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• Describes the relation between the parallel portion of your code 
and the expected speedup


• P = parallel portion

• N = number of processors used in parallel part


• P/N is the ideal parallel speed-up, it will always be less

Amdahl’s Law
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speedup =
1

(1� P ) + P
N



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

Sp
ee

du
p

Number of Processors

1.0
0.99
0.98

Amdahl’s Law

4



 0

 20

 40

 60

 80

 100

 1  2  3  4  5  7  10  20  30  40 50  70 90

M
ax

im
um

 S
pe

ed
up

Sequential Portion in %

maxspeedup(x)

Amdahl’s Law 

5



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

Sp
ee

du
p

Number of Processors

1.0
0.99
0.96

super linear

Super Linear speed up

6



Concurrency and Parallelism

• Concurrency and parallelism are often used synonymously. 


Concurrency: The independence of parts of an algorithm 

(= independent of each other). 


Parallelism (also parallel execution): Two or more parts of a 

program are executed at the same moment in time. 


Concurrency is a necessary prerequisite for parallel execution 

for parallel execution 

                              but 

Parallel execution is only one possible consequence of 
concurrency. 
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Concurrency vs. Parallelism

• Concurrency: two or more threads are in progress at the same time:


• Parallelism: two or more threads are executing at the same time


Multiple cores needed

Thread 1
Thread 2

Thread 1
Thread 2



Learning

Classical CPU’s are sequential


There is an enormous sequential programming knowledge 
build into compilers and know by most programmers. 


Parallel Programming is requiring new skills and new tools. 


Start to parallelise simple problems and keep on learning along 
the way to complex real-world problems.
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Recognizing Sequential Processes

• Time is inherently sequential

• Dynamics and real-time, event driven applications are often difficult to 

parallelize effectively


• time stepping modeling code


• Many games fall into this category


• Iterative processes

• The results of an iteration depend on the preceding iteration


• conjugate gradient methods


• Audio encoders


•



Parallel Programming Models

• Parallel programming models exist as an abstraction above 
hardware and memory architectures. 


• Which model to use is often a combination of what is available 
and personal choice. There is no "best" model, although there 
certainly are better implementations of some models over others. 



Parallel Programming Models

• Shared Memory

• tasks share a common address space, which they read and write 

asynchronously.


• Threads (functional)

• a single process can have multiple, concurrent execution paths. 

Example implementations: POSIX threads & OpenMP 


• Message Passing

• tasks exchange data through communications by sending and 

receiving messages. Example: MPI-2 specification.


• Data Parallel languages

• tasks perform the same operation on their partition of work. 

Example: Co-array Fortran (CAF), Unified Parallel C (UPC), 
Chapel


• Hybrid 



Programming Models
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Hardware Layer

Memory

Interconnect

Interconnect

System Software

Programming Model

User
New to parallel programming

Experienced programmer

Shared Memory

Message passing

Hybrid

Operating system 
compilers

Distributed Memory 

Shared Memory



Parallel Programming Concepts

• Work distribution

• Which parallel task is doing what?

• Which data is used by which task?


• Synchronization

• Do the different parallel tasks meet?


• Communication

• Is communication between parallel parts needed?


• Load Balance

• Does every task has the same amount of work?

• Are all processors of the same speed?
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• Work decomposition

• based on loop counter


• Data decomposition

• all work for a local portion 

of the data is done by the 
local processor


• Domain decomposition

• decomposition of work and 

data

Distributing Work and/or Data

15

do i=1,100
1: i=1,25
2: i=26,50
3: i=51,75
4: i=76,100

A(1:10,1:25)
A(1:10,26:50)
A(11:20,1:25)
A(11:20,25:50)



Synchronization

• Synchronization

• causes overhead

• idle time, when not all tasks are finished at the same time
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2. — Parallel Hardware Architectures and Parallel Programming Models   — 2.
2-9

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 17 / 54

Distributing Work & Data

do i=1,100
 i=1,25

i=26,50
i=51,75
i=76,100

Work decomposition
• based on loop decomposition

Domain decomposition
• decomposition of work and

data is done in a higher model,
e.g. in the reality

A(  1:20, 1:  50)
A(  1:20, 51:100)
A(21:40, 1:  50)
A(21:40, 51:100)

Data decomposition
• all work for a local portion

of the data is done by the
local processor

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 18 / 54

Synchronization

• Synchronization
– is necessary
– may cause

• idle time on some processors
• overhead to execute the synchronization primitive

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-i)
Enddo



Communication

• communication is necessary on the boundaries


• domain decomposition
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do i=2,99
   b(i) = b(i) + h*(a(i-1)-2*a(i)+a(i+1))
end do

e.g. b(26) = b(26) + h*(a(25)-2*a(26)+a(27))

A(1:25)
A(26:50)
A(51:75)
A(76:100)

31. —   Domain Decomposition – Parallelization of Mesh Based Applications   — 31
31-6

Slide 11
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

Replication versus Communication (II)

• Normally replicate the values

– Consider how many calculations you can execute while only
sending 1 Bit from one process to another
(6 µs, 1.0 Gflop/s  6000 operations)

– Sending 16 kByte (20x20x5) doubles
(with 300 MB/s bandwidth   53.3 µs  53 300 operations)

– very often blocks have to wait for their neighbours

–  but extra work limits parallel efficiency

• Communication should only be used if one is quite sure that this is
the best solution

Slide 12
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

2- Dimensional DD with two Halo Cells

Mesh Partitioning

Subdomain for each Process



38a. — Parallelization of Explicit and Implicit Solvers   — 38a.
38a-10

Rolf RabenseifnerParallelization and Iterative Solvers
Slide 19 of  51 Höchstleistungsrechenzentrum Stuttgart

Unstructured Grids

• Mesh partitioning with special load balancing libraries
– Metis (George Karypis, University of Minnesota)
– ParMetis (internally parallel version of Metis)

• http://www.cs.umn.edu/~karypis/metis/metis.html
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/metis.html

– Jostle (Chris Walshaw, University of Greenwich)
• http://www.gre.ac.uk/jostle
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/jostle.html

– Goals:
• Same work load in 

each sub-domain
• Minimizing the

maximal number of 
neighbor-connections
between sub-domains

0 2

3
1

4
5

6 10

9
8

7 11

12 15

16
13

17 14

21 20

23
22

19

18

P
arallelization

of E
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Rolf RabenseifnerParallelization and Iterative Solvers
Slide 20 of  51 Höchstleistungsrechenzentrum Stuttgart

Halo

• Stencil:
– To calculate a new grid point (   ), 

old data from the stencil grid points ( ) are needed
• E.g., 9 point stencil

• Halo
– To calculate the new grid points of a sub-domain,

additional grid points from other sub-domains are needed.
– They are stored in  halos  (ghost cells, shadows)
– Halo depends on form of stencil

Load Imbalance

• Load imbalance is the time that some processors in the system 
are idle due to:


• less parallelism than processors

• unequal sized tasks together with too little parallelism

• unequal processors

18



Examples of work distribution

• Domain Decomposition

• Master Worker 

• Task Decomposition

19



Domain Decomposition

• First, decide how data elements should be divided among processors


• Second, decide which tasks each processor should be doing




Domain Decomposition

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Find the largest element of an array



5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3



Domain Decomposition
Find the largest element of an array

5 6 68 83

Core 0 Core 1 Core 2 Core 3

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 645 6 68 83



5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

13 49 12 51

13 49 68 83



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

1 34 98 94

13 49 98 94



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

9 50 16 27

13 50 98 94



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 22 78 74

26 50 98 94



5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

26 50 98 94

13 12 31 64



Domain Decomposition
Find the largest element of an array

26

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

50



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98



Core 2

Core 1

Core 3

Master Worker

33

Get a heap of work done 

Core 0 (master)



• The problem is decomposed according to the work that must be done. 
Each task then performs a portion of the overall work.


• Divide computation based on natural set of independent tasks

‣ Assign data for each task as needed


• Example: pipeline seismic data pre-processing

• static-correction

• deconvolution

• nmo correction

• stacking

• ….

Functional Decomposition



Task/Functional Decomposition
f()

s()

r()
q()h()

g()



Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1



Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1



Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1



Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1



Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1



Shared Memory Parallelism

• Introduction to Threads

• Exercise: Racecondition


• OpenMP Programming Model

• Scope of Variables:  Exercise 1

• Synchronisation: Exercise 2


• Scheduling

• Exercise: OpenMP scheduling


• Reduction

• Exercise: Pi


• Shared variables

• Exercise: CacheTrash


• Tasks

• Future of OpenMP

41



Processes and Threads

Modern operating systems load 
programs as processes


• Resource holder

• Execution


A process starts executing at its 
entry point as a thread 


Threads can create other threads 
within the process


All threads within a process share 
code & data segments


Threads have lower overhead than 
processes

Code segment

Data segment

thread

main()

…thread thread



Threads: “processes” sharing memory

• Process == address space

• Thread == program counter / stream of instructions

• Two examples


• Three processes, each with one thread

• One process with three threads

43

Kernel Kernel
ThreadsThreads

System 
space

User 
space

Process 1 Process 2 Process 3 Process 1



The Shared-Memory Model

Shared Memory

Core

Private 
Memory

Core

Private 
Memory

Core

Private 
Memory



What Are Threads Good For?

Making programs easier to understand


Overlapping computation and I/O


Improving responsiveness of GUIs


Improving performance through parallel execution

‣ with the help of OpenMP



Fork/Join Programming Model

• When program begins execution, only master thread active


• Master thread executes sequential portions of program


• For parallel portions of program, master thread forks (creates or 
awakens) additional threads


• At join (end of parallel section of code), extra threads are 
suspended or die



Relating Fork/Join to Code (OpenMP)

for {

}

for {

}

Sequential code

Parallel code

Sequential code

Parallel code

Sequential code



Domain Decomposition Using Threads

Shared 
Memory

  Thread 0 Thread 2

Thread 1

f ( )

f ( )

f ( )



Shared

Memory

Task Decomposition Using Threads
Thread 0 Thread 1

e ( )

g ( )h ( )

f ( )



Shared versus Private Variables

Shared

Variables

Private

Variables

Private

Variables

Thread

Thread



Parallel threads can “race” against each other to update resources


Race conditions occur when execution order is assumed but not 
guaranteed


Example: un-synchronised access to bank account

Race Conditions

Deposits $100 
into account

Withdraws $100 
from account

Initial balance = $1000

Final balance = ?



Race Conditions

Deposits $100 
into account

Withdraws $100 
from account

Initial balance = $1000

Final balance = ?

Time Withdrawal Deposit

T0 Load (balance = $1000)

T1 Subtract $100 Load (balance = $1000)

T2 Store (balance = $900) Add $100

T3 Store (balance = $1100)



Code Example in OpenMP

exercise: HPCource/RaceCondition

for (i=0; i<NMAX; i++) {
    a[i] = 1;
    b[i] = 2;
}
#pragma omp parallel for shared(a,b)
for (i=0; i<12; i++) {
    a[i+1] = a[i]+b[i];
}

1: a= 1.0,  3.0,  5.0,  7.0,  9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0
4: a= 1.0,  3.0,  5.0,  7.0,  9.0, 11.0, 13.0,  3.0,  5.0,  7.0,  9.0, 11.0
4: a= 1.0,  3.0,  5.0,  7.0,  9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0
4: a= 1.0,  3.0,  5.0,  7.0,  9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0

53



Code Example in OpenMP

thread    computation  
0         a[1] = a[0] + b[0]
0         a[2] = a[1] + b[1]
0         a[3] = a[2] + b[2]  <--| Problem 
1         a[4] = a[3] + b[3]  <--| Problem
1         a[5] = a[4] + b[4]
1         a[6] = a[5] + b[5]  <--| Problem 
2         a[7] = a[6] + b[6]  <--| Problem
2         a[8] = a[7] + b[7]
2         a[9] = a[8] + b[8]  <--| Problem 
3         a[10] = a[9] + b[9] <--| Problem
3         a[11] = a[10] + b[10]

54



How to Avoid Data Races

• Scope variables to be local to threads

• Variables declared within threaded functions

• Allocate on thread’s stack

• TLS (Thread Local Storage) 

• Control shared access with critical regions

• Mutual exclusion and synchronization

• Lock, semaphore, event, critical section, mutex…



Examples variables

56



Domain Decomposition

Sequential Code:


int a[1000], i;

for (i = 0; i < 1000; i++) a[i] = foo(i);



Domain Decomposition

Sequential Code:


int a[1000], i;

for (i = 0; i < 1000; i++) a[i] = foo(i);


Thread 0:

for (i = 0; i < 500; i++) a[i] = foo(i);


Thread 1:

for (i = 500; i < 1000; i++) a[i] = foo(i);



Domain Decomposition

Sequential Code:


int a[1000], i;

for (i = 0; i < 1000; i++) a[i] = foo(i);


Thread 0:

for (i = 0; i < 500; i++) a[i] = foo(i);


Thread 1:

for (i = 500; i < 1000; i++) a[i] = foo(i);

SharedPrivate



Task Decomposition
int e;


main () {

   int x[10], j, k, m;   j = f(k);   m = g(k); ...

}


int f(int *x, int k)

{

   int a;   a = e * x[k] * x[k];   return a;

}


int g(int *x, int k)

{

   int a;   k = k-1;  a = e / x[k];   return a;

}



Task Decomposition
int e;


main () {

   int x[10], j, k, m;   j = f(k);   m = g(k);

}


int f(int *x, int k)

{

   int a;   a = e * x[k] * x[k];   return a;

}


int g(int *x, int k)

{

   int a;   k = k-1;  a = e / x[k];   return a;

}

Thread 0

Thread 1



Task Decomposition
int e;


main () {

   int x[10], j, k, m;   j = f(k);   m = g(k);

}


int f(int *x, int k)

{

   int a;   a = e * x[k] * x[k];   return a;

}


int g(int *x, int k)

{

   int a;   k = k-1;  a = e / x[k];   return a;

}

Thread 0

Thread 1

Static variable: Shared



Task Decomposition
int e;


main () {

   int x[10], j, k, m;   j = f(x, k);   m = g(x, k);

}


int f(int *x, int k)

{

   int a;   a = e * x[k] * x[k];   return a;

}


int g(int *x, int k)

{

   int a;   k = k-1;  a = e / x[k];   return a;

}

Thread 0

Thread 1

Heap variable: Shared



Task Decomposition
int e;


main () {

   int x[10], j, k, m;   j = f(k);   m = g(k);

}


int f(int *x, int k)

{

   int a;   a = e * x[k] * x[k];   return a;

}


int g(int *x, int k)

{

   int a;   k = k-1;  a = e / x[k];   return a;

}

Thread 0

Thread 1

Function’s local variables: Private



Shared and Private Variables

• Shared variables

• Static variables

• Heap variables

• Contents of run-time stack at time of call


• Private variables

• Loop index variables

• Run-time stack of functions invoked by thread
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3

What Is OpenMP?

• Compiler directives for multithreaded programming


• Easy to create threaded Fortran and C/C++ codes


• Supports data parallelism model


• Portable and Standard


• Incremental parallelism

➡Combines serial and parallel code in single source



OpenMP is not ...

Not Automatic parallelization 

– User explicitly specifies parallel execution 

– Compiler does not ignore user directives even if wrong 

Not just loop level parallelism 

– Functionality to enable general parallel parallelism 

Not a new language 

– Structured as extensions to the base 

– Minimal functionality with opportunities for extension 

68



Directive based

• Directives are special comments in the language 

– Fortran fixed form: !$OMP, C$OMP, *$OMP 

– Fortran free form: !$OMP 

Special comments are interpreted by OpenMP 

compilers 

      w = 1.0/n 

      sum = 0.0 

!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:sum) 

      do I=1,n 

        x = w*(I-0.5) 

        sum = sum + f(x) 

      end do 

      pi = w*sum 

      print *,pi 

      end 

69

Comment in 
Fortran

but interpreted by

OpenMP compilers



C example

#pragma omp  directives in C 


– Ignored by non-OpenMP compilers
 
  w = 1.0/n; 

  sum = 0.0; 

#pragma omp parallel for private(x) reduction(+:sum) 

  for(i=0, i<n, i++) { 

    x = w*((double)i+0.5); 

    sum += f(x); 

  } 

  pi = w*sum; 

  printf(“pi=%g\n”, pi); 

} 

70



• Control runtime

• schedule type

• max threads

• nested parallelism

• throughput mode

Architecture of OpenMP

• Control structures

• Work sharing

• Synchronization

• Data scope attributes


• private

• shared

• reduction


• Orphaning

71

• Control & query routines

• number of threads

• throughput mode

• nested parallism


• Lock API

Directives,

Pragmas

Runtime library 
routines

Environment 
variables



Programming Model 

• Fork-join parallelism: 

‣  Master thread spawns a team of threads as needed


‣ Parallelism is added incrementally: the sequential program 
   evolves into a parallel program

Parallel Regions

Master 
Thread

72



Threads are assigned an independent 
set of iterations


Threads must wait at the end of work-
sharing construct

i = 0


i = 1


i = 2


i = 3

i = 4


i = 5


i = 6


i = 7

i = 8


i = 9


i = 10


i = 11

Work-sharing Construct

#pragma omp parallel

#pragma omp for

Implicit barrier

#pragma omp parallel

#pragma omp for

   for(i = 0; i < 12; i++) 

      c[i] = a[i] + b[i]

73



Combining pragmas

These two code segments are equivalent

#pragma omp parallel 

{	 

    #pragma omp for

    for (i=0; i< MAX; i++) {                 
	 res[i] = huge();

    } 

}	

#pragma omp parallel for

    for (i=0; i< MAX; i++) {

         res[i] = huge();

    }

74
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IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum
sum = Σ  b[i=0][j]*c[j] sum = Σ  b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum
sum = Σ  b[i=1][j]*c[j] sum = Σ  b[i=6][j]*c[j]

... etc ...
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Matrix-vector example
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IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009
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OpenMP Performance Example

Memory Footprint (KByte)

Pe
rfo

rm
an

ce
 (M

flo
p/

s)

Matrix too 
small *

*) With the IF-clause in OpenMP this performance degradation can be avoided

scales

Performance is matrix size dependent
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OpenMP parallelization

• OpenMP Team := Master + Workers

• A Parallel Region is a block of code executed by all


threads simultaneously

• The master thread always has thread ID 0 

• Thread adjustment (if enabled) is only done before entering a parallel 

region

• Parallel regions can be nested, but support for this is implementation 

dependent

• An "if" clause can be used to guard the parallel region; in case the 

condition evaluates to "false", the code is executed serially

• A work-sharing construct divides the execution of the enclosed 

code region among the members of the team; in other words: 
they split the work

77



Data Environment

• OpenMP uses a shared-memory programming model  

• Most variables are shared by default. 

• Global variables are shared among threads 
     C/C++: File scope variables, static


• Not everything is shared, there is often a need for “local” data as 
well

78



... not everything is shared...


• Stack variables in functions called from parallel regions are PRIVATE 

• Automatic variables within a statement block are PRIVATE 

• Loop index variables are private (with exceptions) 

• C/C+: The first loop index variable in nested loops following a  

#pragma omp for

Data Environment

79



About Variables in SMP

• Shared variables 
Can be accessed by every thread thread. Independent read/write  
operations can take place.


• Private variables 
Every thread has it’s own copy of the variables that are created/
destroyed upon entering/leaving the procedure. They are not 
visible to other threads.

80

serial code

global

auto local

static

dynamic

parallel code

shared

local

use with care

use with care



attribute clauses 


•default(shared)


•shared(varname,…)


private(varname,…)

Data Scope clauses
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The Private Clause

Reproduces the variable for each thread

• Variables are un-initialised; C++ object is default constructed

• Any value external to the parallel region is undefined

void* work(float* c, float *a, float 
*x, int N) 

{

  float x, y; int i;

 #pragma omp parallel for private(x,y)

     for(i=0; i<N; i++) {

	  x = a[i]; y = b[i];

     	 c[i] = x + y;

     }

}
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Synchronization

• Barriers


• Critical sections


• Lock library routines

83

#pragma omp barrier

#pragma omp critical()

omp_set_lock(omp_lock_t *lock)

omp_unset_lock(omp_lock_t *lock)

....



#pragma omp critical [(lock_name)]


Defines a critical region on a structured block

OpenMP Critical Construct

float R1, R2;

#pragma omp parallel

{ float A, B; 

#pragma omp for 
  for(int i=0; i<niters; i++){

    B = big_job(i);

#pragma omp critical  
    consum (B, &R1);

    A = bigger_job(i);

#pragma omp critical  
    consum (A, &R2);

  } 
}

All threads execute the 
code, but only one at a 
time. Only one calls 
consum() thereby 
protecting R1 and R2 
from race conditions.


Naming the critical 
constructs  is optional, 
but may increase 
performance.

(R1_lock)


(R2_lock)
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OpenMP Critical

85

Day 3: OpenMP 
2010 ʹ Course MT1 

OpenMP critical directive:  
Explicit Synchronization 

� Race conditions can be avoided by controlling access to shared variables by 
allowing threads to have exclusive access to the variables 

� Exclusive access to shared variables allows the thread to atomically perform 
read, modify and update operations on the variable.  

� Mutual exclusion synchronization is provided by the critical directive of 
OpenMP 

� Code block within the critical region defined by critical /end critical directives 
can be executed only by one thread at a time. 

� Other threads in the group must wait until the current thread exits the critical 
region. Thus only one thread can manipulate values in the critical region. 
 

29 

fork 

join 

- critical region 

int x 
x=0; 
#pragma omp parallel shared(x) 
{ 
  #pragma omp critical 
      x = 2*x + 1; 
} /* omp end parallel */ 
 

All threads execute the code, but only one at a time.

Other threads in the group must wait until the current 
thread exits the critical region. Thus only one thread can 
manipulate values in the critical region. 
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Simple Example: critical 

30 

cnt = 0; 
f = 7; 
#pragma omp parallel 
{ 
   #pragma omp for 
      for (i=0;i<20;i++){ 
         if(b[i] == 0){ 
             
            #pragma omp critical 
               cnt ++; 
          } /* end if */ 
          a[i]=b[i]+f*(i+1); 
       } /* end for */ 
} /* omp end parallel */ 
 

cnt=0 
f=7 

i =0,4 i=5,9 i= 20,24 i= 10,14 

ŝĨ�͙ 
ŝĨ�͙ 

ŝĨ�͙ i= 20,24 

cnt++ 

cnt++ 

cnt++ 
cnt++ a[i]=b[

ŝ΁н͙ 

a[i]=b[
ŝ΁н͙ 

a[i]=b[i]
н͙ 

a[i]=b[i]
н͙ 

Critical Example 1
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Critical Example 2

int i; 

#pragma omp parallel for

for (i = 0; i < 100; i++) { 

s = s + a[i]; } 
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 RZ: Christian Terboven  Folie 12 

Synchronization (2/4) 

do i = 0, 24 
     s = s + a(i) 
end do 

do i = 25, 49 
     s = s + a(i) 
end do 

do i = 50, 74 
     s = s + a(i) 
end do 

do i = 75, 99 
     s = s + a(i) 
end do 

A(0) 
. 
. 
. 

A(99) 

S 

Pseudo-Code 
Here: 4 Threads 

Memory 

do i = 0, 99 
     s = s + a(i) 
end do 

Critical Example 2

88



OpenMP Single Construct

• Only one thread in the team executes the enclosed code


• The Format is:


• The supported clauses on the single directive are: 

89

#pragma omp single [nowait][clause, ..]{
        “block”
}

private (list)
firstprivate (list)

NOWAIT:

the other threads 
will not wait at the 
end single directive



OpenMP Master directive

• All threads but the master, skip the enclosed section of code and 
continue


• There is no implicit barrier on entry or exit !


• Each thread waits until all others in the team have reached this 
point.
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#pragma omp master {
        “code”
}

#pragma omp barrier



#pragma omp parallel
{
     ....
#pragma omp single [nowait]
{
     ....
}
#pragma omp master
{
     ....
}
     ....
#pragma omp barrier
}

Work Sharing: Single Master
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Single processor

92

62

Tutorial IWOMP 2011 - Chicago, IL, USA June 13, 2011An Overview of OpenMP

Single processor region/2

time

single processor 
region

Other threads 
wait if there is 
a barrier here



Work Sharing: Orphaning

• Worksharing constructs may be outside lexical scope of the 
parallel region
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#pragma omp parallel
{
     ....
     dowork( )
     ....
}
 ....

void dowork( )
{
   #pragma omp for
   for (i=0; i<n; i++) {
       ....
   }
}



Scheduling the work

• schedule ( static | dynamic | guided | auto [, chunk] ) schedule 
(runtime)


static [, chunk]
• Distribute iterations in blocks of size "chunk" over the threads in a 

round-robin fashion

• In absence of "chunk", each thread executes approx. N/P chunks for 

a loop of length N and P threads

94
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IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The schedule clause/2

Thread 0 1 2 3
���	�
�� *-K L-M N-*7 *F-*O

	�
���!�� *-7 F-K L-O P-M
N-*� **-*7 *F-*K *L-*O

Example static schedule
Loop of length 16, 4 threads:

*) The precise distribution is implementation defined
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• dynamic [, chunk]
• Fixed portions of work; size is controlled by the value of chunk

• When a thread finishes, it starts on the next portion of work


• guided [, chunk]
• Same dynamic behavior as "dynamic", but size of the portion of work 

decreases exponentially


runtime
• Iteration scheduling scheme is set at runtime through environment 

variable OMP_SCHEDULE
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IWOMP 2009
TU Dresden
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An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The experiment

0 100 200 300 400 500 600

3
2
1
0

3
2
1
0

3
2
1
0

static

dynamic, 5

guided, 5

Iteration Number

Th
re

ad
 ID

500 iterations on 4 threads
Example scheduling
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Environment Variables

• The names of the OpenMP environment variables must be 
UPPERCASE


• The values assigned to them are case insensitive
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OMP_NUM_THREADS

OMP_SCHEDULE “schedule [chunk]”

OMP_NESTED { TRUE | FALSE }



Exercise: OpenMP scheduling

• How OpenMP can help parallelize a loop, but as a user you can 
help in making it better ;-)


• On the git clone: cd HPCourse/OMP_schedule


• The README has instructions: 
This works best with an Intel compiler that uses an auto-
parallelizer to generate threaded code


• This exercise requires already some knowledge about OpenMP. 
The OpenMP website at 
 https://www.openmp.org/  
can be helpful to get started. 
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reduction (op : list)


The variables in “list” must be shared in the enclosing parallel 
region


Inside parallel or work-sharing construct:

‣ A PRIVATE copy of each list variable is created and initialized depending on 

the “op” 

‣ These copies are updated locally by threads 

‣ At end of construct, local copies are combined through “op” into a single value 
and combined with the value in the original SHARED variable

13

OpenMP Reduction Clause
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2010 ʹ Course MT1 

OpenMP: Reduction 

� performs reduction on shared variables in list based on the operator provided. 
� for C/C++ operator can be any one of : 

± +, *, -, ^, |, ||, & or && 
± At the end of a reduction, the shared variable contains the result obtained upon 

combination of the list of variables processed using the operator specified. 
 

 

32 

sum = 0.0 
#pragma omp parallel for reduction(+:sum) 
  for (i=0; i < 20; i++) 
    sum = sum + (a[i] * b[i]); 

sum=0 

i=0,4 i=5,9 i=10,14 i=15,19 

sum=.. sum=.. sum=.. sum=.. 

єƐƵŵ 

sum=0 

Local copy of sum for each thread

All local copies of sum added together 
and stored in “global” variable

Reduction Example

#pragma omp parallel for 
reduction(+:sum)

   for(i=0; i<N; i++) {

     sum += a[i] * b[i];

   }
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A range of associative and commutative operators can be used with 
reduction

Initial values are the ones that make sense

C/C++ Reduction Operations

Operator Initial Value

+ 0

* 1

- 0

^ 0

Operator Initial Value

& ~0

| 0

&& 1

|| 0

FORTRAN:
intrinsic is one of MAX, MIN, IAND, IOR, IEOR 
operator is one of +, *, -, .AND., .OR., .EQV., .NEQV.
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Numerical Integration Example
4.0

2.0

1.00.0 X

� 1

0

4
1 + x2

dx = �
static long num_steps=100000; 
double step, pi;


void main()

{  int i;	 

   double x, sum = 0.0;


   step = 1.0/(double) num_steps;

   for (i=0; i<num_steps; i++){

      x = (i+0.5)*step;

      sum = sum + 4.0/(1.0 + x*x);

   }

   pi = step * sum;

   printf(“Pi = %f\n”,pi);

}
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static long num_steps=100000; 
double step, pi;


void main()

{  int i;	 

   double x, sum = 0.0;


   step = 1.0/(double) num_steps;

   for (i=0; i<num_steps; i++){

      x = (i+0.5)*step;

      sum = sum + 4.0/(1.0 + x*x);

   }

   pi = step * sum;

   printf(“Pi = %f\n”,pi);

}

Numerical Integration to Compute Pi

Parallelize the numerical 
integration code using 
OpenMP


What variables can be shared?


What variables need to be 
private?


What variables should be set 
up for reductions?

step, num_steps

x, i

sum
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Solution to Computing Pi

static long num_steps=100000; 

double step, pi;


void main()

{  int i;	 

   double x, sum = 0.0;

   step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

   for (i=0; i<num_steps; i++){

      x = (i+0.5)*step;

      sum = sum + 4.0/(1.0 + x*x);

   }

   pi = step * sum;

   printf(“Pi = %f\n”,pi);

}
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Let’s try it out

• Go to example MPI_pi and will work with openmp_pi2.c

105



Exercise: PI with MPI and OpenMP
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cores OpenMP

1 9.617728

2 4.874539

4 2.455036

6 1.627149

8 1.214713

12 0.820746

16 0.616482



 0
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 14

 16

 1  2  4  6  12  16
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ee

d 
up

number of CPUs

Pi Scaling

Amdahl 1.0
OpenMP Barcelona 2.2 GHz

Exercise: PI with MPI and OpenMP
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© 2007 IBM Corporation

Multi-PF Solutions

CUDA: computing PI
Cuda Computing PI
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Exercise: Shared Cache Trashing

• Let’s do the exercise: CacheTrash

109



About local and shared data

• Consider the following example:


• Let’s assume we run this on 2 processors:


• processor 1 for i=0,2,4,6,8

• processor 2 for i=1,3,5,7,9

110

for (i=0; i<10; i++){
    a[i] = b[i] + c[i];
}



i1

About local and shared data

111

for (i1=0,2,4,6,8){
    a[i1] = b[i1] + c[i1];
}

for (i2=1,3,5,7,9){
    a[i2] = b[i2] + c[i2];
}

i2A     B     C

P1 P2

private area private areashared area

Processor 1 Processor 2



About local and shared data

processor 1 for i=0,2,4,6,8

processor 2 for i=1,3,5,7,9


• This is not an efficient way to do this!


Why?
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Doing it the bad way

• Because of cache line usage


• b[] and c[]:      we use half of the data


• a[]:                  false sharing
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for (i=0; i<10; i++){
    a[i] = b[i] + c[i];
}



False sharing and scalability

• The Cause: 
   Updates on independent data elements that happen to be  
   part of the same cache line.


• The Impact: 
    Non-scalable parallel applications


• The Remedy: 
    False sharing is often quite simple to solve
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Poor cache line utilization
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Processor 1 Processor 2

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9)

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9) The same holds for array C

cache line

Both processors read

the same cache lines

used data

not used data



False Sharing
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Processor 1 Processor 2

a[1] = b[1] + c[0];
a[0] = b[0] + c[0];
Write into the line containing a[0]

This marks the cache line 

containing a[0] as ‘dirty’

Detects the line with a[0] is ‘dirty’

Get a fresh copy (from processor 1)

Write into the line containing a[1]

This marks the cache line 

containing a[1] as ‘dirty’

a[2] = b[2] + c[2];

time

a[3] = b[3] + c[3];
Detects the line with a[3] is ‘dirty’

Detects the line with a[2] is ‘dirty’

Get a fresh copy (from processor 2)

Write into the line containing a[2]

This marks the cache line 

containing a[2] as ‘dirty’



False Sharing results
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Iterations per thread
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OpenMP tasks

• What are tasks

• Tasks are independent units of work 

• Threads are assigned to perform the work of each task.


- Tasks may be deferred 

- Tasks may be executed immediately 

- The runtime system decides which of the above 


• Why tasks? 

• The basic idea is to set up a task queue: when a thread 

encounters a task directive, it arranges for some thread to 
execute the associated block at some time. The first thread 
can continue.

118

OpenMP 3.0 and Tasks 

� What are tasks? 
± Tasks are independent units of work 
± Threads are assigned to perform the work 

of each task. 
� Tasks may be deferred 
� Tasks may be executed immediately 
� The runtime system decides which of the 

above 
� Why task? 

± The basic idea is to set up a task queue: 
when a thread encounters a task directive, 
it arranges for some thread to execute the 
associated block ʹ at some time. The first 
thread can continue. 

4 
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122

Tutorial IWOMP 2011 - Chicago, IL, USA June 13, 2011An Overview of OpenMP

The Tasking Example

Developer specifies tasks in application
Run-time system executes tasks

Encountering 
thread adds 

task(s) to 
pool

Threads execute 
tasks in the pool



OpenMP tasks

Tasks allow to parallelize irregular problems 

– Unbounded loops 
– Recursive algorithms 
– Manger/work schemes 


A task has

– Code to execute 
– Data environment (It owns its data) 
– Internal control variables 
– An assigned thread that executes the code and the data 
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OpenMP has always had tasks, but they were not called “task”. 

 
– A thread encountering a parallel construct, e.g., “for”, packages up 
a set of implicit tasks, one per thread. 

–  A team of threads is created. 

–  Each thread is assigned to one of the tasks.  
–  Barrier holds master thread till all implicit tasks are finished. 
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OpenMP tasks

#pragma	omp	parallel

#pragma	omp	single

{

		...

#pragma	omp	task

		{	...	}

		…

#pragma	omp	taskwait

}

122

-> A parallel region creates a team of threads;

-> One thread enters the execution 

-> the other threads wait at the end of the single

-> pick up threads „from the work queue“



Summary

• First tune single-processor performance


• Tuning parallel programs

• Has the program been properly parallelized?


• Is enough of the program parallelized (Amdahl’s law)?

• Is the load well-balanced?


• location of memory

• Cache friendly programs: no special placement needed

• Non-cache friendly programs


• False sharing?


• Use of OpenMP

• try to avoid synchronization (barrier, critical, single, ordered)
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Plenty of Other OpenMP Stuff

Scheduling clauses


Atomic 


Barrier


Master & Single


Sections


Tasks (OpenMP 3.0)


API routines



OpenMP references

https://mitpress.mit.edu/books/using-openmp-next-step


Paperback
$50.00 S | £40.00
ISBN: 9780262534789
392 pp. | 8 in x 9 in
250 b&w illus.
October 2017
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Compiling and running OpenMP

• Compile with -openmp flag (intel compiler) or -fopenmp (GNU)


• Run program with variable:


export OMP_NUM_THREADS=4
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OpenACC

• Set of directives to support accelerators

• Developed by PGI and HPE-Cray:

• Used to support all vendors: PGI now part of Nvidia

• Intel’s MIC’s not supported anymore

• AMD Fusions processors: only support by HPE-Cray


• OpenMP 5.0 also aims at GPU’s and real open standards

• might replace OpenACC in the future.

• not yet same compiler support of all vendors: Intel? AMD? 
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OpenACC example
void	convolution_SM_N(typeToUse	A[M][N],	typeToUse	B[M][N]) {


		int	i,	j,	k;

		int	m=M,	n=N;

		//	OpenACC	kernel	region

		//	Define	a	region	of	the	program	to	be	compiled	into	a	sequence	of	kernels

		//	for	execution	on	the	accelerator	device

		#pragma	acc	kernels	pcopyin(A[0:m])	pcopy(B[0:m])

		{

				typeToUse	c11,	c12,	c13,	c21,	c22,	c23,	c31,	c32,	c33;

	

				c11	=	+2.0f;		c21	=	+5.0f;		c31	=	-8.0f;

				c12	=	-3.0f;		c22	=	+6.0f;		c32	=	-9.0f;

				c13	=	+4.0f;		c23	=	+7.0f;		c33	=	+10.0f;

	

				//	The	OpenACC	loop	gang	clause	tells	the	compiler	that	the	iterations	of	the	loops

				//	are	to	be	executed	in	parallel	across	the	gangs.

				//	The	argument	specifies	how	many	gangs	to	use	to	execute	the	iterations	of	this	loop.

				#pragma	acc	loop	gang(64)

				for	(int	i	=	1;	i	<	M	-	1;	++i)	{

	

				//	The	OpenACC	loop	worker	clause	specifies	that	the	iteration	of	the	associated	loop	are	
to	be

				//	executed	in	parallel	across	the	workers	within	the	gangs	created.

				//	The	argument	specifies	how	many	workers	to	use	to	execute	the	iterations	of	this	loop.

								#pragma	acc	loop	worker(128)

								for	(int	j	=	1;	j	<	N	-	1;	++j) {

												B[i][j]	=	c11	*	A[i	-	1][j	-	1]		+		c12	*	A[i	+	0][j	-	1]		+		c13	*	A[i	+	1][j	-	1]

														+							c21	*	A[i	-	1][j	+	0]		+		c22	*	A[i	+	0][j	+	0]		+		c23	*	A[i	+	1][j	+	0]

														+							c31	*	A[i	-	1][j	+	1]		+		c32	*	A[i	+	0][j	+	1]		+		c33	*	A[i	+	1][j	+	
1];

										}

						}

			}//kernels	region

}
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MPI

129



Message Passing

• Point-to-Point


• Requires explicit commands in program

• Send, Receive


• Must be synchronized among different processors

• Sends and Receives must match

• Avoid Deadlock -- all processors waiting, none able to communicate


• Multi-processor communications

• e.g. broadcast, reduce
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MPI advantages

• Mature and well understood

• Backed by widely-supported formal standard (1992)

• Porting is “easy”


• Efficiently matches the hardware

• Vendor and public implementations available


• User interface:

• Efficient and simple

• Buffer handling

• Allow high-level abstractions


• Performance
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MPI disadvantages

• MPI 2.0 includes many features beyond message passing


• Execution control environment depends on implementation

Learning curve



T

5

Programming Model 

• Explicit parallelism: 

‣ All processes starts at the same time at the same point in the code


‣ Full parallelism: there is no sequential part in the program

Parallel Region

processes



Work Distribution

• All processors run the same executable.


• Parallel work distribution must be explicitly done by the 
programmer:


• domain decomposition

• master worker  

134
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A Minimal MPI Program (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{
    MPI_Init( &argc, &argv );
    printf( "Hello, world!\n" );
    MPI_Finalize();
    return 0;
}
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A Minimal MPI Program (Fortran 90)

program main
use MPI
integer ierr

call MPI_INIT( ierr )
print *, 'Hello, world!'
call MPI_FINALIZE( ierr )
end



Starting the MPI Environment

• MPI_INIT ( ) 
 
Initializes MPI environment. This function must be called and 
must be the first MPI function called in a program (exception: 
MPI_INITIALIZED)  
 
Syntax

int MPI_Init (  int *argc, char ***argv )

MPI_INIT ( IERROR )

INTEGER IERROR 

NOTE: Both C and Fortran return error codes for all calls.
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Exiting the MPI Environment

• MPI_FINALIZE (  ) 
 
Cleans up all MPI state. Once this routine has been called, no 
MPI routine ( even MPI_INIT ) may be called


Syntax
int MPI_Finalize ( );

MPI_FINALIZE  ( IERROR )

INTEGER IERROR

MUST call MPI_FINALIZE when you exit from an MPI program
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C and Fortran Language 
Considerations

• Bindings


– C


• All MPI names have an  MPI_ prefix


• Defined constants are in all capital letters


• Defined types and functions have one capital letter after the 
prefix; the remaining letters are lowercase


– Fortran


• All MPI names have an  MPI_ prefix


• No capitalization rules apply


• last argument is an returned error value
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Finding Out About the Environment

• Two important questions that arise early in a parallel program are:

• How many processes are participating in this computation?

• Which one am I?


• MPI provides functions to answer these questions:

– MPI_Comm_size reports the number of processes.

– MPI_Comm_rank reports the rank, a number between 0 and size-1, 

identifying the calling process
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Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{
    int rank, size;
    MPI_Init( &argc, &argv );
    MPI_Comm_rank( MPI_COMM_WORLD, &rank );
    MPI_Comm_size( MPI_COMM_WORLD, &size );
    printf( "I am %d of %d\n", rank, size );
    MPI_Finalize();
    return 0;
}
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Better Hello (Fortran)

program main
use MPI
integer ierr, rank, size

call MPI_INIT( ierr )
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr )
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE( ierr )
end
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Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must be received in the 

same context.

• A group and context together form a communicator.

• A process is identified by its rank in the group associated with a 

communicator.

• There is a default communicator whose group contains all initial 

processes, called MPI_COMM_WORLD.

Day 2: MPI 
 2010 ʹ Course MT1 

MPI Communicators 

� Communicator is an internal object 
� MPI Programs are made up of communicating 

processes 
� Each process has its own address space containing its 

own attributes such as rank, size (and argc, argv, etc.)  
� MPI provides functions to interact with it 
� Default communicator is MPI_COMM_WORLD 

± All processes are its members 
± It has a size (the number of processes) 
± Each process has a rank within it 
± One can think of it as an ordered list of processes 

� Additional communicator(s) can co-exist 
� A process can belong to more than one communicator 
� Within a communicator, each process has a unique 

rank 
 

MPI_COMM_WORLD 

0 

1 
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3 
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Communicator

• Communication in MPI takes place with respect to 
communicators


• MPI_COMM_WORLD is one such predefined communicator 
(something of type “MPI_COMM”) and contains group and 
context information


• MPI_COMM_RANK and MPI_COMM_SIZE return 
information based on the communicator passed in as the 
first argument


• Processes may belong to many different communicators

0 1 2 3 4 5 6 7

MPI_COMM_WORLD

Rank-->
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MPI Basic Send/Receive
• Basic message passing process. Send data from one process 

to another


• Questions

– To whom is data sent?

– Where is the data?

– What type of data is sent?

– How much of data is sent?

– How does the receiver identify it?

A:

Send Receive

B:

Process 1Process 0
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MPI Basic Send/Receive

• Data transfer plus synchronization

• Requires co-operation of sender and receiver

• Co-operation not always apparent in code

• Communication and synchronization are combined 

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time
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Message Envelope 

� Communication across 
processes is performed using 
messages. 

� Each message consists of a 
fixed number of fields that is 
used to distinguish them, called 
the Message Envelope :  
± Envelope comprises source, 

destination, tag, communicator 
± Message comprises Envelope + 

data 
� Communicator refers to the 

namespace associated with the 
group of related processes 

21 

MPI_COMM_WORLD 

0 

1 
2 

5 

3 

4 

6 

7 

Source : process0 
Destination : process1 
Tag : 1234 
Communicator : MPI_COMM_WORLD 

Message Organization in MPI

• Message is divided into data and envelope


• data

– buffer 

– count

– datatype


• envelope

– process identifier (source/destination)

– message tag

– communicator
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MPI Basic Send/Receive
• Thus the basic (blocking) send has become: 

MPI_Send ( start, count, datatype, dest, tag, 
comm )
– Blocking means the function does not return until it is safe to reuse 

the data in buffer. The message may not have been received by the 
target process.


• And the receive has become: 
MPI_Recv( start, count, datatype, source, tag, 
comm, status )

- The source, tag, and the count of the message actually 
received can be retrieved from status 
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MPI C Datatypes
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MPI Fortran Datatypes
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Is MPI Large or Small?

• Is MPI large (128 functions) or small (6 functions)?

– MPI’s extensive functionality requires many functions

– Number of functions not necessarily a measure of complexity

– Many programs can be written with just 6 basic functions

MPI_INIT  MPI_COMM_SIZE  MPI_SEND        
MPI_FINALIZE  MPI_COMM_RANK  MPI_RECV

• MPI is just right

– A small number of concepts

– Large number of functions provides flexibility, robustness, 

efficiency, modularity, and convenience

– One need not master all parts of MPI to use it
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#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done)  {

if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;
h   = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);
if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",pi, fabs(pi - PI25DT));
}
MPI_Finalize();
return 0;

}
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Example:   PI  in Fortran 90 and C

work distribution



work distribution

      program main  
      use MPI  
      double precision  PI25DT  
      parameter (PI25DT = 3.141592653589793238462643d0)  
      double precision  mypi, pi, h, sum, x, f, a  
      integer n, myid, numprocs, i, ierr  
c                                 function to integrate  
      f(a) = 4.d0 / (1.d0 + a*a)  
      call MPI_INIT( ierr )  
      call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )  
      call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )  
 10   if ( myid .eq. 0 ) then  
         write(6,98)  
 98      format('Enter the number of intervals: (0 quits)')  
         read(5,’(i10)’) n  
      endif  
      call MPI_BCAST( n, 1, MPI_INTEGER, 0,MPI_COMM_WORLD, ierr)  
      if ( n .le. 0 ) goto 30  
      h = 1.0d0/n  
      sum  = 0.0d0  
      do 20 i = myid+1, n, numprocs  
        x   = h * (dble(i) - 0.5d0)  
        sum = sum + f(x)  
 20   continue  
      mypi = h * sum  
      call MPI_REDUCE( mypi, pi, 1, MPI_DOUBLE_PRECISION,  
     +                MPI_SUM, 0, MPI_COMM_WORLD,ierr)  
     if (myid .eq. 0) then  
        write(6, 97) pi, abs(pi - PI25DT)  
 97     format('  pi is approximately: ', F18.16,  
    +          '  Error is: ', F18.16)  
     endif  
     goto 10  
 30  call MPI_FINALIZE(ierr)  
     end
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Exercise: PI with MPI and OpenMP

• Compile and run for computing PI parallel


• From git HPCourse/MPi_pi


• There is a README with instructions.


• It is assumed that you use mpich1 and has PBS installed as a job 
scheduler. If you have mpich2 let me know.


• Use qsub to submit the mpi job (an example script is provided) to 
a queue.

154



Exercise: PI with MPI and OpenMP
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cores OpenMP marken linux

1 9.617728 14.10798 22.15252

2 4.874539 7.071287 9.661745

4 2.455036 3.532871 5.730912

6 1.627149 2.356928 3.547961

8 1.214713 1.832055 2.804715

12 0.820746 1.184123

16 0.616482 0.955704



 0
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 1  2  4  6  12  16

sp
ee

d 
up

number of CPUs

Pi Scaling

Amdahl 1.0
OpenMP Barcelona 2.2 GHz

MPI marken Xeon 3.1 GHz
MPI linux Xeon 2.4 GHz

Exercise: PI with MPI and OpenMP
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Collective Communications in MPI
• Communication is co-ordinated among a group of processes, 

as specified by communicator, not on all processes 


• All collective operations are blocking and no message tags are 
used (in MPI-1) 


• All processes in the communicator group must call the 
collective operation


• Collective and point-to-point messaging are separated by 
different “contexts”


• Three classes of collective operations


– Data movement


– Collective computation


– Synchronization
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Collective calls

159

• MPI has several collective communication calls, the most frequently 
used are:


• Synchronization

• Barrier


• Communication

• Broadcast

• Gather Scatter

• All Gather


• Reduction

• Reduce

• All Reduce
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MPI Collective Calls: Barrier 

Function: MPI_Barrier() 

int MPI_Barrier (  
        MPI_Comm comm ) 
 

Description: 
Creates barrier synchronization in a 
communicator group comm. Each process, 
when reaching the MPI_Barrier call, blocks 
until all the processes in the group reach the 
same MPI_Barrier call. 

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Barrier.html 

P0 

P1 

P2 

P3 

M
PI

_B
ar

rie
r(

) 

P0 

P1 

P2 

P3 

MPI_Barrier()
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Creates barrier synchronization in a communicator group comm. 
Each process, when reaching the MPI_Barrier call, blocks until all 
the processes in the group reach the same MPI_Barrier call.



MPI Basic Collective Operations

• Two simple collective operations


MPI_BCAST( start, count, datatype, root, comm )

MPI_REDUCE( start, result, count, datatype, operation, 

root, comm )

• The routine MPI_BCAST sends data from one process to all 
others


• The routine MPI_REDUCE combines data from all processes, 
using a specified operation, and returns the result to a single 
process


• In many numerical algorithms, SEND/RECEIVE can be replaced 
by BCAST/REDUCE, improving both simplicity and efficiency.
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Reduce (root=0, op)
A0
B1
C2

D3

X0
?1
?2

?3

X=A op B op C op D

Process

Ranks

Send

buffer

Process

Ranks

Receive

buffer

Broadcast and Reduce

Bcast (root=0)
A0
?1
?2

?3

Process

Ranks

Send

buffer

A0
A1
A2

A3

Process

Ranks

Send

buffer
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X0
X1
X2

X3

AllReduce (comm_world, op)



Scatter and Gather

Scatter (root=0)

Process

Ranks

Send

buffer

A0
B1
C2
D3

Gather (root=0)

Process

Ranks

Receive

buffer

Process

Ranks

Send

buffer

Process

Ranks

Receive

buffer

ABCD0
1
2
3

????
????
????

ABCD0
1
2
3

????
????
????

A0
B1
C2
D3
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AllGather (comm_world)



MPI Collective Routines

• Several routines:

	 MPI_ALLGATHER  MPI_ALLGATHERV  MPI_BCAST 

MPI_ALLTOALL  MPI_ALLTOALLV
MPI_GATHER  MPI_GATHERV
MPI_REDUCE_SCATTER  MPI_REDUCE MPI_ALLREDUCE
MPI_SCATTERV  MPI_SCATTER

• All versions deliver results to all participating processes

• “V” versions allow the chunks to have different sizes


• MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCE_SCATTER, and  
take both built-in and user-defined combination functions
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Built-In Collective Computation 
Operations
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Extending the Message-Passing 
Interface

• Dynamic Process Management

• Dynamic process startup

• Dynamic establishment of connections


• One-sided communication

• Put/get

• Other operations


• Parallel I/O


• Other MPI-2 features

• Generalized requests

• Bindings for C++/ Fortran-90; inter-language issues
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When to use MPI

• Portability and Performance


• Irregular Data Structures


• Building Tools for Others

• Libraries


• Need to Manage memory on a per processor basis
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When not to use MPI

• Number of cores is limited and OpenMP is doing well on that 
number of cores


• typically 16-32 cores in SMP


• Course: Introduction to MPI course

• June 2022: …



Summary
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MPI Summary

• MPI Standard widely accepted by vendors and 
programmers


• MPI implementations available on most modern platforms

• Several MPI applications deployed

• Several tools exist to trace and tune MPI applications


• Simple applications use point-to-point and collective 
communication operations


• Advanced applications use point-to-point, collective, 
communicators, datatypes, one-sided, and topology 
operations
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No overlapping 

computation/communication


MPI only out of OpenMP code.

Only master thread with 


MPI communication.

Hybrid systems programming hierarchy 

Hybrid System

Pure MPI
Hybrid MPI/OpenMP


OpenMP in SMP nodes

MPI across the nodes

OpenMP

shared memory

Overlapping 

computation/communication


MPI inside OpenMP code



Hybrid OpenMP/MPI

• Natural paradigm for clusters of SMP’s

• May offer considerable advantages when application mapping and 

load balancing is tough

• Benefits with slower interconnection networks (overlapping 

computation/communication)


‣ Requires work and code analysis to change pure MPI codes

‣ Start with auto parallelization?

‣ Link shared memory libraries…check various thread/MPI 

processes combinations

‣ Study carefully the underlying architecture


• What is the future of this model? Could it be consolidated in new 
languages?


• Connection with many-core?
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C. BEKAS

P0 P1

P2 P3

T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T

Suppose we wish to solve the PDE

Using the Jacobi method: the value of 

u at each discretization point is given 

by a certain average among its

neighbors, until convergence.

 

Distributing the mesh to SMP 

clusters by Domain Decomposition, it 

is clear that the GREEN nodes can

proceed without any comm., while

the Blue nodes have to communicate

first and calculate later.  

Overlapping computation/communication: 
Example



MPI/OpenMPI: Overlapping computation/
communication
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Not only the master but other threads communicate. Call MPI 
primitives in OpenMP code regions. 


if (my_thread_id < # ){
MPI_… (communicate needed data)

} else
/* Perform computations that to not need 
communication */
.
.

}
/* All threads execute code that requires 

communication */
.
.
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for (k=0; k < MAXITER; k++){
/* Start parallel region here */
#pragma omp parallel private(){

my_id = omp_get_thread_num();

if (my_id is given “halo points”)
MPI_SendRecv(“From neighboring MPI process”);

else{
for (i=0; i < # allocated points; i++)

newval[i] = avg(oldval[i]);
}

if (there are still points I need to do) /* Thi
for (i=0; i< # remaining points; i++)

newval[i] = avg(oldval[i]);

}
for (i=0; i<(all_my_points); i++)

oldval[i] = newval[i];
}
MPI_Barrier(); /* Synchronize all MPI processes here */

}



Text

Hiding  IO with IO-Server

176

Compute Node

do i=1,time_steps

  compute(j)

  checkpoint(data)

end do


subroutine checkpoint(data)

  MPI_Wait(send_req)

  buffer = data

  MPI_Isend(IO_SERVER, buffer)

end subroutine

I/O Server

do i=1,time_steps

  do j=1,compute_nodes

    MPI_Recv(j, buffer) 

    write(buffer)

  end do

end do

Use more nodes to act as IO-Servers (pseudo code)



PGAS

• What is PGAS?


• How to make use of PGAS as a programmer?
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Partitioned Global Address SpacePartitioned Global Address Space

! Explicitly parallel, shared-memory like programming model

! Global addressable space

" Allows programmers to declare and “directly” access data distributed across the 
machine

! Partitioned address space

" Memory is logically partitioned between local and remote (a two-level hierarchy)
" Forces the programmer to pay attention to data locality, by exposing the inherent 

NUMA-ness of current architectures

! Single Processor Multiple Data (SPMD) execution model

" All threads of control execute the same program
" Number of threads fixed at startup
" Newer languages such as X10 escape this model, allowing fine-grain threading

! Different language implementations:

" UPC (C-based), CoArray Fortran (Fortran-based), Titanium and X10 (Java-based)

Partitioned Global Address Space
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! Computation is performed in multiple 
places.

! A place contains data that can be 
operated on remotely.

! Data lives in the place it was created, for 
its lifetime.

! A datum in one place may point to a datum 
in another place.

! Data-structures (e.g. arrays) may be 
distributed across many places. 

A place expresses locality.

Address Space

Shared Memory

OpenMP

PGAS

UPC, CAF, X10
Message passing 

MPI

Process/Thread

Partitioned Global Address SpacePartitioned Global Address Space
Partitioned Global Address Space
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Shared Memory (OpenMP)

• Multiple threads share global memory

• Most common variant: OpenMP


• Program loop iterations distributed to threads, more recent task 
features


• Each thread has a means to refer to private objects within a parallel 
context


• Terminology

• Thread, thread team


• Implementation

• Threads map to user threads running on one SMP node

• Extensions to multiple servers not so successful
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OpenMP

181

memory

threads



OpenMP: work distribution
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memory

threads

!$OMP PARALLEL 
do i=1,32 
  a(i)=a(i)*2 
 end do1-8 9-16 17-24 25-32



OpenMP: implementation
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memory

threads

cpus

process



Message Passing (MPI)

• Participating processes communicate using a message-passing 
API


• Remote data can only be communicated (sent or received) via the 
API.


• MPI (the Message Passing Interface) is the standard


• Implementation:

• MPI processes map to processes within one SMP node or across 

multiple networked nodes

• API provides process numbering, point-to-point and collective 

messaging operations
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MPI
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memory

cpu

processes

memory

cpu

memory

cpu



memory

cpu

MPI
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memory

cpu

process 0

MPI_Send(a,...,1,…)

process 1

MPI_Recv(a,...,0,…)



Partitioned Global Address Space 

• Shortened to PGAS


• Participating processes/threads have access to local memory via 
standard program mechanisms


• Access to remote memory is directly supported by the PGAS 
language
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PGAS
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memory

cpu

process

memory

cpu

memory

cpu

process process



Partitioned Global Address Space (PGAS): 

� Global address space – any process can address memory 
on any processor 


� Partitioned GAS – retain information about locality


� Core idea– hardest part of writing parallel code is 
managing data distribution and communication; make that 
simple and explicit


� PGAS Languages try to simplify parallel programming 
(increase programmer productivity). 
 

5HPCC PTRANS and PGAS Languages

PGAS languages



Data Parallel Languages

• Unified Parallel C (UPC) is an extension of the C programming 
language designed for high performance computing on large-scale 
parallel machines.  
http://upc.lbl.gov/


• Co-array Fortran (CAF) is part of Fortran 2008 standard. It is a 
simple, explicit notation for data decomposition, such as that 
often used in message-passing models, expressed in a natural 
Fortran-like syntax.  
http://www.co-array.org


• both need a global address space (which is not equal to SMP)
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� Unified Parallel C:

� An extension of C99

� An evolution of AC, PCP, and Split-C


� Features

� SPMD parallelism via replication of threads

� Shared and private address spaces

� Multiple memory consistency models


� Benefits

� Global view of data

� One-sided communication

HPCC PTRANS and PGAS Languages 7

UPC



� Co-Array Fortran:

� An extension of Fortran 95 and part of “Fortran 2008”

� The language formerly known as F--


� Features

� SPMD parallelism via replication of images

� Co-arrays for distributed shared data


� Benefits

� Syntactically transparent communication

� One-sided communication

� Multi-dimensional arrays

� Array operations

HPCC PTRANS and PGAS Languages 9

Co-Array Fortran



Basic execution model co-array F--

• Program executes as if replicated to multiple copies with each 
copy executing asynchronously (SPMD)


• Each copy (called an image) executes as a normal Fortran 
application


• New object indexing with [] can be used to access objects on 
other images.


• New features to inquire about image index, number of images 
and to synchronize
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CAF (F--)

      REAL, DIMENSION(N)[*] :: X,Y
      X(:) = Y(:)[Q]

Array indices in parentheses follow the normal Fortran rules 
within one memory image. 


Array indices in square brackets provide an equally convenient 
notation for accessing objects across images and follow similar 
rules. 
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Coarray execution model
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memory

cpu

Image 1

memory

cpu

memory

cpu

Image 2 Image 3

Remote access with square bracket indexing: a(:)[2]

coarrays



Basic coarray declaration and usage
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integer :: b

integer :: a(4)[*] !coarray

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6

b=a(2)



Basic coarray declaration and usage
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integer :: b

integer :: a(4)[*] !coarray

b=a(2)

1 8 1 5a

image 1

b 8

1 7 9 9a

image 2

b 7

1 7 9 4a

image 3

b 7



Text

Basic coarray declaration and usage
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integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6



Text

Basic coarray declaration and usage
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integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 4

1 7 9 9a

image 2

b 4

1 7 9 4a

image 3

b 4
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Performance tuning

S

p

first attempt

second attempt

ideal

Performance tuning of parallel applications is an iterative process

Performance Tuning
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Compiling MPI Programs
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Compiling and Starting MPI Jobs
• Compiling:


• Need to link with appropriate MPI and communication subsystem libraries 
and set path to MPI Include files


• Most vendors provide scripts or wrappers for this (mpxlf, mpif77, mpicc, etc)


• Starting jobs:


• Most  implementations use a special loader named mpirun 


– mpirun -np <no_of_processors> <prog_name>  
  

• In MPI-2 it is recommended to use


– mpiexec -n <no_of_processors> <prog_name>  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MPICH: a Portable MPI Environment

• MPICH is a high-performance portable implementation of MPI (both 1 
and 2).


• It runs on MPP's, clusters, and heterogeneous networks of workstations.


• The CH comes from Chameleon, the portability layer used in the original 
MPICH to provide portability to the existing message-passing systems. 


• In a wide variety of environments, one can do:

  mpicc -mpitrace myprog.c
  mpirun -np 10 myprog
  upshot myprog.log

to build, compile, run, and analyze performance.



MPICH2

MPICH2 is an all-new implementation of the MPI Standard, 
designed to implement all of the MPI-2 additions to MPI.


‣ separation between process management and communications

‣ use daemons (mpd) on nodes

‣ dynamic process management, 

‣ one-sided operations, 

‣ parallel I/O, and others


• http://www.mcs.anl.gov/research/projects/mpich2/
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Compiling MPI programs

• From a command line:

mpicc -o prog prog.c 

• Use profiling options (specific to mpich)

• -mpilog Generate log files of MPI calls

• -mpitrace Trace execution of MPI calls

• -mpianim Real-time animation of MPI (not available on all 

systems)

• --help Find list of available options


• The environment variables MPICH_CC, MPICH_CXX, MPICH_F77, 
and MPICH_F90 may be used to specify alternate C, C++, 
Fortran 77, and Fortran 90 compilers, respectively. 


�
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 example hello.c

#include "mpi.h"
#include <stdio.h>
int main(int argc ,char *argv[])
{

int myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
fprintf(stdout, "Hello World, I am process  
%d\n", myrank);
MPI_Finalize();
return 0;

}
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Example: using MPICH1

-bash-3.1$ mpicc -o hello hello.c
-bash-3.1$ mpirun -np 4 hello
Hello World, I am process  0
Hello World, I am process  2
Hello World, I am process  3
Hello World, I am process  1
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Example: details

• If using frontend and compute nodes in machines file use

	 mpirun -np 2 -machinefile machines hello 

• If using only compute nodes in machine file use 

	 mpirun -nolocal -np 2 -machinefile machines hello 


• -nolocal   - don’t start job on frontend

• -np 2       -  start job on 2 nodes

• -machinefile machines - nodes are specified in machines file

• hello        - start program hello
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Notes on clusters

•Make sure you have access to the compute node (ssh keys are 
generated ssh-keygen) and ask your system administrator.


•Which mpicc are you using

•$ which mpicc


•command line arguments are not always passed to mpirun/mpiexec 
(depending on your version). In that case make a script which 
calls your program with all its arguments




MPICH2 daemons
• mpdtrace: output a list of nodes on which you can run 

MPI programs (runs mpd daemons).

‣ The -l option lists full hostnames and the port where the mpd is 

listening.


• mpd starts an mpd daemon. 


• mpdboot starts a set of mpd’s on a list of machines. 


• mpdlistjobs lists the jobs that the mpd’s are running.  


• mpdkilljob kills a job specified by the name returned by 
mpdlistjobs 


mpdsigjob delivers a signal to the named job.
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MPI - Message Passing Interface

• MPI or MPI-1 is a library specification for message-passing.


• MPI-2: Adds in Parallel I/O, Dynamic Process management, 
Remote Memory Operation, C++ & F90 extension …


• MPI Standard: 

http://www-unix.mcs.anl.gov/mpi/standard.html


• MPI Standard 1.1 Index: 

http://www.mpi-forum.org/docs/mpi-11-html/node182.html


• MPI-2 Standard Index: 

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/
node306.htm


• MPI Forum Home Page: 

http://www.mpi-forum.org/index.html



MPI tutorials

• http://www.nccs.nasa.gov/tutorials/mpi_tutorial2/
mpi_II_tutorial.html


• https://fs.hlrs.de/projects/par/par_prog_ws/


• Course: Introduction to MPI

• 50/50 lecture and exercises 
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MPI Sources

• The Standard (3.0) itself:

• at http://www.mpi-forum.org

• All MPI official releases, in both PDF and HTML


• Books:

– Using MPI:  Portable Parallel Programming with the Message-

Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

– Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997.


• Other information on Web:

• at http://www.mcs.anl.gov/mpi

• pointers to lots of stuff, including other talks and tutorials, a FAQ, 

other MPI pages

• http://mpi.deino.net/mpi_functions/index.htm



Job Management and queuing
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Job Management and queuing

• On a large system many users are running simultaneously.


• What to do when:


• The system is full and you want to run your 512 CPU job?

• You want to run 16 jobs, should others wait on that?

• Have bigger jobs priority over smaller jobs?

• Have longer jobs lower/higher priority?


• The job manager and queue system takes care of it. 
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MPICH1 in PBS
#!/bin/bash
#PBS -N Flank
#PBS -V
#PBS -l nodes=11:ppn=2
#PBS -j eo 

cd $PBS_O_WORKDIR
export nb=`wc -w < $PBS_NODEFILE`
echo $nb

mpirun -np $nb -machinefile $PBS_NODEFILE ~/bin/
migr_mpi \
        file_vel=$PBS_O_WORKDIR/grad_salt_rot.su \
        file_shot=$PBS_O_WORKDIR/cfp2_sx.su 
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Job Management and queuing

• PBS (maui):

• http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php

• Torque resource manager http://www.clusterresources.com/pages/products/

torque-resource-manager.php


• Sun Grid Engine

• http://gridengine.sunsource.net/


• SLURM

•  http://slurm.schedmd.com


• Luckily their interface is very similar (qsub, qstat, ...)
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queuing commands

• qsub


• qstat


• qdel


• xpbsmon



qsub

#PBS -l nodes=10:ppn=1
#PBS -l mem=20mb
#PBS -l walltime=1:00:00
#PBS -j eo

submit:


qsub -q normal job.scr

output: 


jobname.ejobid
jobname.ojobid



qstat

• available queue and resources


qstat -q

• queued and running jobs


qstat (-a)
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qdel

• deletes job from queue and stops all running executables


qdel jobid
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Submitting many jobs in one script
#!/bin/bash -f
#
export xsrc1=93
export xsrc2=1599
export dxsrc=3
xsrc=$xsrc1

while (( xsrc <= xsrc2 ))
do
echo ' modeling shot at x=' $xsrc 

cat << EOF > jobs/pbs_${xsrc}.job
#!/bin/bash
#
#PBS -N fahud_${xsrc}
#PBS -q verylong
#PBS -l nodes=1:ppn=1
#PBS -V

program with arguments

EOF

qsub jobs/pbs_${xsrc}.job
(( xsrc = $xsrc + $dxsrc))
done
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submitting job-arrays with slurm

224

#!/bin/bash
#SBATCH --job-name=mega_array   # Job name
#SBATCH --nodes=1                   # Use one node
#SBATCH --ntasks=1                  # Run a single task
#SBATCH --time=00:10:00             # Time limit hrs:min:sec
#SBATCH --output=array_%A-%a.out    # Standard output and error log
#SBATCH --array=1-5                 # Array range
pwd; hostname; date

#Set the number of runs that each SLURM task should do
PER_TASK=1000

# Calculate the starting and ending values for this task based
# on the SLURM task and the number of runs per task.
START_NUM=$(( ($SLURM_ARRAY_TASK_ID - 1) * $PER_TASK + 1 ))
END_NUM=$(( $SLURM_ARRAY_TASK_ID * $PER_TASK ))

echo This is task $SLURM_ARRAY_TASK_ID, which will do runs $START_NUM to 
$END_NUM

# Run the loop of runs for this task.
for (( run=$START_NUM; run<=END_NUM; run++ )); do
  echo This is SLURM task $SLURM_ARRAY_TASK_ID, run number $run
  #Do your stuff here
done
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Exercise: PI with MPI and OpenMP

• Compile and run for computing PI parallel


• MPI_pi directory


• Check the README for instructions.


• It is assumed that you use mpich1 and has PBS installed as a job 
scheduler. If you have mpich2 let me know.


• Use qsub to submit the mpi job (an example script is provided) to 
a queue.
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Exercise: PI with MPI and OpenMP
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cores OpenMP marken (MPI) linux (MPI)

1 9.617728 14.10798 22.15252

2 4.874539 7.071287 9.661745

4 2.455036 3.532871 5.730912

6 1.627149 2.356928 3.547961

8 1.214713 1.832055 2.804715

12 0.820746 1.184123

16 0.616482 0.955704



Exercise: OpenMP Max

• Find the maximum number in a random generated array.


• on github HPCource/OMP_MAX


• There is a README for instructions.


• The exercise focus on using the available number of cores in an 
efficient way. 


• Also inspect the code and see how the reductions are done, is 
there another way of doing the reductions?
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Exercise: OpenMP details

• More details is using OpenMp and shared memory parallelisation


• collection of code is in HPCource/PowerGroup


• Unpack tar file and check the README for instructions.


• These are ‘old’ exercises from SGI and give insight in problems 
you can encounter using OpenMP.


• It requires already some knowledge about OpenMP. The OpenMP 
F-Summary.pdf from the website can be helpful. 
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END
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