
Type to enter text

Challenge the future

Delft

University of

Technology

Parallelization
programming

Jan Thorbecke

2

Contents

• Introduction

• Programming

• OpenMP

• MPI

• Issues with parallel computing

• Running programs

• Examples

• Describes the relation between the parallel portion of your code
and the expected speedup

• P = parallel portion

• N = number of processors used in parallel part

• P/N is the ideal parallel speed-up, it will always be less

Amdahl’s Law

3

speedup =
1

(1� P) + P
N

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of Processors

1.0
0.99
0.98

Amdahl’s Law

4

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 7 10 20 30 40 50 70 90

M
ax

im
um

 S
pe

ed
up

Sequential Portion in %

maxspeedup(x)

Amdahl’s Law

5

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of Processors

1.0
0.99
0.96

super linear

Super Linear speed up

6

Concurrency and Parallelism

• Concurrency and parallelism are often used synonymously.

Concurrency: The independence of parts of an algorithm

(= independent of each other).

Parallelism (also parallel execution): Two or more parts of a

program are executed at the same moment in time.

Concurrency is a necessary prerequisite for parallel execution

for parallel execution

 but

Parallel execution is only one possible consequence of
concurrency.

7

Concurrency vs. Parallelism

• Concurrency: two or more threads are in progress at the same time:

• Parallelism: two or more threads are executing at the same time

Multiple cores needed

Thread 1
Thread 2

Thread 1
Thread 2

Learning

Classical CPU’s are sequential

There is an enormous sequential programming knowledge
build into compilers and know by most programmers.

Parallel Programming is requiring new skills and new tools.

Start to parallelise simple problems and keep on learning along
the way to complex real-world problems.

9

Recognizing Sequential Processes

• Time is inherently sequential

• Dynamics and real-time, event driven applications are often difficult to

parallelize effectively

• time stepping modeling code

• Many games fall into this category

• Iterative processes

• The results of an iteration depend on the preceding iteration

• conjugate gradient methods

• Audio encoders

•

Parallel Programming Models

• Parallel programming models exist as an abstraction above
hardware and memory architectures.

• Which model to use is often a combination of what is available
and personal choice. There is no "best" model, although there
certainly are better implementations of some models over others.

Parallel Programming Models

• Shared Memory

• tasks share a common address space, which they read and write

asynchronously.

• Threads (functional)

• a single process can have multiple, concurrent execution paths.

Example implementations: POSIX threads & OpenMP

• Message Passing

• tasks exchange data through communications by sending and

receiving messages. Example: MPI-2 specification.

• Data Parallel languages

• tasks perform the same operation on their partition of work.

Example: Co-array Fortran (CAF), Unified Parallel C (UPC),
Chapel

• Hybrid

Programming Models

13

Hardware Layer

Memory

Interconnect

Interconnect

System Software

Programming Model

User
New to parallel programming

Experienced programmer

Shared Memory

Message passing

Hybrid

Operating system
compilers

Distributed Memory

Shared Memory

Parallel Programming Concepts

• Work distribution

• Which parallel task is doing what?

• Which data is used by which task?

• Synchronization

• Do the different parallel tasks meet?

• Communication

• Is communication between parallel parts needed?

• Load Balance

• Does every task has the same amount of work?

• Are all processors of the same speed?

14

• Work decomposition

• based on loop counter

• Data decomposition

• all work for a local portion 

of the data is done by the 
local processor

• Domain decomposition

• decomposition of work and 

data

Distributing Work and/or Data

15

do i=1,100
1: i=1,25
2: i=26,50
3: i=51,75
4: i=76,100

A(1:10,1:25)
A(1:10,26:50)
A(11:20,1:25)
A(11:20,25:50)

Synchronization

• Synchronization

• causes overhead

• idle time, when not all tasks are finished at the same time

16

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-9

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 17 / 54

Distributing Work & Data

do i=1,100
 i=1,25

i=26,50
i=51,75
i=76,100

Work decomposition
• based on loop decomposition

Domain decomposition
• decomposition of work and

data is done in a higher model,
e.g. in the reality

A(1:20, 1: 50)
A(1:20, 51:100)
A(21:40, 1: 50)
A(21:40, 51:100)

Data decomposition
• all work for a local portion

of the data is done by the
local processor

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 18 / 54

Synchronization

• Synchronization
– is necessary
– may cause

• idle time on some processors
• overhead to execute the synchronization primitive

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-i)
Enddo

Communication

• communication is necessary on the boundaries

• domain decomposition

17

do i=2,99
 b(i) = b(i) + h*(a(i-1)-2*a(i)+a(i+1))
end do

e.g. b(26) = b(26) + h*(a(25)-2*a(26)+a(27))

A(1:25)
A(26:50)
A(51:75)
A(76:100)

31. — Domain Decomposition – Parallelization of Mesh Based Applications — 31
31-6

Slide 11
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

Replication versus Communication (II)

• Normally replicate the values

– Consider how many calculations you can execute while only
sending 1 Bit from one process to another
(6 µs, 1.0 Gflop/s 6000 operations)

– Sending 16 kByte (20x20x5) doubles
(with 300 MB/s bandwidth 53.3 µs 53 300 operations)

– very often blocks have to wait for their neighbours

– but extra work limits parallel efficiency

• Communication should only be used if one is quite sure that this is
the best solution

Slide 12
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

2- Dimensional DD with two Halo Cells

Mesh Partitioning

Subdomain for each Process

38a. — Parallelization of Explicit and Implicit Solvers — 38a.
38a-10

Rolf RabenseifnerParallelization and Iterative Solvers
Slide 19 of 51 Höchstleistungsrechenzentrum Stuttgart

Unstructured Grids

• Mesh partitioning with special load balancing libraries
– Metis (George Karypis, University of Minnesota)
– ParMetis (internally parallel version of Metis)

• http://www.cs.umn.edu/~karypis/metis/metis.html
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/metis.html

– Jostle (Chris Walshaw, University of Greenwich)
• http://www.gre.ac.uk/jostle
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/jostle.html

– Goals:
• Same work load in

each sub-domain
• Minimizing the

maximal number of
neighbor-connections
between sub-domains

0 2

3
1

4
5

6 10

9
8

7 11

12 15

16
13

17 14

21 20

23
22

19

18

P
arallelization

of E
xplicit and Im

plicit S
olvers [38a]

Rolf RabenseifnerParallelization and Iterative Solvers
Slide 20 of 51 Höchstleistungsrechenzentrum Stuttgart

Halo

• Stencil:
– To calculate a new grid point (),

old data from the stencil grid points () are needed
• E.g., 9 point stencil

• Halo
– To calculate the new grid points of a sub-domain,

additional grid points from other sub-domains are needed.
– They are stored in halos (ghost cells, shadows)
– Halo depends on form of stencil

Load Imbalance

• Load imbalance is the time that some processors in the system
are idle due to:

• less parallelism than processors

• unequal sized tasks together with too little parallelism

• unequal processors

18

Examples of work distribution

• Domain Decomposition

• Master Worker

• Task Decomposition

19

Domain Decomposition

• First, decide how data elements should be divided among processors

• Second, decide which tasks each processor should be doing

Domain Decomposition

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

Domain Decomposition
Find the largest element of an array

5 6 68 83

Core 0 Core 1 Core 2 Core 3

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 645 6 68 83

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

13 49 12 51

13 49 68 83

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

1 34 98 94

13 49 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

9 50 16 27

13 50 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 22 78 74

26 50 98 94

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

26 50 98 94

13 12 31 64

Domain Decomposition
Find the largest element of an array

26

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

50

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98

Core 2

Core 1

Core 3

Master Worker

33

Get a heap of work done

Core 0 (master)

• The problem is decomposed according to the work that must be done.
Each task then performs a portion of the overall work.

• Divide computation based on natural set of independent tasks

‣ Assign data for each task as needed

• Example: pipeline seismic data pre-processing

• static-correction

• deconvolution

• nmo correction

• stacking

• ….

Functional Decomposition

Task/Functional Decomposition
f()

s()

r()
q()h()

g()

Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1

Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1

Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1

Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1

Task Decomposition
f()

s()

r()
q()h()

g()

Core 0

Core 2

Core 1

Shared Memory Parallelism

• Introduction to Threads

• Exercise: Racecondition

• OpenMP Programming Model

• Scope of Variables: Exercise 1

• Synchronisation: Exercise 2

• Scheduling

• Exercise: OpenMP scheduling

• Reduction

• Exercise: Pi

• Shared variables

• Exercise: CacheTrash

• Tasks

• Future of OpenMP

41

Processes and Threads

Modern operating systems load
programs as processes

• Resource holder

• Execution

A process starts executing at its
entry point as a thread

Threads can create other threads
within the process

All threads within a process share
code & data segments

Threads have lower overhead than
processes

Code segment

Data segment

thread

main()

…thread thread

Threads: “processes” sharing memory

• Process == address space

• Thread == program counter / stream of instructions

• Two examples

• Three processes, each with one thread

• One process with three threads

43

Kernel Kernel
ThreadsThreads

System 
space

User 
space

Process 1 Process 2 Process 3 Process 1

The Shared-Memory Model

Shared Memory

Core

Private 
Memory

Core

Private 
Memory

Core

Private 
Memory

What Are Threads Good For?

Making programs easier to understand

Overlapping computation and I/O

Improving responsiveness of GUIs

Improving performance through parallel execution

‣ with the help of OpenMP

Fork/Join Programming Model

• When program begins execution, only master thread active

• Master thread executes sequential portions of program

• For parallel portions of program, master thread forks (creates or
awakens) additional threads

• At join (end of parallel section of code), extra threads are
suspended or die

Relating Fork/Join to Code (OpenMP)

for {

}

for {

}

Sequential code

Parallel code

Sequential code

Parallel code

Sequential code

Domain Decomposition Using Threads

Shared 
Memory

 Thread 0 Thread 2

Thread 1

f ()

f ()

f ()

Shared

Memory

Task Decomposition Using Threads
Thread 0 Thread 1

e ()

g ()h ()

f ()

Shared versus Private Variables

Shared

Variables

Private

Variables

Private

Variables

Thread

Thread

Parallel threads can “race” against each other to update resources

Race conditions occur when execution order is assumed but not
guaranteed

Example: un-synchronised access to bank account

Race Conditions

Deposits $100
into account

Withdraws $100
from account

Initial balance = $1000

Final balance = ?

Race Conditions

Deposits $100
into account

Withdraws $100
from account

Initial balance = $1000

Final balance = ?

Time Withdrawal Deposit

T0 Load (balance = $1000)

T1 Subtract $100 Load (balance = $1000)

T2 Store (balance = $900) Add $100

T3 Store (balance = $1100)

Code Example in OpenMP

exercise: HPCource/RaceCondition

for (i=0; i<NMAX; i++) {
 a[i] = 1;
 b[i] = 2;
}
#pragma omp parallel for shared(a,b)
for (i=0; i<12; i++) {
 a[i+1] = a[i]+b[i];
}

1: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0
4: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 3.0, 5.0, 7.0, 9.0, 11.0
4: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0
4: a= 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0

53

Code Example in OpenMP

thread computation  
0 a[1] = a[0] + b[0]
0 a[2] = a[1] + b[1]
0 a[3] = a[2] + b[2] <--| Problem
1 a[4] = a[3] + b[3] <--| Problem
1 a[5] = a[4] + b[4]
1 a[6] = a[5] + b[5] <--| Problem
2 a[7] = a[6] + b[6] <--| Problem
2 a[8] = a[7] + b[7]
2 a[9] = a[8] + b[8] <--| Problem
3 a[10] = a[9] + b[9] <--| Problem
3 a[11] = a[10] + b[10]

54

How to Avoid Data Races

• Scope variables to be local to threads

• Variables declared within threaded functions

• Allocate on thread’s stack

• TLS (Thread Local Storage) 

• Control shared access with critical regions

• Mutual exclusion and synchronization

• Lock, semaphore, event, critical section, mutex…

Examples variables

56

Domain Decomposition

Sequential Code:

int a[1000], i;

for (i = 0; i < 1000; i++) a[i] = foo(i);

Domain Decomposition

Sequential Code:

int a[1000], i;

for (i = 0; i < 1000; i++) a[i] = foo(i);

Thread 0:

for (i = 0; i < 500; i++) a[i] = foo(i);

Thread 1:

for (i = 500; i < 1000; i++) a[i] = foo(i);

Domain Decomposition

Sequential Code:

int a[1000], i;

for (i = 0; i < 1000; i++) a[i] = foo(i);

Thread 0:

for (i = 0; i < 500; i++) a[i] = foo(i);

Thread 1:

for (i = 500; i < 1000; i++) a[i] = foo(i);

SharedPrivate

Task Decomposition
int e;

main () {

 int x[10], j, k, m; j = f(k); m = g(k); ...

}

int f(int *x, int k)

{

 int a; a = e * x[k] * x[k]; return a;

}

int g(int *x, int k)

{

 int a; k = k-1; a = e / x[k]; return a;

}

Task Decomposition
int e;

main () {

 int x[10], j, k, m; j = f(k); m = g(k);

}

int f(int *x, int k)

{

 int a; a = e * x[k] * x[k]; return a;

}

int g(int *x, int k)

{

 int a; k = k-1; a = e / x[k]; return a;

}

Thread 0

Thread 1

Task Decomposition
int e;

main () {

 int x[10], j, k, m; j = f(k); m = g(k);

}

int f(int *x, int k)

{

 int a; a = e * x[k] * x[k]; return a;

}

int g(int *x, int k)

{

 int a; k = k-1; a = e / x[k]; return a;

}

Thread 0

Thread 1

Static variable: Shared

Task Decomposition
int e;

main () {

 int x[10], j, k, m; j = f(x, k); m = g(x, k);

}

int f(int *x, int k)

{

 int a; a = e * x[k] * x[k]; return a;

}

int g(int *x, int k)

{

 int a; k = k-1; a = e / x[k]; return a;

}

Thread 0

Thread 1

Heap variable: Shared

Task Decomposition
int e;

main () {

 int x[10], j, k, m; j = f(k); m = g(k);

}

int f(int *x, int k)

{

 int a; a = e * x[k] * x[k]; return a;

}

int g(int *x, int k)

{

 int a; k = k-1; a = e / x[k]; return a;

}

Thread 0

Thread 1

Function’s local variables: Private

Shared and Private Variables

• Shared variables

• Static variables

• Heap variables

• Contents of run-time stack at time of call

• Private variables

• Loop index variables

• Run-time stack of functions invoked by thread

66

3

What Is OpenMP?

• Compiler directives for multithreaded programming

• Easy to create threaded Fortran and C/C++ codes

• Supports data parallelism model

• Portable and Standard

• Incremental parallelism

➡Combines serial and parallel code in single source

OpenMP is not ...

Not Automatic parallelization

– User explicitly specifies parallel execution

– Compiler does not ignore user directives even if wrong

Not just loop level parallelism

– Functionality to enable general parallel parallelism

Not a new language

– Structured as extensions to the base

– Minimal functionality with opportunities for extension

68

Directive based

• Directives are special comments in the language

– Fortran fixed form: !OMP, COMP, *$OMP

– Fortran free form: !$OMP

Special comments are interpreted by OpenMP

compilers

 w = 1.0/n

 sum = 0.0

!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:sum)

 do I=1,n

 x = w*(I-0.5)

 sum = sum + f(x)

 end do

 pi = w*sum

 print *,pi

 end

69

Comment in
Fortran

but interpreted by

OpenMP compilers

C example

#pragma omp directives in C

– Ignored by non-OpenMP compilers

 w = 1.0/n;

 sum = 0.0;

#pragma omp parallel for private(x) reduction(+:sum)

 for(i=0, i<n, i++) {

 x = w*((double)i+0.5);

 sum += f(x);

 }

 pi = w*sum;

 printf(“pi=%g\n”, pi);

}

70

• Control runtime

• schedule type

• max threads

• nested parallelism

• throughput mode

Architecture of OpenMP

• Control structures

• Work sharing

• Synchronization

• Data scope attributes

• private

• shared

• reduction

• Orphaning

71

• Control & query routines

• number of threads

• throughput mode

• nested parallism

• Lock API

Directives,

Pragmas

Runtime library
routines

Environment
variables

Programming Model

• Fork-join parallelism:

‣ Master thread spawns a team of threads as needed

‣ Parallelism is added incrementally: the sequential program 
 evolves into a parallel program

Parallel Regions

Master
Thread

72

Threads are assigned an independent
set of iterations

Threads must wait at the end of work-
sharing construct

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

Work-sharing Construct

#pragma omp parallel

#pragma omp for

Implicit barrier

#pragma omp parallel

#pragma omp for

 for(i = 0; i < 12; i++)

 c[i] = a[i] + b[i]

73

Combining pragmas

These two code segments are equivalent

#pragma omp parallel

{	

 #pragma omp for

 for (i=0; i< MAX; i++) {
	 res[i] = huge();

 }

}	

#pragma omp parallel for

 for (i=0; i< MAX; i++) {

 res[i] = huge();

 }

74

18

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum
sum = Σ b[i=0][j]*c[j] sum = Σ b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum
sum = Σ b[i=1][j]*c[j] sum = Σ b[i=6][j]*c[j]

... etc ...

��������	��
�	����

�
������������	
�����������	��
�	����

������������������������	
�������������	

���

�������������������������� �����!�����
�"
����������������#�!���$�$���
��%��� ��$�$�$�$�

= *

j

i

Matrix-vector example

75

19

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

� �� ��� ���� ����� ������ �������

�

���

����

����

����

����

�����	
�

�����	
��

����	
��

OpenMP Performance Example

Memory Footprint (KByte)

Pe
rfo

rm
an

ce
 (M

flo
p/

s)

Matrix too
small *

*) With the IF-clause in OpenMP this performance degradation can be avoided

scales

Performance is matrix size dependent

76

OpenMP parallelization

• OpenMP Team := Master + Workers

• A Parallel Region is a block of code executed by all

threads simultaneously

• The master thread always has thread ID 0

• Thread adjustment (if enabled) is only done before entering a parallel

region

• Parallel regions can be nested, but support for this is implementation

dependent

• An "if" clause can be used to guard the parallel region; in case the

condition evaluates to "false", the code is executed serially

• A work-sharing construct divides the execution of the enclosed

code region among the members of the team; in other words:
they split the work

77

Data Environment

• OpenMP uses a shared-memory programming model  

• Most variables are shared by default. 

• Global variables are shared among threads 
 C/C++: File scope variables, static

• Not everything is shared, there is often a need for “local” data as
well

78

... not everything is shared...

• Stack variables in functions called from parallel regions are PRIVATE 

• Automatic variables within a statement block are PRIVATE 

• Loop index variables are private (with exceptions)

• C/C+: The first loop index variable in nested loops following a  

#pragma omp for

Data Environment

79

About Variables in SMP

• Shared variables 
Can be accessed by every thread thread. Independent read/write
operations can take place.

• Private variables 
Every thread has it’s own copy of the variables that are created/
destroyed upon entering/leaving the procedure. They are not
visible to other threads.

80

serial code

global

auto local

static

dynamic

parallel code

shared

local

use with care

use with care

attribute clauses

•default(shared)

•shared(varname,…)

private(varname,…)

Data Scope clauses

81

The Private Clause

Reproduces the variable for each thread

• Variables are un-initialised; C++ object is default constructed

• Any value external to the parallel region is undefined

void* work(float* c, float *a, float
*x, int N)

{

 float x, y; int i;

 #pragma omp parallel for private(x,y)

 for(i=0; i<N; i++) {

	 x = a[i]; y = b[i];

 	 c[i] = x + y;

 }

}

82

Synchronization

• Barriers

• Critical sections

• Lock library routines

83

#pragma omp barrier

#pragma omp critical()

omp_set_lock(omp_lock_t *lock)

omp_unset_lock(omp_lock_t *lock)

....

#pragma omp critical [(lock_name)]

Defines a critical region on a structured block

OpenMP Critical Construct

float R1, R2;

#pragma omp parallel

{ float A, B;

#pragma omp for 
 for(int i=0; i<niters; i++){

 B = big_job(i);

#pragma omp critical  
 consum (B, &R1);

 A = bigger_job(i);

#pragma omp critical  
 consum (A, &R2);

 } 
}

All threads execute the
code, but only one at a
time. Only one calls
consum() thereby
protecting R1 and R2
from race conditions.

Naming the critical
constructs is optional,
but may increase
performance.

(R1_lock)

(R2_lock)

84

OpenMP Critical

85

Day 3: OpenMP
2010 ʹ Course MT1

OpenMP critical directive:
Explicit Synchronization

� Race conditions can be avoided by controlling access to shared variables by
allowing threads to have exclusive access to the variables

� Exclusive access to shared variables allows the thread to atomically perform
read, modify and update operations on the variable.

� Mutual exclusion synchronization is provided by the critical directive of
OpenMP

� Code block within the critical region defined by critical /end critical directives
can be executed only by one thread at a time.

� Other threads in the group must wait until the current thread exits the critical
region. Thus only one thread can manipulate values in the critical region.

29

fork

join

- critical region

int x
x=0;
#pragma omp parallel shared(x)
{
 #pragma omp critical
 x = 2*x + 1;
} /* omp end parallel */

All threads execute the code, but only one at a time.

Other threads in the group must wait until the current
thread exits the critical region. Thus only one thread can
manipulate values in the critical region.

Day 3: OpenMP
2010 ʹ Course MT1

Simple Example: critical

30

cnt = 0;
f = 7;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i<20;i++){
 if(b[i] == 0){

 #pragma omp critical
 cnt ++;
 } /* end if */
 a[i]=b[i]+f*(i+1);
 } /* end for */
} /* omp end parallel */

cnt=0
f=7

i =0,4 i=5,9 i= 20,24 i= 10,14

ŝĨ�͙
ŝĨ�͙

ŝĨ�͙ i= 20,24

cnt++

cnt++

cnt++
cnt++ a[i]=b[

ŝ΁н͙

a[i]=b[
ŝ΁н͙

a[i]=b[i]
н͙

a[i]=b[i]
н͙

Critical Example 1

86

Critical Example 2

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++) {

s = s + a[i]; }

87

 RZ: Christian Terboven Folie 12

Synchronization (2/4)

do i = 0, 24
 s = s + a(i)
end do

do i = 25, 49
 s = s + a(i)
end do

do i = 50, 74
 s = s + a(i)
end do

do i = 75, 99
 s = s + a(i)
end do

A(0)
.
.
.

A(99)

S

Pseudo-Code
Here: 4 Threads

Memory

do i = 0, 99
 s = s + a(i)
end do

Critical Example 2

88

OpenMP Single Construct

• Only one thread in the team executes the enclosed code

• The Format is:

• The supported clauses on the single directive are:

89

#pragma omp single [nowait][clause, ..]{
 “block”
}

private (list)
firstprivate (list)

NOWAIT:

the other threads
will not wait at the
end single directive

OpenMP Master directive

• All threads but the master, skip the enclosed section of code and
continue

• There is no implicit barrier on entry or exit !

• Each thread waits until all others in the team have reached this
point.

90

#pragma omp master {
 “code”
}

#pragma omp barrier

#pragma omp parallel
{

#pragma omp single [nowait]
{

}
#pragma omp master
{

}

#pragma omp barrier
}

Work Sharing: Single Master

91

Single processor

92

62

Tutorial IWOMP 2011 - Chicago, IL, USA June 13, 2011An Overview of OpenMP

Single processor region/2

time

single processor
region

Other threads
wait if there is
a barrier here

Work Sharing: Orphaning

• Worksharing constructs may be outside lexical scope of the
parallel region

93

#pragma omp parallel
{

 dowork()

}

void dowork()
{
 #pragma omp for
 for (i=0; i<n; i++) {

 }
}

Scheduling the work

• schedule (static | dynamic | guided | auto [, chunk]) schedule
(runtime)

static [, chunk]
• Distribute iterations in blocks of size "chunk" over the threads in a

round-robin fashion

• In absence of "chunk", each thread executes approx. N/P chunks for

a loop of length N and P threads

94

66

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The schedule clause/2

Thread 0 1 2 3
���	�
�� *-K L-M N-*7 *F-*O

	�
���!�� *-7 F-K L-O P-M
N-*� **-*7 *F-*K *L-*O

Example static schedule
Loop of length 16, 4 threads:

*) The precise distribution is implementation defined

95

• dynamic [, chunk]
• Fixed portions of work; size is controlled by the value of chunk

• When a thread finishes, it starts on the next portion of work

• guided [, chunk]
• Same dynamic behavior as "dynamic", but size of the portion of work

decreases exponentially

runtime
• Iteration scheduling scheme is set at runtime through environment

variable OMP_SCHEDULE

68

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The experiment

0 100 200 300 400 500 600

3
2
1
0

3
2
1
0

3
2
1
0

static

dynamic, 5

guided, 5

Iteration Number

Th
re

ad
 ID

500 iterations on 4 threads
Example scheduling

96

Environment Variables

• The names of the OpenMP environment variables must be
UPPERCASE

• The values assigned to them are case insensitive

97

OMP_NUM_THREADS

OMP_SCHEDULE “schedule [chunk]”

OMP_NESTED { TRUE | FALSE }

Exercise: OpenMP scheduling

• How OpenMP can help parallelize a loop, but as a user you can
help in making it better ;-)

• On the git clone: cd HPCourse/OMP_schedule

• The README has instructions: 
This works best with an Intel compiler that uses an auto-
parallelizer to generate threaded code

• This exercise requires already some knowledge about OpenMP.
The OpenMP website at 
 https://www.openmp.org/  
can be helpful to get started.

98

reduction (op : list)

The variables in “list” must be shared in the enclosing parallel
region

Inside parallel or work-sharing construct:

‣ A PRIVATE copy of each list variable is created and initialized depending on

the “op” 

‣ These copies are updated locally by threads 

‣ At end of construct, local copies are combined through “op” into a single value
and combined with the value in the original SHARED variable

13

OpenMP Reduction Clause

Day 3: OpenMP
2010 ʹ Course MT1

OpenMP: Reduction

� performs reduction on shared variables in list based on the operator provided.
� for C/C++ operator can be any one of :

± +, *, -, ^, |, ||, & or &&
± At the end of a reduction, the shared variable contains the result obtained upon

combination of the list of variables processed using the operator specified.

32

sum = 0.0
#pragma omp parallel for reduction(+:sum)
 for (i=0; i < 20; i++)
 sum = sum + (a[i] * b[i]);

sum=0

i=0,4 i=5,9 i=10,14 i=15,19

sum=.. sum=.. sum=.. sum=..

єƐƵŵ

sum=0

Local copy of sum for each thread

All local copies of sum added together
and stored in “global” variable

Reduction Example

#pragma omp parallel for
reduction(+:sum)

 for(i=0; i<N; i++) {

 sum += a[i] * b[i];

 }

100

A range of associative and commutative operators can be used with
reduction

Initial values are the ones that make sense

C/C++ Reduction Operations

Operator Initial Value

+ 0

* 1

- 0

^ 0

Operator Initial Value

& ~0

| 0

&& 1

|| 0

FORTRAN:
intrinsic is one of MAX, MIN, IAND, IOR, IEOR
operator is one of +, *, -, .AND., .OR., .EQV., .NEQV.

101

Numerical Integration Example
4.0

2.0

1.00.0 X

� 1

0

4
1 + x2

dx = �
static long num_steps=100000;
double step, pi;

void main()

{ int i;	

 double x, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0; i<num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0 + x*x);

 }

 pi = step * sum;

 printf(“Pi = %f\n”,pi);

}

102

static long num_steps=100000;
double step, pi;

void main()

{ int i;	

 double x, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0; i<num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0 + x*x);

 }

 pi = step * sum;

 printf(“Pi = %f\n”,pi);

}

Numerical Integration to Compute Pi

Parallelize the numerical
integration code using
OpenMP

What variables can be shared?

What variables need to be
private?

What variables should be set
up for reductions?

step, num_steps

x, i

sum

103

Solution to Computing Pi

static long num_steps=100000;

double step, pi;

void main()

{ int i;	

 double x, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0; i<num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0 + x*x);

 }

 pi = step * sum;

 printf(“Pi = %f\n”,pi);

}

104

Let’s try it out

• Go to example MPI_pi and will work with openmp_pi2.c

105

Exercise: PI with MPI and OpenMP

106

cores OpenMP

1 9.617728

2 4.874539

4 2.455036

6 1.627149

8 1.214713

12 0.820746

16 0.616482

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 6 12 16

sp
ee

d
up

number of CPUs

Pi Scaling

Amdahl 1.0
OpenMP Barcelona 2.2 GHz

Exercise: PI with MPI and OpenMP

107

© 2007 IBM Corporation

Multi-PF Solutions

CUDA: computing PI
Cuda Computing PI

108

Exercise: Shared Cache Trashing

• Let’s do the exercise: CacheTrash

109

About local and shared data

• Consider the following example:

• Let’s assume we run this on 2 processors:

• processor 1 for i=0,2,4,6,8

• processor 2 for i=1,3,5,7,9

110

for (i=0; i<10; i++){
 a[i] = b[i] + c[i];
}

i1

About local and shared data

111

for (i1=0,2,4,6,8){
 a[i1] = b[i1] + c[i1];
}

for (i2=1,3,5,7,9){
 a[i2] = b[i2] + c[i2];
}

i2A B C

P1 P2

private area private areashared area

Processor 1 Processor 2

About local and shared data

processor 1 for i=0,2,4,6,8

processor 2 for i=1,3,5,7,9

• This is not an efficient way to do this!

Why?

112

Doing it the bad way

• Because of cache line usage

• b[] and c[]: we use half of the data

• a[]: false sharing

113

for (i=0; i<10; i++){
 a[i] = b[i] + c[i];
}

False sharing and scalability

• The Cause: 
 Updates on independent data elements that happen to be  
 part of the same cache line.

• The Impact: 
 Non-scalable parallel applications

• The Remedy: 
 False sharing is often quite simple to solve

114

Poor cache line utilization

115

Processor 1 Processor 2

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9)

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9) The same holds for array C

cache line

Both processors read

the same cache lines

used data

not used data

False Sharing

116

Processor 1 Processor 2

a[1] = b[1] + c[0];
a[0] = b[0] + c[0];
Write into the line containing a[0]

This marks the cache line

containing a[0] as ‘dirty’

Detects the line with a[0] is ‘dirty’

Get a fresh copy (from processor 1)

Write into the line containing a[1]

This marks the cache line

containing a[1] as ‘dirty’

a[2] = b[2] + c[2];

time

a[3] = b[3] + c[3];
Detects the line with a[3] is ‘dirty’

Detects the line with a[2] is ‘dirty’

Get a fresh copy (from processor 2)

Write into the line containing a[2]

This marks the cache line

containing a[2] as ‘dirty’

False Sharing results

117

Iterations per thread

T
h

re
a

d
s

1 4 16 64 256 1K 4K 16K 64K 256K
1

2

3

4

5

6

7

8

9

10

3

4

5

6

7

8

9

10

time in seconds

OpenMP tasks

• What are tasks

• Tasks are independent units of work

• Threads are assigned to perform the work of each task.

- Tasks may be deferred

- Tasks may be executed immediately

- The runtime system decides which of the above

• Why tasks?

• The basic idea is to set up a task queue: when a thread

encounters a task directive, it arranges for some thread to
execute the associated block at some time. The first thread
can continue.

118

OpenMP 3.0 and Tasks

� What are tasks?
± Tasks are independent units of work
± Threads are assigned to perform the work

of each task.
� Tasks may be deferred
� Tasks may be executed immediately
� The runtime system decides which of the

above
� Why task?

± The basic idea is to set up a task queue:
when a thread encounters a task directive,
it arranges for some thread to execute the
associated block ʹ at some time. The first
thread can continue.

4

119

122

Tutorial IWOMP 2011 - Chicago, IL, USA June 13, 2011An Overview of OpenMP

The Tasking Example

Developer specifies tasks in application
Run-time system executes tasks

Encountering
thread adds

task(s) to
pool

Threads execute
tasks in the pool

OpenMP tasks

Tasks allow to parallelize irregular problems

– Unbounded loops 
– Recursive algorithms 
– Manger/work schemes

A task has

– Code to execute 
– Data environment (It owns its data) 
– Internal control variables 
– An assigned thread that executes the code and the data

120

OpenMP has always had tasks, but they were not called “task”.

 
– A thread encountering a parallel construct, e.g., “for”, packages up
a set of implicit tasks, one per thread.

– A team of threads is created.

– Each thread is assigned to one of the tasks.  
– Barrier holds master thread till all implicit tasks are finished.

 

121

OpenMP tasks

#pragma	omp	parallel

#pragma	omp	single

{

		...

#pragma	omp	task

		{	...	}

		…

#pragma	omp	taskwait

}

122

-> A parallel region creates a team of threads;

-> One thread enters the execution

-> the other threads wait at the end of the single

-> pick up threads „from the work queue“

Summary

• First tune single-processor performance

• Tuning parallel programs

• Has the program been properly parallelized?

• Is enough of the program parallelized (Amdahl’s law)?

• Is the load well-balanced?

• location of memory

• Cache friendly programs: no special placement needed

• Non-cache friendly programs

• False sharing?

• Use of OpenMP

• try to avoid synchronization (barrier, critical, single, ordered)

123

19

Plenty of Other OpenMP Stuff

Scheduling clauses

Atomic

Barrier

Master & Single

Sections

Tasks (OpenMP 3.0)

API routines

OpenMP references

https://mitpress.mit.edu/books/using-openmp-next-step

Paperback
$50.00 S | £40.00
ISBN: 9780262534789
392 pp. | 8 in x 9 in
250 b&w illus.
October 2017

125

Compiling and running OpenMP

• Compile with -openmp flag (intel compiler) or -fopenmp (GNU)

• Run program with variable:

export OMP_NUM_THREADS=4

126

OpenACC

• Set of directives to support accelerators

• Developed by PGI and HPE-Cray:

• Used to support all vendors: PGI now part of Nvidia

• Intel’s MIC’s not supported anymore

• AMD Fusions processors: only support by HPE-Cray

• OpenMP 5.0 also aims at GPU’s and real open standards

• might replace OpenACC in the future.

• not yet same compiler support of all vendors: Intel? AMD?

127

OpenACC example
void	convolution_SM_N(typeToUse	A[M][N],	typeToUse	B[M][N]) {

		int	i,	j,	k;

		int	m=M,	n=N;

		//	OpenACC	kernel	region

		//	Define	a	region	of	the	program	to	be	compiled	into	a	sequence	of	kernels

		//	for	execution	on	the	accelerator	device

		#pragma	acc	kernels	pcopyin(A[0:m])	pcopy(B[0:m])

		{

				typeToUse	c11,	c12,	c13,	c21,	c22,	c23,	c31,	c32,	c33;

	

				c11	=	+2.0f;		c21	=	+5.0f;		c31	=	-8.0f;

				c12	=	-3.0f;		c22	=	+6.0f;		c32	=	-9.0f;

				c13	=	+4.0f;		c23	=	+7.0f;		c33	=	+10.0f;

	

				//	The	OpenACC	loop	gang	clause	tells	the	compiler	that	the	iterations	of	the	loops

				//	are	to	be	executed	in	parallel	across	the	gangs.

				//	The	argument	specifies	how	many	gangs	to	use	to	execute	the	iterations	of	this	loop.

				#pragma	acc	loop	gang(64)

				for	(int	i	=	1;	i	<	M	-	1;	++i)	{

	

				//	The	OpenACC	loop	worker	clause	specifies	that	the	iteration	of	the	associated	loop	are	
to	be

				//	executed	in	parallel	across	the	workers	within	the	gangs	created.

				//	The	argument	specifies	how	many	workers	to	use	to	execute	the	iterations	of	this	loop.

								#pragma	acc	loop	worker(128)

								for	(int	j	=	1;	j	<	N	-	1;	++j) {

												B[i][j]	=	c11	*	A[i	-	1][j	-	1]		+		c12	*	A[i	+	0][j	-	1]		+		c13	*	A[i	+	1][j	-	1]

														+							c21	*	A[i	-	1][j	+	0]		+		c22	*	A[i	+	0][j	+	0]		+		c23	*	A[i	+	1][j	+	0]

														+							c31	*	A[i	-	1][j	+	1]		+		c32	*	A[i	+	0][j	+	1]		+		c33	*	A[i	+	1][j	+	
1];

										}

						}

			}//kernels	region

}

128

MPI

129

Message Passing

• Point-to-Point

• Requires explicit commands in program

• Send, Receive

• Must be synchronized among different processors

• Sends and Receives must match

• Avoid Deadlock -- all processors waiting, none able to communicate

• Multi-processor communications

• e.g. broadcast, reduce

131

MPI advantages

• Mature and well understood

• Backed by widely-supported formal standard (1992)

• Porting is “easy”

• Efficiently matches the hardware

• Vendor and public implementations available

• User interface:

• Efficient and simple

• Buffer handling

• Allow high-level abstractions

• Performance

132

MPI disadvantages

• MPI 2.0 includes many features beyond message passing

• Execution control environment depends on implementation

Learning curve

T

5

Programming Model

• Explicit parallelism:

‣ All processes starts at the same time at the same point in the code

‣ Full parallelism: there is no sequential part in the program

Parallel Region

processes

Work Distribution

• All processors run the same executable.

• Parallel work distribution must be explicitly done by the
programmer:

• domain decomposition

• master worker

134

135

A Minimal MPI Program (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello, world!\n");
 MPI_Finalize();
 return 0;
}

136

A Minimal MPI Program (Fortran 90)

program main
use MPI
integer ierr

call MPI_INIT(ierr)
print *, 'Hello, world!'
call MPI_FINALIZE(ierr)
end

Starting the MPI Environment

• MPI_INIT () 
 
Initializes MPI environment. This function must be called and
must be the first MPI function called in a program (exception:
MPI_INITIALIZED)  
 
Syntax

int MPI_Init (int *argc, char ***argv)

MPI_INIT (IERROR)

INTEGER IERROR 

NOTE: Both C and Fortran return error codes for all calls.

137

Exiting the MPI Environment

• MPI_FINALIZE () 
 
Cleans up all MPI state. Once this routine has been called, no
MPI routine (even MPI_INIT) may be called

Syntax
int MPI_Finalize ();

MPI_FINALIZE (IERROR)

INTEGER IERROR

MUST call MPI_FINALIZE when you exit from an MPI program

138

C and Fortran Language
Considerations

• Bindings

– C

• All MPI names have an MPI_ prefix

• Defined constants are in all capital letters

• Defined types and functions have one capital letter after the
prefix; the remaining letters are lowercase

– Fortran

• All MPI names have an MPI_ prefix

• No capitalization rules apply

• last argument is an returned error value

139

140

Finding Out About the Environment

• Two important questions that arise early in a parallel program are:

• How many processes are participating in this computation?

• Which one am I?

• MPI provides functions to answer these questions:

– MPI_Comm_size reports the number of processes.

– MPI_Comm_rank reports the rank, a number between 0 and size-1,

identifying the calling process

141

Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

142

Better Hello (Fortran)

program main
use MPI
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

143

Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must be received in the

same context.

• A group and context together form a communicator.

• A process is identified by its rank in the group associated with a

communicator.

• There is a default communicator whose group contains all initial

processes, called MPI_COMM_WORLD.

Day 2: MPI
 2010 ʹ Course MT1

MPI Communicators

� Communicator is an internal object
� MPI Programs are made up of communicating

processes
� Each process has its own address space containing its

own attributes such as rank, size (and argc, argv, etc.)
� MPI provides functions to interact with it
� Default communicator is MPI_COMM_WORLD

± All processes are its members
± It has a size (the number of processes)
± Each process has a rank within it
± One can think of it as an ordered list of processes

� Additional communicator(s) can co-exist
� A process can belong to more than one communicator
� Within a communicator, each process has a unique

rank

MPI_COMM_WORLD

0

1
2

5

3

4

6

7

14

Communicator

• Communication in MPI takes place with respect to
communicators

• MPI_COMM_WORLD is one such predefined communicator
(something of type “MPI_COMM”) and contains group and
context information

• MPI_COMM_RANK and MPI_COMM_SIZE return
information based on the communicator passed in as the
first argument

• Processes may belong to many different communicators

0 1 2 3 4 5 6 7

MPI_COMM_WORLD

Rank-->

144

MPI Basic Send/Receive
• Basic message passing process. Send data from one process

to another

• Questions

– To whom is data sent?

– Where is the data?

– What type of data is sent?

– How much of data is sent?

– How does the receiver identify it?

A:

Send Receive

B:

Process 1Process 0

145

146

MPI Basic Send/Receive

• Data transfer plus synchronization

• Requires co-operation of sender and receiver

• Co-operation not always apparent in code

• Communication and synchronization are combined

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

Day 2: MPI
 2010 ʹ Course MT1

Message Envelope

� Communication across
processes is performed using
messages.

� Each message consists of a
fixed number of fields that is
used to distinguish them, called
the Message Envelope :
± Envelope comprises source,

destination, tag, communicator
± Message comprises Envelope +

data
� Communicator refers to the

namespace associated with the
group of related processes

21

MPI_COMM_WORLD

0

1
2

5

3

4

6

7

Source : process0
Destination : process1
Tag : 1234
Communicator : MPI_COMM_WORLD

Message Organization in MPI

• Message is divided into data and envelope

• data

– buffer

– count

– datatype

• envelope

– process identifier (source/destination)

– message tag

– communicator

147

MPI Basic Send/Receive
• Thus the basic (blocking) send has become: 

MPI_Send (start, count, datatype, dest, tag,
comm)
– Blocking means the function does not return until it is safe to reuse

the data in buffer. The message may not have been received by the
target process.

• And the receive has become: 
MPI_Recv(start, count, datatype, source, tag,
comm, status)

- The source, tag, and the count of the message actually
received can be retrieved from status

148

MPI C Datatypes

149

MPI Fortran Datatypes

150

Is MPI Large or Small?

• Is MPI large (128 functions) or small (6 functions)?

– MPI’s extensive functionality requires many functions

– Number of functions not necessarily a measure of complexity

– Many programs can be written with just 6 basic functions

MPI_INIT MPI_COMM_SIZE MPI_SEND
MPI_FINALIZE MPI_COMM_RANK MPI_RECV

• MPI is just right

– A small number of concepts

– Large number of functions provides flexibility, robustness,

efficiency, modularity, and convenience

– One need not master all parts of MPI to use it

151

#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {

if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);
if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",pi, fabs(pi - PI25DT));
}
MPI_Finalize();
return 0;

}

152

Example: PI in Fortran 90 and C

work distribution

work distribution

 program main  
 use MPI  
 double precision PI25DT  
 parameter (PI25DT = 3.141592653589793238462643d0)  
 double precision mypi, pi, h, sum, x, f, a  
 integer n, myid, numprocs, i, ierr  
c function to integrate  
 f(a) = 4.d0 / (1.d0 + a*a)  
 call MPI_INIT(ierr)  
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)  
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)  
 10 if (myid .eq. 0) then  
 write(6,98)  
 98 format('Enter the number of intervals: (0 quits)')  
 read(5,’(i10)’) n  
 endif  
 call MPI_BCAST(n, 1, MPI_INTEGER, 0,MPI_COMM_WORLD, ierr)  
 if (n .le. 0) goto 30  
 h = 1.0d0/n  
 sum = 0.0d0  
 do 20 i = myid+1, n, numprocs  
 x = h * (dble(i) - 0.5d0)  
 sum = sum + f(x)  
 20 continue  
 mypi = h * sum  
 call MPI_REDUCE(mypi, pi, 1, MPI_DOUBLE_PRECISION,  
 + MPI_SUM, 0, MPI_COMM_WORLD,ierr)  
 if (myid .eq. 0) then  
 write(6, 97) pi, abs(pi - PI25DT)  
 97 format(' pi is approximately: ', F18.16,  
 + ' Error is: ', F18.16)  
 endif  
 goto 10  
 30 call MPI_FINALIZE(ierr)  
 end

153

Exercise: PI with MPI and OpenMP

• Compile and run for computing PI parallel

• From git HPCourse/MPi_pi

• There is a README with instructions.

• It is assumed that you use mpich1 and has PBS installed as a job
scheduler. If you have mpich2 let me know.

• Use qsub to submit the mpi job (an example script is provided) to
a queue.

154

Exercise: PI with MPI and OpenMP

155

cores OpenMP marken linux

1 9.617728 14.10798 22.15252

2 4.874539 7.071287 9.661745

4 2.455036 3.532871 5.730912

6 1.627149 2.356928 3.547961

8 1.214713 1.832055 2.804715

12 0.820746 1.184123

16 0.616482 0.955704

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 6 12 16

sp
ee

d
up

number of CPUs

Pi Scaling

Amdahl 1.0
OpenMP Barcelona 2.2 GHz

MPI marken Xeon 3.1 GHz
MPI linux Xeon 2.4 GHz

Exercise: PI with MPI and OpenMP

156

157

Collective Communications in MPI
• Communication is co-ordinated among a group of processes,

as specified by communicator, not on all processes

• All collective operations are blocking and no message tags are
used (in MPI-1)

• All processes in the communicator group must call the
collective operation

• Collective and point-to-point messaging are separated by
different “contexts”

• Three classes of collective operations

– Data movement

– Collective computation

– Synchronization

158

Collective calls

159

• MPI has several collective communication calls, the most frequently
used are:

• Synchronization

• Barrier

• Communication

• Broadcast

• Gather Scatter

• All Gather

• Reduction

• Reduce

• All Reduce

Day 2: MPI
 2010 ʹ Course MT1

40

MPI Collective Calls: Barrier

Function: MPI_Barrier()

int MPI_Barrier (
 MPI_Comm comm)

Description:
Creates barrier synchronization in a
communicator group comm. Each process,
when reaching the MPI_Barrier call, blocks
until all the processes in the group reach the
same MPI_Barrier call.

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Barrier.html

P0

P1

P2

P3

M
PI

_B
ar

rie
r(

)

P0

P1

P2

P3

MPI_Barrier()

160

Creates barrier synchronization in a communicator group comm.
Each process, when reaching the MPI_Barrier call, blocks until all
the processes in the group reach the same MPI_Barrier call.

MPI Basic Collective Operations

• Two simple collective operations

MPI_BCAST(start, count, datatype, root, comm)

MPI_REDUCE(start, result, count, datatype, operation,

root, comm)

• The routine MPI_BCAST sends data from one process to all
others

• The routine MPI_REDUCE combines data from all processes,
using a specified operation, and returns the result to a single
process

• In many numerical algorithms, SEND/RECEIVE can be replaced
by BCAST/REDUCE, improving both simplicity and efficiency.

161

Reduce (root=0, op)
A0
B1
C2

D3

X0
?1
?2

?3

X=A op B op C op D

Process

Ranks

Send

buffer

Process

Ranks

Receive

buffer

Broadcast and Reduce

Bcast (root=0)
A0
?1
?2

?3

Process

Ranks

Send

buffer

A0
A1
A2

A3

Process

Ranks

Send

buffer

162

X0
X1
X2

X3

AllReduce (comm_world, op)

Scatter and Gather

Scatter (root=0)

Process

Ranks

Send

buffer

A0
B1
C2
D3

Gather (root=0)

Process

Ranks

Receive

buffer

Process

Ranks

Send

buffer

Process

Ranks

Receive

buffer

ABCD0
1
2
3

????
????
????

ABCD0
1
2
3

????
????
????

A0
B1
C2
D3

163

ABCD0
1
2
3

ABCD
ABCD
ABCD

AllGather (comm_world)

MPI Collective Routines

• Several routines:

	 MPI_ALLGATHER MPI_ALLGATHERV MPI_BCAST

MPI_ALLTOALL MPI_ALLTOALLV
MPI_GATHER MPI_GATHERV
MPI_REDUCE_SCATTER MPI_REDUCE MPI_ALLREDUCE
MPI_SCATTERV MPI_SCATTER

• All versions deliver results to all participating processes

• “V” versions allow the chunks to have different sizes

• MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCE_SCATTER, and
take both built-in and user-defined combination functions

164

Built-In Collective Computation
Operations

165

166

Extending the Message-Passing
Interface

• Dynamic Process Management

• Dynamic process startup

• Dynamic establishment of connections

• One-sided communication

• Put/get

• Other operations

• Parallel I/O

• Other MPI-2 features

• Generalized requests

• Bindings for C++/ Fortran-90; inter-language issues

167

When to use MPI

• Portability and Performance

• Irregular Data Structures

• Building Tools for Others

• Libraries

• Need to Manage memory on a per processor basis

168

When not to use MPI

• Number of cores is limited and OpenMP is doing well on that
number of cores

• typically 16-32 cores in SMP

• Course: Introduction to MPI course

• June 2022: …

Summary

169

MPI Summary

• MPI Standard widely accepted by vendors and
programmers

• MPI implementations available on most modern platforms

• Several MPI applications deployed

• Several tools exist to trace and tune MPI applications

• Simple applications use point-to-point and collective
communication operations

• Advanced applications use point-to-point, collective,
communicators, datatypes, one-sided, and topology
operations

170

No overlapping

computation/communication

MPI only out of OpenMP code.

Only master thread with

MPI communication.

Hybrid systems programming hierarchy

Hybrid System

Pure MPI
Hybrid MPI/OpenMP

OpenMP in SMP nodes

MPI across the nodes

OpenMP

shared memory

Overlapping

computation/communication

MPI inside OpenMP code

Hybrid OpenMP/MPI

• Natural paradigm for clusters of SMP’s

• May offer considerable advantages when application mapping and

load balancing is tough

• Benefits with slower interconnection networks (overlapping

computation/communication)

‣ Requires work and code analysis to change pure MPI codes

‣ Start with auto parallelization?

‣ Link shared memory libraries…check various thread/MPI

processes combinations

‣ Study carefully the underlying architecture

• What is the future of this model? Could it be consolidated in new
languages?

• Connection with many-core?

172

173

C. BEKAS

P0 P1

P2 P3

T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T

Suppose we wish to solve the PDE

Using the Jacobi method: the value of

u at each discretization point is given

by a certain average among its

neighbors, until convergence.

Distributing the mesh to SMP

clusters by Domain Decomposition, it

is clear that the GREEN nodes can

proceed without any comm., while

the Blue nodes have to communicate

first and calculate later.

Overlapping computation/communication:
Example

MPI/OpenMPI: Overlapping computation/
communication

174

Not only the master but other threads communicate. Call MPI
primitives in OpenMP code regions.

if (my_thread_id < #){
MPI_… (communicate needed data)

} else
/* Perform computations that to not need
communication */
.
.

}
/* All threads execute code that requires

communication */
.
.

175

for (k=0; k < MAXITER; k++){
/* Start parallel region here */
#pragma omp parallel private(){

my_id = omp_get_thread_num();

if (my_id is given “halo points”)
MPI_SendRecv(“From neighboring MPI process”);

else{
for (i=0; i < # allocated points; i++)

newval[i] = avg(oldval[i]);
}

if (there are still points I need to do) /* Thi
for (i=0; i< # remaining points; i++)

newval[i] = avg(oldval[i]);

}
for (i=0; i<(all_my_points); i++)

oldval[i] = newval[i];
}
MPI_Barrier(); /* Synchronize all MPI processes here */

}

Text

Hiding IO with IO-Server

176

Compute Node

do i=1,time_steps

 compute(j)

 checkpoint(data)

end do

subroutine checkpoint(data)

 MPI_Wait(send_req)

 buffer = data

 MPI_Isend(IO_SERVER, buffer)

end subroutine

I/O Server

do i=1,time_steps

 do j=1,compute_nodes

 MPI_Recv(j, buffer)

 write(buffer)

 end do

end do

Use more nodes to act as IO-Servers (pseudo code)

PGAS

• What is PGAS?

• How to make use of PGAS as a programmer?

177

PRACE Winter School 2009PRACE Winter School 2009Montse Farreras mfarrera@ac.upc.eduMontse Farreras mfarrera@ac.upc.edu 44

Partitioned Global Address SpacePartitioned Global Address Space

! Explicitly parallel, shared-memory like programming model

! Global addressable space

" Allows programmers to declare and “directly” access data distributed across the
machine

! Partitioned address space

" Memory is logically partitioned between local and remote (a two-level hierarchy)
" Forces the programmer to pay attention to data locality, by exposing the inherent

NUMA-ness of current architectures

! Single Processor Multiple Data (SPMD) execution model

" All threads of control execute the same program
" Number of threads fixed at startup
" Newer languages such as X10 escape this model, allowing fine-grain threading

! Different language implementations:

" UPC (C-based), CoArray Fortran (Fortran-based), Titanium and X10 (Java-based)

Partitioned Global Address Space

178

PRACE Winter School 2009PRACE Winter School 2009Montse Farreras mfarrera@ac.upc.eduMontse Farreras mfarrera@ac.upc.edu 55

! Computation is performed in multiple
places.

! A place contains data that can be
operated on remotely.

! Data lives in the place it was created, for
its lifetime.

! A datum in one place may point to a datum
in another place.

! Data-structures (e.g. arrays) may be
distributed across many places.

A place expresses locality.

Address Space

Shared Memory

OpenMP

PGAS

UPC, CAF, X10
Message passing

MPI

Process/Thread

Partitioned Global Address SpacePartitioned Global Address Space
Partitioned Global Address Space

179

Shared Memory (OpenMP)

• Multiple threads share global memory

• Most common variant: OpenMP

• Program loop iterations distributed to threads, more recent task
features

• Each thread has a means to refer to private objects within a parallel
context

• Terminology

• Thread, thread team

• Implementation

• Threads map to user threads running on one SMP node

• Extensions to multiple servers not so successful

180

OpenMP

181

memory

threads

OpenMP: work distribution

182

memory

threads

!$OMP PARALLEL 
do i=1,32 
 a(i)=a(i)*2 
 end do1-8 9-16 17-24 25-32

OpenMP: implementation

183

memory

threads

cpus

process

Message Passing (MPI)

• Participating processes communicate using a message-passing
API

• Remote data can only be communicated (sent or received) via the
API.

• MPI (the Message Passing Interface) is the standard

• Implementation:

• MPI processes map to processes within one SMP node or across

multiple networked nodes

• API provides process numbering, point-to-point and collective

messaging operations

184

MPI

185

memory

cpu

processes

memory

cpu

memory

cpu

memory

cpu

MPI

186

memory

cpu

process 0

MPI_Send(a,...,1,…)

process 1

MPI_Recv(a,...,0,…)

Partitioned Global Address Space

• Shortened to PGAS

• Participating processes/threads have access to local memory via
standard program mechanisms

• Access to remote memory is directly supported by the PGAS
language

187

PGAS

188

memory

cpu

process

memory

cpu

memory

cpu

process process

Partitioned Global Address Space (PGAS): 

� Global address space – any process can address memory
on any processor

� Partitioned GAS – retain information about locality

� Core idea– hardest part of writing parallel code is
managing data distribution and communication; make that
simple and explicit

� PGAS Languages try to simplify parallel programming
(increase programmer productivity). 
 

5HPCC PTRANS and PGAS Languages

PGAS languages

Data Parallel Languages

• Unified Parallel C (UPC) is an extension of the C programming
language designed for high performance computing on large-scale
parallel machines.  
http://upc.lbl.gov/

• Co-array Fortran (CAF) is part of Fortran 2008 standard. It is a
simple, explicit notation for data decomposition, such as that
often used in message-passing models, expressed in a natural
Fortran-like syntax.  
http://www.co-array.org

• both need a global address space (which is not equal to SMP)

190

� Unified Parallel C:

� An extension of C99

� An evolution of AC, PCP, and Split-C

� Features

� SPMD parallelism via replication of threads

� Shared and private address spaces

� Multiple memory consistency models

� Benefits

� Global view of data

� One-sided communication

HPCC PTRANS and PGAS Languages 7

UPC

� Co-Array Fortran:

� An extension of Fortran 95 and part of “Fortran 2008”

� The language formerly known as F--

� Features

� SPMD parallelism via replication of images

� Co-arrays for distributed shared data

� Benefits

� Syntactically transparent communication

� One-sided communication

� Multi-dimensional arrays

� Array operations

HPCC PTRANS and PGAS Languages 9

Co-Array Fortran

Basic execution model co-array F--

• Program executes as if replicated to multiple copies with each
copy executing asynchronously (SPMD)

• Each copy (called an image) executes as a normal Fortran
application

• New object indexing with [] can be used to access objects on
other images.

• New features to inquire about image index, number of images
and to synchronize

193

CAF (F--)

 REAL, DIMENSION(N)[*] :: X,Y
 X(:) = Y(:)[Q]

Array indices in parentheses follow the normal Fortran rules
within one memory image.

Array indices in square brackets provide an equally convenient
notation for accessing objects across images and follow similar
rules.

194

parallel

Coarray execution model

195

memory

cpu

Image 1

memory

cpu

memory

cpu

Image 2 Image 3

Remote access with square bracket indexing: a(:)[2]

coarrays

Basic coarray declaration and usage

196

integer :: b

integer :: a(4)[*] !coarray

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6

b=a(2)

Basic coarray declaration and usage

197

integer :: b

integer :: a(4)[*] !coarray

b=a(2)

1 8 1 5a

image 1

b 8

1 7 9 9a

image 2

b 7

1 7 9 4a

image 3

b 7

Text

Basic coarray declaration and usage

198

integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 1

1 7 9 9a

image 2

b 3

1 7 9 4a

image 3

b 6

Text

Basic coarray declaration and usage

199

integer :: b

integer :: a(4)[*] !coarray

b=a(4)[3]

1 8 1 5a

image 1

b 4

1 7 9 9a

image 2

b 4

1 7 9 4a

image 3

b 4

200

Feb-5-08 56

Performance tuning

S

p

first attempt

second attempt

ideal

Performance tuning of parallel applications is an iterative process

Performance Tuning

201

Compiling MPI Programs

202

Compiling and Starting MPI Jobs
• Compiling:

• Need to link with appropriate MPI and communication subsystem libraries
and set path to MPI Include files

• Most vendors provide scripts or wrappers for this (mpxlf, mpif77, mpicc, etc)

• Starting jobs:

• Most implementations use a special loader named mpirun

– mpirun -np <no_of_processors> <prog_name>  

• In MPI-2 it is recommended to use

– mpiexec -n <no_of_processors> <prog_name>  

203

204

MPICH: a Portable MPI Environment

• MPICH is a high-performance portable implementation of MPI (both 1
and 2).

• It runs on MPP's, clusters, and heterogeneous networks of workstations.

• The CH comes from Chameleon, the portability layer used in the original
MPICH to provide portability to the existing message-passing systems.

• In a wide variety of environments, one can do:

 mpicc -mpitrace myprog.c
 mpirun -np 10 myprog
 upshot myprog.log

to build, compile, run, and analyze performance.

MPICH2

MPICH2 is an all-new implementation of the MPI Standard,
designed to implement all of the MPI-2 additions to MPI.

‣ separation between process management and communications

‣ use daemons (mpd) on nodes

‣ dynamic process management,

‣ one-sided operations,

‣ parallel I/O, and others

• http://www.mcs.anl.gov/research/projects/mpich2/

205

206

Compiling MPI programs

• From a command line:

mpicc -o prog prog.c

• Use profiling options (specific to mpich)

• -mpilog Generate log files of MPI calls

• -mpitrace Trace execution of MPI calls

• -mpianim Real-time animation of MPI (not available on all

systems)

• --help Find list of available options

• The environment variables MPICH_CC, MPICH_CXX, MPICH_F77,
and MPICH_F90 may be used to specify alternate C, C++,
Fortran 77, and Fortran 90 compilers, respectively.

�

207

 example hello.c

#include "mpi.h"
#include <stdio.h>
int main(int argc ,char *argv[])
{

int myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
fprintf(stdout, "Hello World, I am process
%d\n", myrank);
MPI_Finalize();
return 0;

}

208

Example: using MPICH1

-bash-3.1$ mpicc -o hello hello.c
-bash-3.1$ mpirun -np 4 hello
Hello World, I am process 0
Hello World, I am process 2
Hello World, I am process 3
Hello World, I am process 1

209

Example: details

• If using frontend and compute nodes in machines file use

	 mpirun -np 2 -machinefile machines hello

• If using only compute nodes in machine file use

	 mpirun -nolocal -np 2 -machinefile machines hello

• -nolocal - don’t start job on frontend

• -np 2 - start job on 2 nodes

• -machinefile machines - nodes are specified in machines file

• hello - start program hello

210

Notes on clusters

•Make sure you have access to the compute node (ssh keys are
generated ssh-keygen) and ask your system administrator.

•Which mpicc are you using

•$ which mpicc

•command line arguments are not always passed to mpirun/mpiexec
(depending on your version). In that case make a script which
calls your program with all its arguments

MPICH2 daemons
• mpdtrace: output a list of nodes on which you can run

MPI programs (runs mpd daemons).

‣ The -l option lists full hostnames and the port where the mpd is

listening.

• mpd starts an mpd daemon.

• mpdboot starts a set of mpd’s on a list of machines.

• mpdlistjobs lists the jobs that the mpd’s are running.

• mpdkilljob kills a job specified by the name returned by
mpdlistjobs

mpdsigjob delivers a signal to the named job.

211

MPI - Message Passing Interface

• MPI or MPI-1 is a library specification for message-passing.

• MPI-2: Adds in Parallel I/O, Dynamic Process management,
Remote Memory Operation, C++ & F90 extension …

• MPI Standard:

http://www-unix.mcs.anl.gov/mpi/standard.html

• MPI Standard 1.1 Index:

http://www.mpi-forum.org/docs/mpi-11-html/node182.html

• MPI-2 Standard Index:

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/
node306.htm

• MPI Forum Home Page:

http://www.mpi-forum.org/index.html

MPI tutorials

• http://www.nccs.nasa.gov/tutorials/mpi_tutorial2/
mpi_II_tutorial.html

• https://fs.hlrs.de/projects/par/par_prog_ws/

• Course: Introduction to MPI

• 50/50 lecture and exercises

213

214

MPI Sources

• The Standard (3.0) itself:

• at http://www.mpi-forum.org

• All MPI official releases, in both PDF and HTML

• Books:

– Using MPI: Portable Parallel Programming with the Message-

Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

– Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997.

• Other information on Web:

• at http://www.mcs.anl.gov/mpi

• pointers to lots of stuff, including other talks and tutorials, a FAQ,

other MPI pages

• http://mpi.deino.net/mpi_functions/index.htm

Job Management and queuing

215

Job Management and queuing

• On a large system many users are running simultaneously.

• What to do when:

• The system is full and you want to run your 512 CPU job?

• You want to run 16 jobs, should others wait on that?

• Have bigger jobs priority over smaller jobs?

• Have longer jobs lower/higher priority?

• The job manager and queue system takes care of it.

216

MPICH1 in PBS
#!/bin/bash
#PBS -N Flank
#PBS -V
#PBS -l nodes=11:ppn=2
#PBS -j eo

cd $PBS_O_WORKDIR
export nb=`wc -w < $PBS_NODEFILE`
echo $nb

mpirun -np $nb -machinefile $PBS_NODEFILE ~/bin/
migr_mpi \
 file_vel=$PBS_O_WORKDIR/grad_salt_rot.su \
 file_shot=$PBS_O_WORKDIR/cfp2_sx.su

217

Job Management and queuing

• PBS (maui):

• http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php

• Torque resource manager http://www.clusterresources.com/pages/products/

torque-resource-manager.php

• Sun Grid Engine

• http://gridengine.sunsource.net/

• SLURM

• http://slurm.schedmd.com

• Luckily their interface is very similar (qsub, qstat, ...)

218

queuing commands

• qsub

• qstat

• qdel

• xpbsmon

qsub

#PBS -l nodes=10:ppn=1
#PBS -l mem=20mb
#PBS -l walltime=1:00:00
#PBS -j eo

submit:

qsub -q normal job.scr

output:

jobname.ejobid
jobname.ojobid

qstat

• available queue and resources

qstat -q

• queued and running jobs

qstat (-a)

221

qdel

• deletes job from queue and stops all running executables

qdel jobid

222

Submitting many jobs in one script
#!/bin/bash -f
#
export xsrc1=93
export xsrc2=1599
export dxsrc=3
xsrc=$xsrc1

while ((xsrc <= xsrc2))
do
echo ' modeling shot at x=' $xsrc

cat << EOF > jobs/pbs_${xsrc}.job
#!/bin/bash
#
#PBS -N fahud_${xsrc}
#PBS -q verylong
#PBS -l nodes=1:ppn=1
#PBS -V

program with arguments

EOF

qsub jobs/pbs_${xsrc}.job
((xsrc = $xsrc + $dxsrc))
done

223

Be careful !

submitting job-arrays with slurm

224

#!/bin/bash
#SBATCH --job-name=mega_array # Job name
#SBATCH --nodes=1 # Use one node
#SBATCH --ntasks=1 # Run a single task
#SBATCH --time=00:10:00 # Time limit hrs:min:sec
#SBATCH --output=array_%A-%a.out # Standard output and error log
#SBATCH --array=1-5 # Array range
pwd; hostname; date

#Set the number of runs that each SLURM task should do
PER_TASK=1000

Calculate the starting and ending values for this task based
on the SLURM task and the number of runs per task.
START_NUM=$((($SLURM_ARRAY_TASK_ID - 1) * $PER_TASK + 1))
END_NUM=$(($SLURM_ARRAY_TASK_ID * $PER_TASK))

echo This is task $SLURM_ARRAY_TASK_ID, which will do runs $START_NUM to
$END_NUM

Run the loop of runs for this task.
for ((run=$START_NUM; run<=END_NUM; run++)); do
 echo This is SLURM task $SLURM_ARRAY_TASK_ID, run number $run
 #Do your stuff here
done

225

Exercise: PI with MPI and OpenMP

• Compile and run for computing PI parallel

• MPI_pi directory

• Check the README for instructions.

• It is assumed that you use mpich1 and has PBS installed as a job
scheduler. If you have mpich2 let me know.

• Use qsub to submit the mpi job (an example script is provided) to
a queue.

226

Exercise: PI with MPI and OpenMP

227

cores OpenMP marken (MPI) linux (MPI)

1 9.617728 14.10798 22.15252

2 4.874539 7.071287 9.661745

4 2.455036 3.532871 5.730912

6 1.627149 2.356928 3.547961

8 1.214713 1.832055 2.804715

12 0.820746 1.184123

16 0.616482 0.955704

Exercise: OpenMP Max

• Find the maximum number in a random generated array.

• on github HPCource/OMP_MAX

• There is a README for instructions.

• The exercise focus on using the available number of cores in an
efficient way.

• Also inspect the code and see how the reductions are done, is
there another way of doing the reductions?

228

Exercise: OpenMP details

• More details is using OpenMp and shared memory parallelisation

• collection of code is in HPCource/PowerGroup

• Unpack tar file and check the README for instructions.

• These are ‘old’ exercises from SGI and give insight in problems
you can encounter using OpenMP.

• It requires already some knowledge about OpenMP. The OpenMP
F-Summary.pdf from the website can be helpful.

229

END

230

