Dell Presentation Template Standard 4:3 Layout

Presenter Name Title

> "We're focused on scalable and flexible solutions that simplify high-performance computing by reducing cost and complexity.

What we're learning about HPC technology will redefine productivity throughout the research, discovery and business computing ecosystem."

Michael Dell - 2008

Marcel van Drunen – Dell Enterprise Technologist HPC

- Short intro Dell
- · Dell and High Performance Computing
- The HPC market
- · When a workstation is not enough
- GPGPU
- Cluster
- · (virtual) SMP
- Components Infiniband/10GigE/Filesystems(Panasas)
- Dell portfolio?/Terminology (grid, cloud, hpc, etc)/Intel&AMD

2 Confidential

Global Marketing

Global Marketing

Definitions

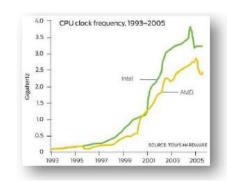
- High Performance Computing (HPC)
 - Computing aimed at calculations, not at transactions.
- High Performance Compute Cluster (HPCC)
 - Set of computers that provide compute power, not redundancy.
- Grid

4 Confidential

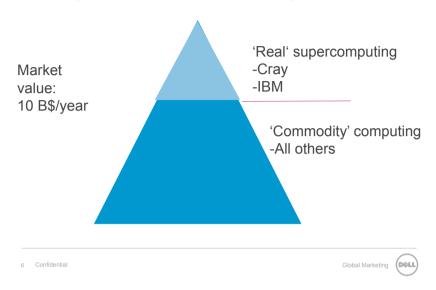
- Geographically dispersed set of (compute) resources.
- · (Compute) Cloud
 - Scalable pool of (compute) resources that hides complexity form users and management, pay-per-use model

Dell's mission in the HPC world

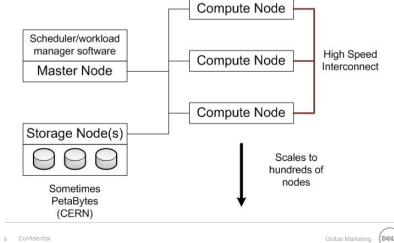
- Dell uses commodity, best of breed components to simplify HPC by driving out **cost** and **complexity**. This makes HPC available to a larger amount of researchers.
- · Dell has done the same to other markets:
 - Desktops
 - Laptops
 - Servers
 - Storage

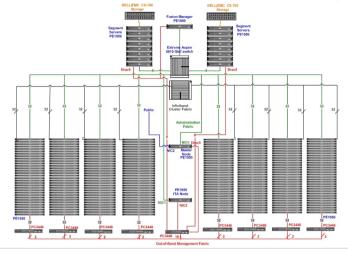

5 Confidential

Global Marketing



When a workstation is not enough


- Server CPU's are not faster than workstation CPU's
- Parallelize code!
 - MPI
 - OpenMP
 - CUDA/OpenCL
- · Hardware choices
 - Cluster (HPCC)
 - (Virtual)SMP machine
 - GPGPU


The High Performance Computing market

Typical HPC Cluster

256 Node Cluster (3072 cores/12 TB memory)

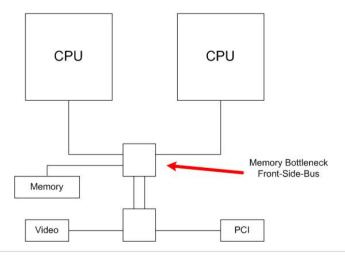
9 Confidential Global Marketing

Developments in CPU design

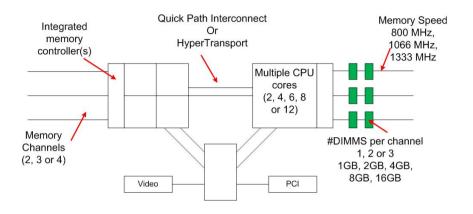
- · Clockspeed doesn't rise anymore
- · Power consumption is now an issue
- Dell uses Intel and AMD for 1, 2 and 4 socket machines
- For most uses, CPU is not bottleneck (NON-HPC)
- Memory bandwidth becomes very important
- Commodity CPU should support Virtualization, Security
- Smaller process allow for integration of non-CPU components
 - Memory controller
 - GPU, PCI, RAID-controller, etc. etc.

Interconnects

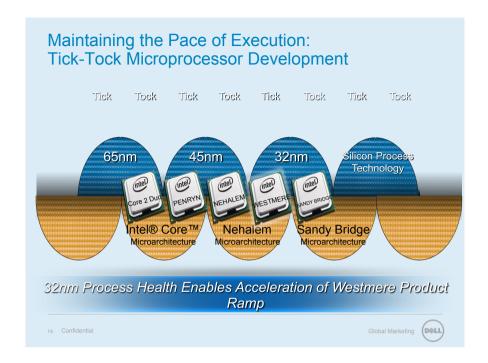
- · Infiniband is de-facto standard
 - QDR Infiniband 40Gb/s, 80/160 Gb/s under development
 - Very low latency (microsecond)
- 10GigE Ethernet is gaining marketshare
 - 10 Gb/s, 40/100 Gb/s under development
 - Much improvement in latency (needs Fiber connection)
- · Talk of the town: 'converged' networking



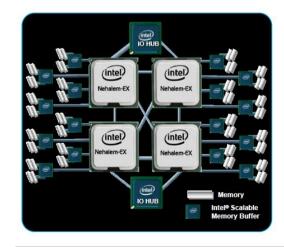
10 Confidentia


12 Confidential

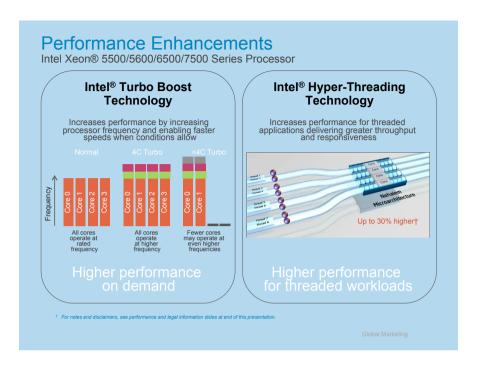
Old Intel & AMD infrastructure


Current AMD/Intel Architecture

13 Confidential Global Marketing (D¢LL)

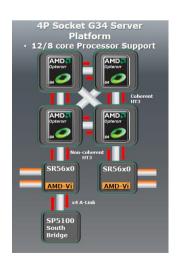

Intel (launched in March'10

- Westmere EP (XEON 5600 series)
 - 2 socket
 - 32nm (Die-shrink of Nehalem EP)
 - 3 memory lanes per CPU, up to 1333 MHz
 - Up to 6 core
- Nehalem EX (XEON 7500 series)
 - Up to 8 socket (Dell up to 4 socket)
 - 45nm (expect Westmere version end of this year)
 - 4 memory lanes per CPU
 - Up to 8 core

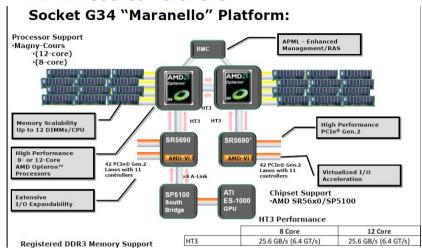


Nehalem-EX

16 Confidential

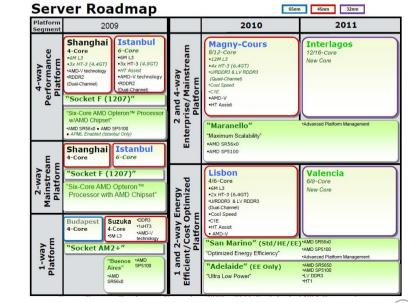


Up to 64 DIMM slots for up to $(64 \times 16GB) =$ 1 TerraByte of memory



AMD 4 socket

- -4 x 12 cores = 48 cores!
- -Dell R815 can contain up to 512GB of memory


AMD 2/4 socket Maranello

18 Confidential

Global Marketing

Global Marketing

(D&LL)

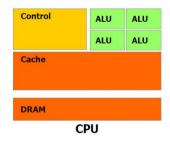
20 Confidential

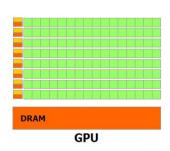
Global Marketing


DELL

What's a GPU?

- · High-end video card adapted for computation
- nVidia or AMD/ATi
- · Programmable with CUDA or Open-CL

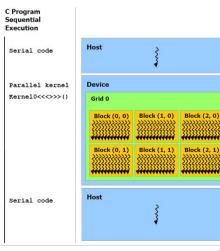

The GPU proposition (1)



22 Confidential Global Marketing

(D&LL)

The GPU proposition (2)



A CPU needs a lot of logical elements for all kinds of control functions. GPU's are especially well-suited to address problems that can be expressed as data-parallel computations

CPU and GPU cooperating

- -Some problems can be optimized for GPU
- Some will always run better on CPU
- The ideal machine has both

24 Confidential

Global Marketing

What if 1TB is not enough?

- 'Real big' SMP machine, or:
- · ScaleMP, virtual SMP machine
 - Can use OpenMP instead of MPI
 - Can scale with needs
 - Commodity hardware
 - > Low cost
 - > Easier maintenance

OpenMP is at over 2x faster to develop*

- Even for trivial programs
- Even if developing from scratch

Programming Model	Effort (person-hrs, mean)	
Serial	4.4	(sd 4.3, n=15)
OpenMP	5.0	(sd 3.5, n=16)
MPI	10.7	(sd 8.9, n=16)

25 Confidential Global Marketing (D&LL)

The ScaleMP proposition:

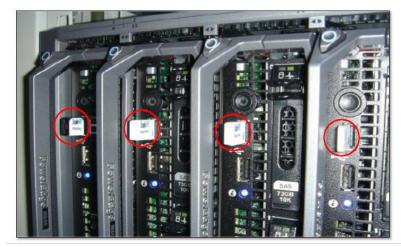
PARTITIONING

Subset of a physical resource (For applications requiring a fraction of the physical server resources)

Microsoft

AGGREGATION

Concatenation of physical resources (For applications requiring a superset of the physical server resources)



Global Marketing

What does it look like?

Fat node HPCC

QUMRANET

26 Confidential

Cluster (without aggregation)

512 Systems

Fat Node Cluster (with vSMP Foundation Standalone)

32 Systems

Global Marketing (DOLL)

ScaleMP config options

- Combining 16 Dell R910 servers results in:
 - A machine with 16 TB of memory
 - And 512 CPU's
- To save cost, smaller Dell servers can be used
 - Turn one Dell M1000e chassis into a vSMP machine
 - Up to 192 cores and 3 TB memory
- Scale up when needed, just add servers (*)

Future of HPC

- · Hardware price becomes irrelevant to most usage
- · Programmers will determine future
 - OpenMP, MPI, CUDA, OpenCL?
- · Commercial software licenses remain expensive
- Academics have to adapt to market
- · Cloud based HPC software
- We didn't talk about storage

Global Marketing

