

 File: `/usr/bin/gcc' -> `gcc-4.3'
 Size: 7 Blocks: 0 IO Block: 1048576 symbolic link
Device: fh/15d Inode: 15745695 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 2011-04-28 17:14:19.000000000 -0500
Modify: 2010-08-30 11:44:57.000000000 -0500
Change: 2010-08-30 11:44:57.000000000 -0500

71

UNIX inode structure (POSIX)

File Operations

• File is an abstract data type (defined by operations)
• Create
• Write
• Read
• Reposition within file
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for entry Fi, and

move the content of entry to memory

• Close (Fi) – move the content of entry Fi in memory to directory
structure on disk

72

File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a network

• Network File System (NFS) is a common distributed file-sharing
method

73

File Sharing – Multiple Users
• User IDs identify users, allowing permissions and

protections to be per-user

• Group IDs allow users to be in groups, permitting
group access rights

74

Protection

• File owner/creator should be able to control:

• what can be done

• by whom

• Types of access

• Read
• Write
• Execute
• Append
• Delete
• List

75

Access Lists and Groups
• Mode of access: read, write, execute
• Three classes of users
 RWX
 a) owner access 7 ⇒ 1 1 1

 RWX
 b) group access 6 ⇒ 1 1 0

 RWX
 c) public access 1 ⇒ 0 0 1

• Ask manager to create a group (unique name), say G, and add some
users to the group.

• For a particular file (say game) or subdirectory, define an appropriate
access.

owner group public

chmod 761 game
Attach a group to a file

 chgrp G game

76

Example of permissions

• Go to Unix shell.

77

Mass-Storage Systems

78

Mass-Storage Systems

• striped disks

• RAID Structure

• Performance Issues

79

Moving-head Disk Mechanism

80

Striped Disks

Stripe data across disks to create logical volumes with greater
throughput

• Each stripe unit in a stripe can be read and written simultaneously

• Choose an appropriate stripe unit and IO size

• Application must do a large data transfer which access all disks in
a stripe group

81

Striping:
Logical and Physical View of a File

• Logically,	a	file	is	a	linear	sequence	of	bytes	:	

• Physically,	a	file	consists	of	data	distributed	across	OSTs.

82

OST 2 OST 3OST 1OST 0

RAID Structure

• Redundant Array of Independent Disks

• RAID – multiple disk drives provides reliability via redundancy.

• RAID is arranged into six different levels.

• http://en.wikipedia.org/wiki/RAID

83

RAID

• Several improvements in disk-use techniques involve the use of
multiple disks working co-operatively.

• Disk striping uses a group of disks as one storage unit.

• RAID schemes improve performance and improve the reliability of
the storage system by storing redundant data.

• Mirroring or shadowing keeps duplicate of each disk.

• Block interleaved parity uses much less redundancy.

84

RAID Levels

85

86

"Striping". Provides improved performance and additional storage but no redundancy or fault tolerance. Any disk
failure destroys the array, which has greater consequences with more disks in the array. The data is broken into
fragments.

87

'Mirroring'. Provides fault tolerance from disk errors and failure of all but one of the drives. Increased read
performance occurs when using a multi-threaded operating system that supports split seeks, very small performance
reduction when writing.

88

Striped set with dedicated parity or bit interleaved parity or byte level parity.
This mechanism provides fault tolerance similar to RAID 5. However, reads and writes to the array perform like a
single drive. For this to work properly, the drives must have synchronised rotation. If one drive fails, the
performance doesn't change.

89

Block level parity. Identical to RAID 3, but does block-level striping instead of byte-level striping. In this setup, files can be
distributed between multiple disks. Each disk operates independently which allows I/O requests to be performed in parallel,
though data transfer speeds can suffer due to the type of parity. The error detection is achieved through dedicated parity
and is stored in a separate, single disk unit.

90

Striped set with distributed parity or interleave parity. Drive failure requires replacement, but the array is not
destroyed by a single drive failure. Upon drive failure, any subsequent reads can be calculated from the distributed
parity such that the drive failure is masked from the end user. A single drive failure in the set will result in reduced
performance of the entire set until the failed drive has been replaced and rebuilt.

91

Striped set with dual distributed parity. Provides fault tolerance from two drive failures; array continues to operate
with up to two failed drives. This becomes increasingly important because large-capacity drives lengthen the time
needed to recover from the failure of a single drive.

Rebuilding failing disk with RAID

space disk
blocks are
distributed
along the

other disks

MetaData server

MetaData server

94

NFS

95

NFS

• Network File System

• in 1985 created by SUN

• Transparency

• server exports local filesystem to clients (exports)

• clients mount the filesystem (fstab)

• Adds overhead due to communication protocol between server
and client

• Concurrency: locking

• http://en.wikipedia.org/wiki/Network_File_System_(protocol)

96

What is NFS?

97

User Application doing IO

NFS Black Box

T
T

Disk

Goal:
Allow access to
file independent
of the location
of the file

What is in the NFS Box?

• NFS is a suite of protocols on top of TCP or UDP, and IP.

• NFS is stateless - the server does not keep track or requests made
by the client. Evert request must be self contained.

• NFS is not a good (fast) protocol for busy networks. Do not write
large or many output file to NFS.

• try mount command

98

Implementation of OS’s

99

Unix origin
• 1969 From Bell labs by Ken Thompson and Dennis Ritchie.
• Ideas from Multics on PDP-7

• UNiplexed Information and Computing Service => UNIX

• Thompson wanted to play a game he had written called Space
Travel (a science-fiction simulation that involved navigating a
rocket through the solar system).

• They knew from experience that the essence of communal
computing, as supplied by remote-access, time-shared machines,
is not just to type programs into a terminal instead of a keypunch,
but to encourage close communication”.

• 1969 was also the year the ARPANET (the direct ancestor of
today's Internet) was invented.

• more info: http://en.wikipedia.org/wiki/Unix

100

101

History Unix

• During the development of Unix C was also developed (from B)

• Unix completely written in C and not in assembler

• During the 70 many universities contributed to Unix

• Berkeley developed open source BSD (Software Distribution) and
vi

102

History Unix

• 1980, the Defense Advanced Research Projects Agency (DARPA)
needed a team to implement its brand-new TCP/IP protocol stack
on the VAX under Unix. DARPA chose Berkeley Unix as a platform
— explicitly because its source code was available and
unencumbered.

• After TCP/IP, everything changed. The ARPANET and Unix
cultures began to merge at the edges, a development that would
eventually save both from destruction.

• Then a disaster happened; the rise of Microsoft.

103

Standardization of Unix

• Mainly three parts:

• ISO C

‣ Support for a set of C-functions

• IEEE POSIX

‣ Support for a set of C-functions

• The Single UNIX Specification

‣ A superset of POSIX.1

‣ Support SUS to get The UNIX trademark

104

Unix Implementations
• UNIX System V Release 4

‣ A product of AT&T / Bell

4.4BSD
‣ The Berkley Software Distribution

FreeBSD
‣ A 4.4BSD-Lite operating System

Linux
‣ Gnu/Linux operating system

Solaris
‣ Sun OS, formally certified as UNIX

Mac OS X
‣ Core system is ”Darwin”, partly built on FreeBSD

more and variants
‣ Lookout for POSIX-compliant...

105

106

Handy Linux commands

• od -f -Adbinary file

• nm -aA *.o

• ls -lart

• grep

• ldd

• nohup

• ps

• top

• bash scripts

• find . -name “*.f90” -exec grep alloc {} \; -print

107

inspects binary files
inspects object files
list directory latest change at the bottom
looks for strings in files
shows used dynamic libraries
keeps program in background running
a snapshot of the process table
snapshots of the process table

Bash scripts

• Calculations and numbers

pi=$(echo "scale=10; 4*a(1)" | bc -l)

dxsrc=$(echo "scale=4; 25/2"| bc -l)

pfldr=$(printf %03d $fldr)

file=${file_base}${pfldr}.su

setenv x2 5

setenv aper `echo $x2 | gawk '{a=$1*2 ;
printf("%.8f\n",a)}'`

108

Bash scripts

• Loops

xsrc1=0

xsrc2=6000

xsrc=$xsrc1

while ((xsrc <= xsrc2))

do

echo -n $xsrc

((xsrc = $xsrc + $dxsrc))

done

109

Bash scripts

• Loops

i=9109

while ((i <= 9294));

do qdel $i; ((i += 1)); done;

for file in ref*;

do

echo $file

filename=${file%.*ps}

convert $file ${filename}.EPS

done

110

Bash scripts

• Loops

for i in $(ls); do echo item: $i; done

for i in `seq 1 10`;

do

echo $i

done

111

Bash SU

sumax < modtmp.su outpar=nep

Mmin=`cat nep | awk '{print $2}'`

Mmax=`cat nep | awk '{print $1}'`

echo min=$Mmin max=$Mmax

112

Bash SU

fldr=1

for file in shotRS_A100_F30*;

do

echo $file;

pfldr=$(printf %03d $fldr);

suwind < $file key=tracl min=11 max=191 | \

sunormalize > normA_${pfldr}.su;

 ((fldr += 1));

done

113

Bash

case "$src_type" in

 6)

 file_shot=data/shotB_Fx${xsrc}.su;

 ;;

 7)

 file_shot=data/shotB_Fz${xsrc}.su;

 ;;

 *)

 file_shot=data/shotB_${xsrc}.su;

 ;;

esac

114

Exercise: file IO

• The code measures writing and reading to file using different
approaches.

• On your git clone: cd HPCourse/IO

• Check the README for instructions.

• The program produces a list with the data rate in MB/s written to
and read from file.

• Cygwin users change size on line 55 to 32*1024*1024

115

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

• A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

• Simplifies file access by treating file I/O through memory rather
than read() write() system calls

• Also allows several processes to map the same file allowing the
pages in memory to be shared

116

Exercise: Accuracy

• Simple programs to show the accuracy of floating point numbers.

• On your git clone: cd HPCourse/FloatPrecision

• Check the README for instructions.

• What have you learned from these examples?

117

