Programming

Jan Thorbecke

%
TUDelft &

A perspective (Jack Dongorra)

e Programming is stuck
* not dramatically changed since the 70's

» Change is more needed than ever
» complexity is rising dramatically
* highly parallel and distributed systems
* multidisciplinary applications

* An HPC application lives much longer than the hardware
* typical hardware life is typically 5 years
 Fortran and C/C++ are the main programming models

 Software is a major cost component

& .
TU Delft Programming 2
-]

Contents

e Programming environment
* Login to Linux
* Compilers
* Makefiles
* Numbers

e Programming Languages
* C
* Fortran

o Examples
* debugging
* profiling

g |
TUDelft Programming 3
-]

Login

* Shells
* Bash/sh
* tcsh/csh
* Korn
* zsh

* Environment variables
* .bashrc settings (source)

1(';U Delft Programming 4
]

What happens when you login?

A Bash shell reads (in this order) during login:
1./etc/profile
2.$HOME/.bash_profile
3.$HOME/.bash_login
4.$HOME/.profile

* Non a login shell (through rsh)
5.$HOME/.bashrc

'i';U Delft Programming 5
-]

Environment $PATH

 Colon separated list with directories the shell searches, for the
commands the user may type.

» export PATH=.:$HOME/bin: # for Bourne, bash, related shells
setenv PATH .:$HOME/bin: # for csh and related shells

» echo $PATH

 env (shows all environment variables)

'i';U Delft Programming 6
-]

Environment $LD LIBRARY PATH

» list of directories the OS searches to include shared (dynamic)
libraries which the executable need

o export LD_LIBRARY_PATH="/opt/intel/cc/10.1.015/lib";

» when you start your executable and see missing lib....so files it is
very likely that your LD_LIBRARY_PATH is not set correctly

'i';U Delft Programming 7
-]

Environment $SHOME

> env (shows all defined variables)

> uname -a (type of linux system and name)

> which icc

> |ocate libblas.a

g |
TUDelft Programming 8
-]

What does a Compiler?

Translate
a high level language program
Into

an equivalent assembly language program.

'i';U Delft Programming 9

High Level Language

C:

for (ix=ioTx; ix<nx+1l; ix++) {
for (iz=ioTz; iz<nz+l; iz++) {
txz[ix*nl+iz] += mul[ix*nl+iz]*(

cl*(vx[ix*nl+iz] - vxX[ix*nl+iz-1] +
vz[1ix*nl+iz] - vz[(1x-1)*nl+iz]) +
c2*(vx[ix*nl+iz+1] - vxX[ix*nl+1iz-2] +
vz[(ix+1l)*nl+iz] - vz[(1ix-2)*nl+iz]));
}
}
'i';U Delft Programming 10

Assembly Language Format

Source Destination

Label Mnemonic operands operand Comment
| | I || || | | |
lab 1: addcc %rl, %r2, %r3 ! Sample assembly code
3 .
TUDelft Programming 11

L121:

basic
movl
imull
addl
addl
subl
movss
movl
imull
addl
sall
movss
movaps
subss
movaps
movaps

block 120
-80(%ebp), %eax
-44 (%ebp), %eax
-48(%ebp), %eax
268 (%ebp), %eax
S4, %eax
(%eax), %Bxmml
-80(%ebp), %eax
-44 (%ebp), %eax
-48(%ebp), %eax
$2, %eax
(%eax), %xmmO
gxmml, %xXmm2
gxmm0, %$xXmm2
gxmm2, $xXmmO
gxmm0, %xXmm2

%
TUDelft

Programming

12

Program Compilation

1(';U Delft Programming
- 0000000000001

I Breaking Down CC

Preprocessed

source

0
B
Executable Executable]
Program E
In Memory ¢
T
(; .
TU Delft Programming

I Breaking Down CC

Preprocessed

source

0
B
Executable Executable]
Program E
In Memory ¢
T
(; .
TU Delft Programming

C Preprocessor (cpp)

e Pass over source
e Insertincluded files
e Perform macro substitutions

e Define macros
e #define NUM 100

e #define xx(v,name,op,metrics) \
v=xxinit(op,name,IR->metrics)

e gcc —E example.c sends preprocessor output to
stdout

'i';u Delft Programming
-]

Preprocessor

e Performs textual substitution.

» The preprocessor produces modified source code.
- What the compiler sees is not what you gave it.

» In C/C++ the preprocessor is a standard part of the compilation
system and has its own specific commands.

e E.Q.
#define
#if

& .
TU Delft Programming 17
-]

Before and After Preprocessing

int usefoo() {

int foo; 1 = 3;
#include “foo.h” return 1;
int usefoo() { }

foo = 3;

return foo;

}

'i';U Delft Programming 18

Bad Macros

» Suppose we have the following macro:
#define mult(x, y) (x * y)

e It was written with this common case in mind:
c = mult (a, b);

o But if we have: ¢ = mult (a+1, b);
sWeget:c=(a+1*hb);
» Which means: c = (a + (1 * b));

* The macro should be (accounting for future uses):
#define mult (x,y) ((x) * (y))

& .
TU Delft Programming 19
-]

I Breaking Down CC

Preprocessed

source

0
B
Executable Executable]
Program E
In Memory ¢
T
(; .
TU Delft Programming

Compiler

gcc actually name of a script

Compiler translates one language to another
gcc compiler translates C to assembler

gcc —S example.c “saves” example.s
Compiler consists of

» Parser

» Code generation

» Mysticism

'i';u Delft Programming
- 0000000000001

Within Compiler different Phases

%
TUDelft

Programming

22

Front End

» The lexical and syntax analysis phases are built using
declarative languages — by identifying what IS valid. Everything
else is not valid.

* Harder for those phases to produce insightful error messages.

» Most Front End errors are reported as syntax errors.

e The semantic analysis phase is created by hand (though there are
some tools to help) and explicitly identifies what IS NOT valid.

'i';U Delft Programming 23
-]

Not All Compilers Are the Same

» With 6 different compilers, the answers they give to errors vary
widely.

 e.g. By mistake use a 1 for an i on the left hand side.

& .
TU Delft Programming 24
-]

Typo — 1 for i

main()

int i, j:

1(';U Delft Programming 25
-]

Typo — 1 for i

1. In this statement, "1" is not an Ivalue, but occurs in a context
that requires one.

2. The left operand cannot be assigned to.
3. left operand must be modifiable Ivalue: op "="
4. invalid Ivalue in assignment
5. '=': left operand must be |-value
6. not an Ivalue
'i';U Delft Programming 26

Compiler Phases

=T

'i"U Delft Programming 27

Optimization

» Take the program structure and rewrite it to make it more
efficient.

 For instance one techniques that would help would be constant
propagation.

] |
TUDelft Programming 28

Partial Redundancy Elimination
Optimization

temp=a-+b
X = temp + ¢;
temp = a + b;

X=a+b+c X = temp + Cj
If (z == true) { It (z==true) {
y=a+b; y = temp;

) }
else { else {

y =5; y = 5;
;)

g |
TUDelft Programming 29

I Breaking Down CC

Preprocessed

source

0
B
Executable Executable]
Program E
In Memory ¢
T
(; .
TU Delft Programming

Code Generation

» Take the intermediate form (an internal representation of the
program) and generate instructions.

» The output of code generation can be an assembly file (for more
modularity of phases) or an actual object file.

Assembly
Language

Object
- File

Code
Generation

Assembler

'i';U Delft Programming 31

Object File

file header

optional header

» An object file is a collection of
records that outline how a L grienpinaieess s
program in memory would look. [

SECTION'S

» An executable is a reconciled (RawoaTa)
(no more undefined references) , SEERSECROMS AW DATA
object file. An object file has ‘
references yet to be defined.

e
[relocataj{Ie address S _+
|
|
|

dl

Y
|
i
)
<
3
3
Q
=3

RELOCATION ENTRY s_nreloc «—|— — — — — v

OTHER SECTION'S
RELOCATION ENTRIES

» Most of what you have is
either: executable code, data sms0L

OTHER SYMBOL TABLE ENTRIES
ENTRIES

(to be filled in later), or S e

S S, e i o) e 1 S ¥ e i e

constant values. s reimane sasess < - —

OTHER SYMBOL TABLE ENTRIES

» Debugging information is
included.

String table

'i';U Delft Programming 32

ELF ELF header

Program header table

fext

.rodata

.data

Executable and Linkable Format

&,

Section header table

'i';U Delft Programming 33

DWARF

 DWAREF is a widely used standardized debugging data format.
DWARF was designed along with ELF.

g |
TUDelft Programming 34
-]

I Breaking Down CC

Preprocessed

source

0
B
Executable Executable]
Program E
In Memory ¢
T
(; .
TU Delft Programming

Linker

o Combine objects, both user .o files and libraries,
make an executable

e gcc *.0-Im vyields a.out
e gcc—o0 myExec *.0 —-Im

e Use nm to look at objects and executables

'i';U Delft Programming
- 0000000000001

Archiver

e Put multiple object files into a library

e Linker takes all or nothing from an object file in a library —
put 1 function per file or get a really big executable.

g |
TUDelft Programming 37
-]

Static linking

e Linker looks for undefined functions and adds library to
executable if it has found one.

 Order of linked libraries on command line is of importance !
» example sgemm_is defined in libf77atlas.a
* but libf77atlas uses functions not used in the program but used in
the more general libatlas.a
* link line 1: -latlas -If77atlas correct
* link line 2: -If77atlas -latlas fails

& .
TU Delft Programming 38
-]

Static and Dynamic Linking

* A program whose necessary library functions are embedded
directly in the program’s executable binary file is statically linked
to its libraries

» The main disadvantage of static linkage is that every program
generated must contain copies of exactly the same common
system library functions

» Dynamic linking is more efficient in terms of both physical
memory and disk-space usage because it loads the system
libraries into memory only once

'i';U Delft Programming 39
-]

Dynamic Linking

e Linking postponed until execution time

» Small piece of code, stub, used to locate the appropriate
memory-resident library routine

» Stub replaces itself with the address of the routine, and
executes the routine

» Operating system needed to check if routine is in
processes’ memory address

e Dynamic linking is particularly useful for libraries

» System also known as shared libraries

& .
TU Delft Programming 40
-]

I Breaking Down CC

Preprocessed

source

0
B
Executable Executable]
Program E
In Memory ¢
T
(; .
TU Delft Programming

Loader

» (Gets an address to place program
o Changes necessary addresses (if any)

 Places code into memory

1(';U Delft Programming
- 0000000000001

Operating System

e Oversees whole process

e “Recognises” gcc example.c command
e Parses flags and arguments

e Invokes gcc executable

e Performs memory management (malloc)

e Chooses “address” to place program

'i';u Delft Programming
-]

Ox3fff

0x0000

MEMORY

0011010
0111000
0101010
0101011

How Does a
Program Start Running

*The operating system (the loader part) copies a
program (the executable) from permanent
storage (disk) into memory.

» Everything is specified by the executable
object) file.

http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html

%
TUDelft

Programming 44

Logical Memory Layout

Not Currently in Use

O — X » 2 < 0O

Static Space

'i"U Delft Programming

From virtual to physical memory

32 _ 1 239 —1 (or whatever)

0

Virtual Address Space Physical Address Space

] .
TU Delft Programming 46

What Bits Go Where

» The loader is the part of the OS
that creates the memory e S
representation of the program: [
 Executable code St locatabe adaross | S
* Constants S .
* Data o~ Tt oF B T sl oo
 The symbol and string table secrows | P
along with the debugging e e —
information is not put into : OmHeR secTion's |
memory. e | onensumoumeammes ||
e Everything is specified by the el et |
executable (object) file. it v S

& .
TU Delft Programming 47

Example: Dice.c

int count = 100000;
main()

{

int 1, roll, *ptr;
ptr = (int) malloc (13 * sizeof(int));
for (1 = 0; 1 < 13; i++) ptr[i] = 0;

for (1 = 0; 1 < count; i++)
roll = rand() % 6 + rand() %6 + 2
ptr[roll]++;

for (1 = 2; 1 < 13; 1i++)
printf (“There were %d rolls of %d/
n", ptr[i],1i);

}

'i';u Delft Programming
- 0000000000001

Where Are the Variables?

Not Currently in Use

O = X » 2 < 0O

Static Space count; “There were %d rolls of %d/n”

1(';U Delft Programming
-]

¥ local pointer
1 STACK | 15cal

'—"//m

global initialised
nonzero
constant

1(';U Delft Programming 50
-]

Stack Bufter Overtlow

#include <string.h>

void foo (char *bar)

{
char c[12];

strcpy(c, bar); // no bounds checking
}

int main (int argc, char **argv)
{

foo(argv([1l]);
}

http://en.wikipedia.org/wiki/Stack buffer overflow

1(';U Delft Programming 51

Stack Bufter Overtlow

Address
0x80C03508

Stack Growth
sassalppy Alowisy

Little Endian
0x80C03508

—

Parent Routine's Stack

"AAAAAAAAAAAAAAAAAAAANXOS X35 \XCO \x80" is the first command
|iRepg i ERtS st seamand line argument.

'i';U Delft Programming 52

Compilers

1(';U Delft Programming 53
-]

Compilers

o Intel: icc, ifort
» free license for one-api compilers

 PortlandGroup: PGI, pgf90, pg (now part of Nvidia)
o free from Nvidia

* GNU: gfortran, gcc, g++
» free open-source

e AMD: aocc
» free from AMD based on clang

* Apple OSX
e clang: C-compiler bundled with X-code

& .
TU Delft Programming 54
-]

Compiler Option Groups

e Language options: -ansi

» PreProcessor: -cpp
e Output, debug, reports: -g -vec-report3
e Diagnostics: -W1
e Optimisation: -O3
* floating point: -ffast-math
* machine specific: -xW -march=x86-64

* inlining, loop unrolling:

e Parallelisation OpenMP: -fopenmp (gcc) -gopenmp (intel)

'i';U Delft Programming 55
-]

Compilation

> icc -03 -wl -DLINUX -I/home/thorbcke/include
-xAVX2 -c fdelmodc.c

* produces fdelmodc.o object file

> icc -03 -wl -DLINUX -I/home/thorbcke/include
-xXAVX2 -S fdelmodc.c

e Produces fdelmodc.s assembler file

e Tip: objdump -S -I objectfile.o

& .
TU Delft Programming 56
-

-bash-3.00$ nm -a fdelmodc.o
0000000000000000 n .comment
0000000000000000 d .data
0000000000000000 n .note.GNU-stack
0000000000000000 a .rel.data
0000000000000000 a .rel.text
0000000000000000 r .rodata
0000000000000000 r .rodata.str1.32
0000000000000000 r .rodata.str1.4
0000000000000000 a .strtab
0000000000000000 a .symtab
0000000000000000 t .text
0000000000000048 r _2__ STRING.0.0
0000000000000000 r _2__STRING.1.0
00000000000019c8 r _2__ STRING.99.0

U _gssert_fail. _ 0000000000000000 T main
U _!ntel_cpu_!nd!cator o 0000000000002560 t main.A
U __intel_cpu_indicator_init 0000000000000028 t main.]
U _ intel_new_proc_init U malloc
U _intel_fast_memset U readModel
U acoustic4 U requestdoc
U calloc 0000000000000000 D sdoc
U defineSource U taperEdges
U elastic4 U viscoacoustic4
0000000000000000 a fdelmodc.c U viscoelastic4
U free U vmess
U getParameters U wallclock_time
U getRecTimes U writeRec
U getparint U writeSnapTimes
U initargs
% .
TUDelft Programming 57

Linking

> icc -03 -wl -DLINUX -I/home/thorbcke/include
—axW -static -o fdelmodc fdelmodc.o acoustic4d.o
viscoacoustic4.0 elastic4.0 viscoelastic4.o
defineSource.o getParameters.o getWaveletInfo.o
getModelInfo.o applySource.o getRecTimes.o
writeSnapTimes.o writeRec.o fileOpen.o recvPar.o
readModel.o taperEdges.o verbosepkg.o SU2su.o
gaussGen.o spline3.o wallclock time.o name ext.o

atopkge.o docpkge.o getpars.o -L/home/thorbcke/lib
—-lgenfft -1m

'i';U Delft Programming 58
-

Intel Compiler Options

» Vectorisation for fast code
* -O3 -axP (version 10.x)
* -O3 -mavx (version 11.x) -XAVX (version > 13)
* -march=core-avx2
-gopt-report -qopt-report-annotate -qopt-report-phase=all
for (non)-vectorisation loop optimisation info

 Auto Parallelisation
* -parallel
* #pragma ivdep or #pragma simd

e OpenMP Parallelisation
* -gopenmp (also during linking)

'i';U Delft Programming 59
-]

GNU Compiler Options

» Vectorisation for fast code
» -O3 -ffast-math -ftree-vectorize
* -mavx2 -mfpmath=sse -march=broadwell
« -fopt-info-vec (for vectorisation loops info)
* -fopt-info-vec-missed (for non-vectorisation loops info)

* Aliasing of pointer (in C)
* -fstrict-aliasing
» #pragma GCC ivdep

e OpenMP Parallelisation
* -fopenmp (also during linking)

& .
TU Delft Programming 60
-]

Compiler listing

76, l————- < for (ix=1i0Xx; 1ix<nx+l; 1ix++) {

77. 1 2---< for (iz=ioXz; iz<nz+l; iz++) {

78. 1 2 vX[ix*nl+iz] += rox[ix*nl+iz]*(

79. 1 2 cl*(p[ix*nl+iz] - p[(ix-1)*nl+iz]) +
80. 1 2 c2*(p[(ix+1)*nl+iz] - p[(ix-2)*nl+iz]));
8l. 1 2---> }

82. l-———- > }

CC-6290 CC: VECTOR File = acoustic4.c, Line = 76

A loop was not vectorized because a recurrence was found between "p" and
"vx" at line 78.
CC-6308 CC: VECTOR File = acousticé4.c, Line = 77

A loop was not vectorized because the loop initialization would be too

costly.

'i';U Delft Programming 61
-

helping compiler with 1vdep

76. #pragma ivdep

77. l—————- < for (ix=ioXx; ix<nx+l; ix++) {

78. 1 #pragma ivdep

79. 1 Vrd4--< for (iz=ioXz; iz<nz+l; iz++) {

80. 1 Vvr4 vx[ix*nl+iz] += rox[ix*nl+iz]*(

8l. 1 Vr4 cl*(p[ix*nl+iz] - p[(ix-1)*nl+iz]) +
82. 1 Vr4 c2*(p[(ix+1)*nl+iz] - p[(ix-2)*nl+iz]));
83. 1 Vrd--> }

84. 1-————- > }

CC-6294 CC: VECTOR File = acoustic4.c, Line = 77

A loop was not vectorized because a better candidate was found at line 79.
CC-6005 CC: SCALAR File = acousticéd4.c, Line = 79

A loop was unrolled 4 times.
CC-6204 CC: VECTOR File = acousticéd4.c, Line = 79

A loop was vectorized.

'i';U Delft Programming 62
-]

same with global flag -h restrict=a

76, l————- < for (ix=1i0Xx; 1ix<nx+l; 1ix++) {

77. 1 Vrd4-< for (iz=ioXz; iz<nz+l; iz++) {

78. 1 Vr4 vX[ix*nl+iz] += rox[ix*nl+iz]*(

79. 1 Vr4 cl*(p[ix*nl+iz] - p[(ix-1)*nl+iz]) +
80. 1 Vr4 c2*(p[(ix+1)*nl+iz] - p[(ix-2)*nl+iz]));
8l. 1 Vr4d4-> }

82. l-———- > }

CC-6254 CC: VECTOR File = acoustic4.c, Line = 76

A loop was not vectorized because a recurrence was found on "vx" at line 78.
CC-6005 CC: SCALAR File = acoustic4.c, Line = 77

A loop was unrolled 4 times.
CC-6204 CC: VECTOR File = acousticé4.c, Line = 77

A loop was vectorized.

'i';U Delft Programming 63
-

Librarian

* Under unix it is a Makefile

e Under windows controlled by Visual Studio (or the IDE)
» Java JDK does it for you

» Most problems arise when the specification is incorrect.

““‘
st
,ss*” aforgotten
eo*’ dependency

1("U Delft Programming 64

Make

1(';U Delft Programming 65
-]

Maketile

e Make is a utility to automatically building executables and libraries
from source code.

» Makefile specifies how (options) to compile and link the targets
(library executable) mentioned in the Makefile.

* Only rebuilds things that have changed

helloworld: helloworld.o
cc -0 $@ S<

helloworld.o: helloworld.c
cc -c -0 S@ S$<

clean:
rm -f helloworld helloworld.o

& .
TU Delft Programming 66
-

Maketile variables

* CC=icc (C-compiler)
e CPP=icc (C++ compiler)
o FC=ifort (Fortran 90 compiler)

o CFLAGS=
e FFLAGS=
o LDFLAGS=

1(';U Delft Programming 67
-]

Makefile Example

CC = icc
CFLAGS = -01
PRG = floatCycl

SRC = $(PRG).c \
wallclock time.c \

OBJ = $(SRC:%.c=%.0)

.C.0: .C
S(CC) S$(CFLAGS) -c $<

$(PRG): $(OBJ)
$(CC) $(CFLAGS) -o $(PRG) $(OBJ) $(LIBS) $(DEFINES) -:

clean:
rm -f core $(OBJ) $(PRG)

& .
TU Delft Programming 68
-]

Number Representations

] .
TU Delft Programming 69
-]

Representations

» What can be represented in N bits?
* integers range 0 : 2N
* negative numbers?

» Floating point numbers
* what about pi, sgrt(3) and 0.17?
* very large numbers?
* very small numbers?

& .
TU Delft Programming 70
-]

Signed Fixed Point Numbers

» For an 8-bit number, there are 28 = 256 possible bit patterns. These bit
patterns can represent negative numbers if we choose to assign bit
patterns to numbers in this way. We can assign half of the bit patterns
to negative numbers and half of the bit patterns to positive numbers.

 Four signed representations are discussed briefly:
Signed Magnitude
One’s Complement
Two’s Complement

Excess (Biased)

'i';U Delft Programming 71
-]

Signed Magnitude

» Also know as “'sign and magnitude,” the leftmost bit is the sign (0 =
positive, 1 = negative) and the remaining bits are the magnitude.

e Example:

2 = 0010
+2510 = 000110012 -4 =1100 +
-2510 = 100110012 -2 + 1110

Two representations for zero: +0 = 000000002, -0 = 10000000-.

Largest number is +127+10, smallest number is -1274o, using an 8-bit
representation.

& .
TU Delft Programming 72
-]

One’s Complement

» The leftmost bit is the sign (0 = positive, 1 = negative). Negative of
a number is obtained by subtracting each bit from 2 (essentially,
complementing each bit from 0 to 1 or from 1 to 0). This goes
both ways: converting positive humbers to negative numbers, and
converting negative numbers to positive numbers.

» Example:
2 =0010
+25,, = 00011001, :3 : 1(1)(1)1 .

-25., = 11100110,

« Two representations for zero: +0 = 00000000, -0 = 11111111,

o Largest number is +127.,, smallest number is -127,,, using an 8-bit
representation.

'i';U Delft Programming 73

Two’s Complement

» The leftmost bit is the sign (0 = positive, 1 = negative). Negative of
a number is obtained by adding 1 to the one’s complement
negative. This goes both ways, converting between positive and
negative numbers. Addition of positive and negative numbers
works the same way.

» Example (recall that -25,, in one’s complement is 11100110,):

2 = 0010
+25,, = 00011001, -4 = 1100 +
-25,, = 11100111, -2 = 1110

» One representation for zero: +0 = 00000000,, -0 = 00000000,

o Largest number is +127,,, smallest number is -128,,, using an 8-bit
representation.

'i';U Delft Programming 74
-]

Excess (Biased)

» The leftmost bit is the sign (usually 1 = positive, 0 = negative).
Positive and negative representations of a number are obtained by
adding a bias to the two’s complement representation. This goes
both ways, converting between positive and negative numbers.
The effect is that numerically smaller numbers have smaller bit
patterns, simplifying comparisons for floating point exponents.

e Example (excess 128 “adds” 128 (28) to the two’s complement
version, ignoring any carry out of the most significant bit) :

+12,, =10001100,
-12,,=01110100,
» One representation for zero: +0 = 10000000, -0 = 10000000...

o Largest number is +127,,, smallest number is -128,,, using an 8-bit
representation.

'i';U Delft Programming 75
-]

Floating-point Numbers

Sign of exponent

Sign of mantlssa

'0 35790 X \6\ Exponent

Location of decimal point \
Base
Mantissa (or significand)

'i';U Delft Programming

Floating-point Format in bytes

* Sign the digit representing the sign of the mantissa

» Mantissa representing the mantissa
* more bits for mantissa increases accuracy

» Exponents are digits representing the exponents
* more bits in exponents increases the range
* usually stored in the excess-N notation to avoid sign
representation.

» Example 8 digit decimal

S EE MMMMM
_ f \ Remaining
Slgn_ O Two digits for five digits for
mantissa exponent mantissa
'i';UDeIft Programming

Normalisation

» The base 10 number 254 can be represented in floating point form as
254 x 1009, or equivalently as:
25.4 x 101, or
2.54 x 102, or
.254 x 103, or
.0254 x 104, or

infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number.

* Floating point numbers are usually normalised, in which the radix
point is located in only one possible position for a given number.

e Usually, but not always, the normalised representation places the radix
point immediately to the left of the leftmost, nonzero digit in the
fraction, as in: .254 x 1083.

'i';U Delft Programming 78
-]

Floating Point Arithmetic decimal

e Example: Add 9.999 x 10! and 1.610 x 10-1 assuming 4
decimal digits

align decimal point of number with smaller exponent
1.610 x 10-1 = 0.0161 x 101

add significands:
9.999
0.0161 +
10.015 => one digit lost due to shifting,

shift sum to put in normalized form 1.0015 x 102

significand has only 4 digits round the sum => 1.002 x 102

'i';U Delft Programming 79
-]

Floating-point Format

» There are two ways to convert p to the right length.

» Chopping, simply discard superfluous bits of p

* Rounding, superfluous bits of p are discarded, but if the first bit
discarded is a 1 then 1 is added to the value of p

'i';u Delft Programming
- 0000000000001

Floating-point Format

e Floating point humbers uses a fixed humber of bits

 This representation may result in error

e There are two measures of error
* Absolute error
* Relative error

» In numerical code errors can accumulate/propagate and at the end
produce wrong answers.

'i';u Delft Programming

Exercise: Accuracy

e Simple programs to show the accuracy of floating point numbers.
e On your git clone: cd HPCourse/FloatPrecision

e Check the README for instructions.

* What have you learned from these examples?

%
TUDelft 82
-]

example precision

int main(int argc, char *argv[])
{

float a;

double c, d;

int i;

a=1.0;
d=1.0;
c=1.0;
fprintf (stderr,"a=%f c=%g\n",a, c);

for (i=0; i<10; i++) {
c = 0.1*c;
a=a+ c;
d =d + c;
fprintf(stderr,"i=%d a=%10.9f ¢c=%10.9g9 d=%16.14g \n",i, a, c, d);

return 0;

}

'i';U Delft Programming 83
-]

running example

c86:FloatPrecision jan$ gcc float.c

c86:FloatPrecision jan$./a.out

a=1.000000 c=1

i=0 a=1.10000002384186 c=0.10000000000000 d=1.10000000000000
i=1 a=1.11000001430511 ¢=0.01000000000000 d=1.11000000000000
i=2 a=1.11100006103516 c=0.00100000000000 d=1.11100000000000
i=3 a=1.11110007762909 c=0.00010000000000 d=1.11110000000000
i=4 a=1.11111009120941 c=0.00001000000000 d=1.11111000000000
i=5 a=1.11111104488373 ¢c=0.00000100000000 d=1.11111100000000
i=6 a=1.11111116409302 c=0.00000010000000 d=1.11111110000000
i=7 a=1.11111116409302 c=0.00000001000000 d=1.11111111000000
i=8 a=1.11111116409302 c=0.00000000100000 d=1.11111111100000
i=9 a=1.11111116409302 c=0.00000000010000 d=1.11111111110000

& .
TU Delft Programming 84
-]

mistake due to rounding

e would like to place receivers with a fixed distance:

for (ir=0; ir<nrcv; ir++) {
xr[nrec]=xrcvl[iarray]-sub x0+ir*dxrcv;
zr[nrec)]=zrcvl[iarray]-sub z0+ir*dzrcv;

x[nrec]=NINT((rec->xr[nrec])/dx);

z[nrec]=NINT((rec->zr[nrec])/dz);
nrec++;

}
Xr=0.3

/

ix=0 ix=1 ix=7

] |
TUDelft Programming 85

mistake due to rounding

(base) JansMac:FloatPrecision jan$./a.out dx=3.2 dxrcv=12.8 x0=-1000
dx=3.200000 dz=3.200000 dxrcv=12.800000 dzrcv=0.000000
xXr=526.399963 zr=1.600000 at grid coordinates ix=164 iz=1
xr=539.200012 zr=1.600000 at grid coordinates ix=169 iz=1
xr=590.399963 zr=1.600000 at grid coordinates ix=184 iz=1
xr=603.200012 zr=1.600000 at grid coordinates ix=189 iz=1
xr=654.399963 zr=1.600000 at grid coordinates ix=204 iz=1
Xr=667.200012 zr=1.600000 at grid coordinates ix=209 iz=1
xr=718.399963 zr=1.600000 at grid coordinates ix=224 iz=1
xr=731.200012 zr=1.600000 at grid coordinates ix=229 iz=1
xr=782.399963 zr=1.600000 at grid coordinates ix=244 iz=1
xr=795.200012 zr=1.600000 at grid coordinates ix=249 iz=1

'i';U Delft Programming 86

[EEE-754 Floating Point Formats

32 bits
/\
. I |
Single 8 bits 23 bits
precision
/ Exponent Fraction
Sign
(1 bit) 64 bits
\I A
Double - :
prCCiSiOn 11 bltS 52 bltS
Exponent Fraction
% .
TUDelft Programming 87

[EEE-754
s[Tee] mentse |

» Exponent: bias 127 integer
* actual exponent = exp-127 with O0<exp<255

* Mantissa:
* sign + magnitude, normalized binary
significand with hidden integer bit: 1.mantissa

N = (-1)s 2E127) 1. M

«1.0=0011111111 = (-1)0 * 2127-127) * | M
«0.5=0011111101 = (-1)0 * 2(126-127) * 1 M
'i';UDeIft Programming 88

Range

Negative Positive
Underflow Underflow
Zero
Negative \ / Positive
Overflow Representable Representable Overflow
< Negative Numbers | Positive Numbers >
< _2+127 > _2-126 < 2-126 > 2+127

1(';U Delft Programming

[EEE-754 Examples

Value Bit Pattern
Sign Exponent Fraction

(a) +1.101 x 23 0 1000 0100 101 0000 0000 0000 0000 0000
(b) —1.01011 x2-126 1 0000 0001 010 1100 0000 0000 0000 0000
(c) +1.0 x 2127 0 ITIT 1110 000 0000 0000 0000 0000 0000
(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000
(e) —0 1 0000 0000 000 0000 0000 0000 0000 0000
(f) +o0 0 11111111 000 0000 0000 0000 0000 0000
(2) +2-128 0 0000 0000 010 0000 0000 0000 0000 0000
(h) +NaN 0 ITIr 1111 0110111 0000 0000 0000 0000
(1) +2-128 0O OITOITIT 1111 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000
'i';U Delft Programming 90

IEEE 754 Standard

Parameter Single Single Double Double

Precision Extended Precision Extended
Word width (bits) 32 >= 43 64 >=79
Exponent width (bits) 8 >= 11 11 >=15
Exponent bias 127 Unspecified 1023 Unspecified
Max exponent 127 >= 1023 1023 >= 16383
Min exponent -126 <=-1022 -1022 <=-16382
Number range (base 10) 1038, 10*38 Unspecified | 10°% 10"3% | Unspecified
Mantissa width (bits) 23 >= 31 52 >= 63
No. of exponents 254 Unspecified 2046 Unspecified
No. of fractions 2% Unspecified 2°2 Unspecified
No. of values 1.98 x 2% Unspecified 1.98 x 2% Unspecified
'i';u Delft Programming

ASCII Character Code

)) 00 NUL|[10 DLE[20 SP |30 0 |40 @ |50 P [60 ~ [70 p
oASCII is a 7-bit code, 01 SOH|11 DC1 |21 ' |31 1 |41 A |51 Q |61 a |71 q
- 02 STX (12 DC2 [22 " |32 2 |42 B |52 R [62 b (72 r
commonly stored in 8- | o erx|13pcs |23 # [33 3 [43 ¢ [53 s [63 ¢ |13 s
b|t bytes_ 04 EOT (14 DC4 |24 S |34 4 |44 D |54 T (64 d |74 t
05 ENQ|[15 NAK[25 % |35 5 |45 E |55 U [65 e [75 u
WA 06 ACK[16 SYN[26 & |36 6 |46 F |56 V [66 f |76 v
o
A Is at 4116' TO 07 BEL (17 ETB |27 " |37 7 |47 G |57 W [67 g |77 w
convert upper case 08 BS |18 CAN[28 ([38 8 |48 H [s8 X [68 h [78 x
09 HT [19 EM [29) |39 9 |49 1 |59 Y [69 i [79 vy
Ietters to Iower Cas€e OALF [1TASUB|2A * |3A : |4A J |[5A Z [6A j |7A =z
letters, add 2016. Thus |oB vT [1BESC (2B + (3B ; (4B K [SB [[6B k [7B |
w7 20 _ 0C FF IC FS |2C 3C < |4C L |5C \V |JeC 1 |7C |
a’ isat4lie + 16 = |0oDCR |IDGS |2D - |3D = |4D M |[5D | |[6D m |7D }
6116 OE SO |1IERS |2E . [3E > [4E N |[SE ~ |6E n |7E ~
) OF SI IF US |2F / [3F ? [4F O |5F _ |6F o |7F DEL
\V o3 /4
[
The CharaCter . 5 at NUL Null FF Form feed CAN Cancel
pOSItIOﬂ 3516 IS SOH Start of heading CR Carriage return EM End of medium
- STX Start of text SO Shift out SUB Substitute
dlﬂ:erent than the ETX End of text SI Shift in ESC Escape
number 5_ TO Convert EO("S End of transmission DIC:E Data link escalpe Z’Sé I(?}ile separator
ENQ Enquiry DC1 Device control 1 roup separator
Cha raCter_numberS ACK Acknowledge DC2 Device control 2 RS Record separator
|nt0 number-numbers BEL Bell DC3 Device control 3 US Unit separator
. I BS Backspace DC4 Device control 4 SP Space
SUbtraCt 3016. 3516 = HT Horizontal tab NAK Negative acknowledge DEL Delete
30 — 5 LF Line feed SYN Synchronous idle
16 ' VT Vertical tab ETB End of transmission block
] .
TUDelft Programming 92

Big-Endian and Little-Endian Formats

* In a byte-addressable machine, the smallest datum that can be
referenced in memory is the byte. Multi-byte words are stored as a
sequence of bytes, in which the address of the multi-byte word is the
same as the byte of the word that has the lowest address.

* When multi-byte words are used, two choices for the order in which
the bytes are stored in memory are: most significant byte at lowest
address, referred to as big-endian, or least significant byte stored at
lowest address, referred to as little-endian.

Byte

|

LSB— 0 31« MSB

Big-Endian Little-Endian

31« MSB

(N S (R S N

X x+1 x+2 xt3 x+t3 x+t2 x+l1 X

LSB— 0

Word address 1s x for both big-endian and little-endian formats.

'i';U Delft Programming 93
-]

Programming Languages

g |
TUDelft Programming 94
-]

Imperative language types

* Procedural languages
- Traditional languages where code is a sequence of instructions
executed (approximately) in sequence
- BASIC, FORTRAN, PASCAL, C
- Code can become ‘spaghetti’ for large tasks unless procedural
methods are added

* Object-oriented languages
- Objects contain data and the methods to work on that data
- Extensive use of message passing
- C++, Java, FORTRAN90O
- Good for large projects due to concepts such as encapsulation and
inheritance

'i';U Delft Programming 95
-]

Evolution of programming languages

L3
Thuring e o 1
k ® 7 s e
e . & e S
cli Cobol * AT X
|pp¢r +C Shell ¢ 4 A XME--""77 X Q ®
. ° > ® ” y ¢ e \
e @ > ¢ @ \ 9 9
e . @ e o & e “w-e\ CF /@
¢ Limbo " \ e O[!:ran
"3 3 2 ::-,,__—R———P-"E/
) : ¢ : \ (o 92] N Algol-58 e ‘ Objgct‘ \ '“;“‘ \ ‘
4 y S ol- S } r—
. . eC{f 1 -—c- .~ Object . \.g p —tes ¢ ¢ \ AIgOI -58
BRI e =P atalo e L ‘
« CSound . a Perl - ., ‘ yod . \g Sy e } °
. L2 * . Phyton JavaScript - - Phy ton 3 JavaScrlpt
e et e 1 Visual Basic ¢ \Q y el i~ &
¢ Dylan Ada . . , ‘ ' e 3 5
e & 151 5 Ve e Q
music-n S D Cot+ s g s B X e P S
3 < Q\l e _‘ (Y B
+ Smalltalk Eiffel | ° 9 i
¢ Eusli p ¢ ¢ D =
o @ /e > Llsp\ \ 3 e E
o™ AN WE S Erlang | ¢ . o
S e /@ N V! ¢ ¢ H'n ~ e ¢ ¢ \ y %
Forth . %o b Ve P o =
e e Logo ©77y-.. J-Iaskell " 2 =
® e
. e T p&ulb Smalitalk Eiffel \ E
o ec < | | e—® | e er?n‘da\?_‘f\ . \ g,,)\ Q"- ® & (4 2
@ --. @ —A \ 4 <
‘ Netiogo - ¢ Tl W © Lisp'. 2
] G e S S/ isp, . :
e el N bV
’ @ o @ ¢ % Tl 1 (*4) \ e\ “Q &
e
@ @ NRC 011013 / RvS / Bron: Journal of the Royal Society Interface

'i';U Delft Programming 9

Which languages are there,
... and suited for/use in HPC

e FORTRAN e COBOL

e FORTRAN9O o PASCAL

o BASIC e Delphi

e C e Perl

o ADA o TCL

e C++ e Python

o C#- e Linda

o JAVA o Smalltatk

e IDL o LISP

® Preleg o MATLAB
'i';UDeIft Programming 97

C

 Flexible — a general-purpose language

» Efficient for everything

e Huge amount of code exists

» Complex data structures are simple to create
* Very portable

» Huge range of libraries/add-ons available

e Lowish-level - a single command doesn’t do much
e Can be hard to read

e C lets you do bad things, C++ is pickier

e ‘pointers’ are a source of confusion for beginners

'i';U Delft Programming 98
-]

Fortran 77/90/95/2008

» Designed for scientific programming

o Efficient for numerical work (complex type)

e Huge amount of code exists

» Good for conversion to parallel environments

e COMMON blocks, computed GOTOs (77) are crashes waiting to
happen

e No dynamic memory handling (77)

* No low-level hardware access (playing with bytes tricky)

e Often code relies on ‘standard’ extensions to the language (which
are not standard at all!)

e FORTRANS0 adds object-oriented programming to a language
never intended to have it.

& .
TU Delft Programming 99
-]

C++

e C with added object-oriented capabilities
 Usual benefits of OOP
» Good for large collaborative programming projects
e Standard Template Library provides complex objects
» vectors (slow, array bounds checking)
* maps
e stacks
» algorithms

e Easy to write ‘C with objects’

e Can be hard to read for class details

e C lets you do bad things, C++ is pickier

e C++ compilers not that good in optimization

e not that well suited for development of humerical code

'i';U Delft Programming 100
-]

C++ and performance

o If you want to use C++ and write good performing code. Here
are some guidelines:

* avoid the creation of unexpected copies, which cause
constructor calls

* When passing pointers, use the restrict keyword whenever
appropriate; this allows the compiler to do optimizations

* test your code with another compiler than g++

 operator overloading be used very carefully (it can break fused
multiply-add operations, and SSE/AVX optimization)

'i';U Delft Programming 101
-]

Python

 High level programming language
* intepreted : no compilation needed

 Portable, large standard and third party libraries, widely used.
e Can write kernels in C/Fortran:
* Numba is a just-in-time (JIT) compiler for Python that works best

on code that uses NumPy arrays and functions

* numpy, scipy, matplotlib are great tools to use.

'i';U Delft Programming 102
-]

Python interpreter

Python Interpreter
— 0
——— | Byte virtual O
—_— S code’ Machine
: Source Running
Editor File Program

Library L
modules |

'i';U Delft Programming 103

Java

* Completely object-oriented

o C++ with the nasty/interesting bits taken out

» No operator overloading

* No templates

» Very portable due to ‘virtual machine’

e Can create graphical applications (or web applets) relatively easily

e Slow due to virtual machine
» Not much scientific programming done in it
» Keeps changing!

'i';U Delft Programming 104
-]

Scripting

Example of why scripting helps:

I have a program which reads a file containing 100 integers,
sums them, and prints the answer

I have 200 files like that, and I want to process them all

Dol ..

e (@) run my program 100 times, typing in a different file name
each time?

» (b) change the program so it reads a list of files and processes
them each in turn

* (c) write a script which feeds each file in turn to the existing
program

'i';U Delft Programming 105
-]

Scripting languages: Shell

e C-shell (bash)
» the standard scripting language for UNIX
* uses the same commands you’ll use on the command line
» only integer arithmetic, but floats with a trick
e Text handling is tricky

'i';U Delft Programming 106
-]

Programming in C and Fortran

'i';U Delft Programming 107
-]

Guidelines from David Parnas

The essence of good software construction are clean interfaces
between the components, so that one could rewrite one without
having to modify the other.

One bad programmer can easily create two new jobs a year. Hiring
more bad programmers will just increase our perceived need for
them. If we had more good programmers, and could easily identify
them, we would need fewer, not more.

Doing it right is hard work. Shortcuts lead you in the wrong
direction and they often lead to disaster.

'i';U Delft Programming 108
-]

General structure

e Main program to call functions/subroutines use objects.

* Don't try to write one big program.

» Use functions/subroutines/objects to handle specific parts:
* parameters handling
* File IO
e computational part

» Maintainability, also by other people.
* Don't hesitate to rewrite (big) parts of your code for better

structure or performance (even after 10 years of successful
usage).

'i';U Delft Programming 109
-]

Function / Subroutine / Object

» Has a well defined scope within your program.

e Could be reused by other programs. Typically I0, parameters
definition, compute kernels

o If it becomes too big to handle, try to split it in multiple parts.

* In the design (find out) phase try to avoid to do object oriented
programming right from the start.

& .
TU Delft Programming 110
-]

General names

» Use self-explanatory names for variables and functions:

* ix, iy for loops over x and y directions
* GeophonePosition: might be a bit too long for a loop variable
* ComputeGreen(): too general for a function

* GreenLayeredMedia()

e Do not overdo it.

e CaMel notation
e use_of underscores

'i';U Delft Programming 111
-]

C program instructions

for (i=0; i<n; i++) {
A[i] = b[i]-c[1];

}

if (a<eps)({
}

A=(float *)malloc(N*sizeof(float));
free(A);

fp=fopen(filename, 'w+');
fwrite (data, size, nelem, fp);
fread(data, size, nelem, fp);
flose(fp);

Loop

Branch

Memory

10

'i';u Delft Programming

112

C structures

A structure is a (logical) collection of variables and arrays

typedef struct waveletPar { /* Wavelet */
char *file src;
int nt;
int nx;
float dt;
float fmax;
int random;
} wavPar;

» Another example is the segy header (defined in segy.h)

'i';U Delft Programming 113
-

Lets look at an Example

1(';U Delft Programming 114
-]

C-pointers

int *p;
p = (int *)malloc(sizeof(int));
02004 HowStuffWorks
g |
TUDelft Programming 115

C-pointers

* Why do we need and use pointers?

* Function cannot return more than one value. But the same
function can modify many pointer variables and function as if it is
returning more than one variable.

* Pointers allow you to dynamically request memory to store off
information for use later. They allow you to create linked lists and
other algorithmically oriented data structures.

* The raw ability to work with particular memory locations is a
useful option to have.

'i';U Delft Programming 116
-]

C-pointers

float *A;
int N=10000;

A = (float *)malloc(N*sizeof(float));
work_on A(A, N, eps);

int work on A(float *array, int N, float eps)

{
for (1=0; i<N; i++){
array[i] = ee.e;
}
eps = le-6;
}
3 |
TUDelft Programming 117

C-pointers

3
TU Delft Programming 118

C-pointers

int *P, *q;

p = (int *)malloc(sizeof(int));
qd = P;
*p = 10;

2004 HowStuffWorks

Note, this is
called pointer
aliasing

'i';U Delft Programming

119

C-pointers

int *P, *q;

p = (int *)malloc(sizeof(int));
q = (int *)malloc(sizeof(int));
*g = 20;

]

©2004 HowStuffWorks

'i';U Delft Programming 120

Pointers to arrays

int *p;
int 1i;
p = (int *)malloc(l0*sizeof(int));
for (i=0; i<10; i++)

p[i] = 0; (or *(p++) = 0;)
free(p);

o
A
=
L)
&
X
Q

=

w
c
>
=
=]

&

% .
TU Delft Programming 121

C pointers

Address Value

arr[0] = 7;
ptr = &arr[0];
*(ptr+2) = 10

Pointer shift with the element size

in git HPCourse/ptrs

'i';U Delft Programming 122
-]

Pointer shift with the element size

int arr[10];

1000 --- arr
arr[0]
1004 = arr + 1
arr([1l]
1008 - arr + 2
arr[2]
] .
TU Delft Programming 123

short arr[10];

arr[0] 1000 --- arr
1002 - arr + 1
arr([1l]
1004 --- arr + 2
arr[2]
arr[3] 1006 - arr + 3
arr[4] 1008 --= arr + 4
arr[5] 1002 --- arr + 5
] .
TU Delft Programming 124

Arrays in C

e array index starts numbering at position zero
e arrays are contiguous in memory
» 2D array for example A[3][6]

Address Value

'i';U Delft Programming 125

Arrays in Fortran

e array index starts numbering at position one
e arrays are contiguous in memory

» 2D array for example A(3,6) (row,column)

Address Value

'i';U Delft Programming 126

Note on Matrix Storage

» A matrix is a 2-D array of elements, but memory addresses are
\\1_DII
e Conventions for matrix layout
* by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
* by row, or “row major” (C default) A[i][j] at A+i*n+j

Column major matrix in memory

Column major Row major | ||I|| |||||
0 10 | 15 ol1]|2]3 | || |||| |
LA

11116 4 | 516 |7 . g
i i i
12[17] [|9 [10] ||||| I”ll I

13| 18 1211314 |15 |||||I|||| “

14119 | [16|17[18[19 /“Il ||| |||

Blue row of matrix is

cachelines . :
. stored in red cachelines
'i:;U Delft Figure sewree: Larry Carter, UCSD 127

O© || N[O | O

A WOWIN]| -

Example 2D array allocation in C

0
allocate a C-array with size 3x4 6
int **p; 8 10 | 11
int i;
p = (int **)malloc(3*sizeof(*int));
for (1=0; 1i<3; 1i++)
p[i] = (int *)malloc(4*sizeof(*int));
1 2 n o _
for (1=0; 1i<3; i++) { a1 a9 ain
for (3=0; j<4; j++) { 2| a21 Q22 A2
p[i1[F] = .. 3| as1 aso asp
} z 5
} mlpami am?2 Amn |
'i';U[)e|ft Programming 128

Example 2D array allocation in C

A: i ydu should think of it as a "matrix" with
3 rows and 4 columns.

[@)
A: 7
' -3
But in reality, A holds a reference to (4) | 2
an array of 3 items, where each item -5 o
is a reference to an array of 4 ints. -2
2
-9

'i';U Delft Programming 129

Question: is this safe coding, why?

// TAB -- The Ampersand BUG function
// Returns a pointer to an int
int* TAB() {

int temp;

return(&temp); // returns a pointer to the local

int
}
void Victim() {
int* ptr;
ptr = TAB();
*ptr = 42;
}
see HPCourse/Pointers/ampersand.c
7 |
TUDelft Programming 130

Calling C from Fortran

e Fortran subroutines always pass pointers:

o C
getdata (float *a, int *nl, int *n2);

e called in Fortran
integer nl, n2
real a(nl,n2)
call getData(a, nl, n2)

'i';U Delft Programming 131
-

Calling Fortran from C

e Fortran subroutines always pass pointers:

e Fortran
subroutine getData(a, nl, n2)
integer nl, n2
real a(nl,n2)

o C
int nl, n2;
float *a;
getdata (a, &nl, &n2);

'i';U Delft Programming 132
-

Comparison C and Fortran 77 /90

e dynamic memory allocation (C and F90)

e structures (C)

e Complex number type (Fortran and C99)

e pointers (C and F90)

e arrays:.
 C last index is fastest A[slowest][slower][fast]
 Fortran first index is fastest A(fast, slower, slowest)

e start numbering, C at 0, Fortran at 1

e parameter passing to functions

]
TUDelft
]

Profiling and Debugging

'i';U Delft Programming 134
-]

Profiling applications

 Software level
* Usually a recompile (-p -g flag) is needed to insert
instrumentation instructions
« after running the program a file ‘gmon.out’ is produced
* ‘gprof a.out gprof.out’ for analysis (does not work on apple)

» Hardware level
* uses the hardware counters which are build into the CPU
* detailed information about flops, cache misses, TLB, ...
» AMD: CodeAnalyst (free, requires patch in Linux kernel)
» Intel: Vtune (not free, requires patch in Linux kernel)

'i';U Delft Programming 135
-]

GNU profiling example

-bash-3.00$ gprof ../fdelmodc gmon.out

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

97.02 136.90 136.90 3001 0.05 0.05 wviscoelastic4

2.82 140.88 3.98 3001 0.00 0.00 taperEdges
0.06 140.97 0.09 1 0.09 0.09 readModel
0.04 141.03 0.06 751 0.00 0.00 getRecTimes
0.01 141.05 0.02 byte32sse?2
0.01 141.06 0.01 3 0.00 0.00 getModelInfo
0.01 141.07 0.01 1 0.01 141.05 main

'i';U Delft Programming 136

PAT (profiler on Cray hardware)

100.0% | 3111 |Total

88.5% 2753 |elastic4
3 jan/FD/fdelmodc/elastic4d.c
4 21.0% 654 |line.88
4 18.7% 583 |1line.100
4 6.6% 205 [(line.150
4 22.3% 693 |line.154
4 19.8% 617 |line.181
9.5% 294 |taperEdges
3 jan/FD/fdelmodc/taperEdges.c
4 2.7% 85 [(line.23
4 1.6% 50 |[line.35
4 3.2% 99 (line.47
4 1.9% 60 |line.59
1.4% | 45 |ETC
5 |
TUDelft Programming 137

PAT (Cray hardware profile)

USER / elastic4

Samp% 88.5%
Samp 2753
DATA CACHE MISSES 38.009M/sec 1669361262 misses
PAPI TOT INS 1353.653M/sec 59452452138 instr
PAPI L1 DCA 1132.779M/sec 49751666083 refs
PAPI FP_OPS 838.940M/sec 36846242855 ops
User time (approx) 43.920 secs 105408000000 cycles
HW FP Ops / User time 838.940M/sec 36846242855 ops 17.5%peak(DP)
HW FP Ops / Inst 62.0%
Computational intensity 0.35 ops/cycle 0.74 ops/ref
Instr per cycle 0.56 inst/cycle
MIPS 1353.65M/sec
MFLOPS (aggregate) 838.94M/sec
Instructions per LD & ST 83.7% refs 1.19 inst/ref
D1 cache hit,miss ratios 96.6% hits 3.4% misses
D1 cache utilization (M) 29.80 refs/miss 3.725 avg uses
] .
TUDelft Programming 138

Profiling tools

e Valgrind: http://valgrind.org

* also good in detecting memory leakage problems

» OpenSpeedshop: http://www.openspeedshop.org/wp/
« difficult to get installed

* GNU-gprof
* no source line level

 Vtune (from Intel):

%
TUDelft 139
-]

Debugging

e compile with -g
* usually optimisation level is lowered, so don’t forget to remove
the -g flag after debugging.

 run program with special debug program
* idb (intel) gdb (gnu) lidb (OSX) : command line
* totalview, ddd : graphical user interface

e compile options
* -traceback

'i';U Delft Programming 140
-]

LAPACK BLAS

e The BLAS (Basic Linear Algebra Subprograms) are routines that
provide standard building blocks for performing basic vector and

matrix operations.

* LAPACK (Linear Algebra PACKage) is written in Fortran90 and
provides routines for solving systems of simultaneous linear
equations, least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems.

e http://www.netlib.org/lapack/

'i';U Delft Programming 141

Using LAPACK BLAS

 All CPU manufacturers have optimised (assembler)
implementations ons BLAS/LAPACK and most of them also provide
optimised FFT's

e Intel: MKL (Math Kernel Library)

 AMD: AOCL (AMD Optimizing CPU Libraries)
o BLIS (BLAS) , Libflame (~LAPACK)

» Nvidia: CUBLAS (BLAS for Nvidia GPU’s)

o ATLAS (Automatically Tuned Linear Algebra Software)

'i';U Delft Programming 142
-]

Other Libraries

* Numerical Recipes: http://www.nr.com/

— Equation solving

— Fitting/minimisation

— Random number generation (built-in functions are all poor!)
— written for functionality not for performance

 Netlib.org: http://www.netlib.org/

e Trilinos: http://trilinos.sandia.gov/

* NAG (Numerical Algorithm Group): http://www.nag.co.uk/

— as numerical recipes, but commercial
— a good solution, IF you can understand the manual

» FFTW: http://www.fftw.org/

'i';U Delft Programming 143

Other Libraries

e PETSc http://www.mcs.anl.gov/petsc/petsc-as/

— scientific applications modeled by partial differential equations
— Portable to any parallel system supporting MPI
— mostly FEM

 Metis http://glaros.dtc.umn.edu/gkhome/views/metis

— partitioning unstructured graphs and hypergraphs and computing fill-reducing orderings of

sparse matrices

» Boost: http://www.boost.org

— C++ , general many algorithms and templates

— not specific for HPC

'i';U Delft Programming 144

Version Control

 Software development, management systems

e Makes is easy to develop files and keep track of the changes
made in the source code.

» Check-in (working) versions of your code at regular times

* Needs some time to set set up

e https://git-scm.com : you are already working with it !
e http://subversion.apache.org/
e http://code.google.com/hosting

'i';U Delft Programming 145
-]

GIT

reference to current branch

another branch /
hild poi HEAD -
\ child points to parent == urrent branch mit
stable [main
ad7c3 b325¢ c10b9 da985 ed489
files to go in next commit . commit objects, | files

Stage (Index)

identified by SHA-1 hash

files that you “see”
Working Directory

http://onlywei.github.io/explain-git-with-d3/#
https://marklodato.github.io/visual-git-guide/index-en.html#basic-usage

'i';U Delft Programming 146

Exercise: Loop interchange

 To be discussed in the optimization lecture next week.

* On your git clone: cd HPCourse/LoopChange

* Check the README for instructions.

» Make sure you use a low optimisation level (-00) for the compiler

e The Python code also has a loops related problem.

'i';U Delft Programming 147
-]

Exercise Vectorization

 To be discussed in the optimization lecture next week.
e On your git clone: cd HPCourse/Vect
e Check the README for instructions.

» Look into the c-file and see which loop is (should be) vectorised
by the compiler.

 This exercise will also give you some compile and linking
experience.

'i';U Delft Programming 148
-

Exercise: Matrix Multiply

 To be discussed in the optimization lecture next week.

* On your git clone: cd HPCourse/MatMul

* Check the README for instructions.

 In the Makefile change LIBS= to a path where the BLAS library is.

» This exercise also requires some compile and linking experience.

'i';U Delft Programming 149
-]

Exercise: Matrix Multiply + Unroll

 To be discussed in the optimization lecture next week.
* On your git clone: cd HPCourse/MatMulUnroll
» Check the README for instructions.

 In the Makefile change LIBS= to a path where the BLAS library is.
if you can not find BLAS just set LIBS= (empty)

'i';U Delft Programming 150
-]

Exercise: Debug

 fdelmodc with build in programming bugs and runtime errors.
e On your git clone: cd HPCourse/FD
» Check the README for instructions.

e If you try to run the code it will give an error, see if you can solve
it using a debugger.

» Note this is not an easy exercise. It has two parts
1. Lexical format problems in the source code
2.runtime problems: an exercise to use a debugger

'i';U Delft Programming 151
-]

Exercise: Profile

» Profile a program which you are using (in case you don't have one
use fdelmodc of the previous exercise).
» compile with -p -g (or -pg lookup the option of gcc)
° run program ‘a.out’
* run ‘gprof a.out gprof.out’

o If you did not succeed do no hesitate to ask me (by e-mail or
during the course).

'i';U Delft Programming 152
-]

