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Preface

The field of high performance scientific computing lies at the crossroads of a number of disciplines and
skill sets, and correspondingly, for someone to be successful at using high performance computing in sci-
ence requires at least elementary knowledge of and skills in all these areas. Computations stem from an
application context, so some acquaintance with physics and engineering sciences is desirable. Then, prob-
lems in these application areas are typically translated into linear algebraic, and sometimes combinatorial,
problems, so a computational scientist needs knowledge of several aspects of numerical analysis, linear
algebra, and discrete mathematics. An efficient implementation of the practical formulations of the appli-
cation problems requires some understanding of computer architecture, both on the CPU level and on the
level of parallel computing. Finally, in addition to mastering all these sciences, a computational scientist
needs some specific skills of software management.

While good texts exist on numerical modeling, numerical linear algebra, computer architecture, parallel
computing, performance optimization, no book brings together these strands in a unified manner. The need
for a book such as the present became apparent to the author working at a computing center: users are
domain experts who not necessarily have mastery of all the background that would make them efficient
computational scientists. This book, then, teaches those topics that seem indispensible for scientists engag-
ing in large-scale computations.

The contents of this book are a combination of theoretical material and self-guided tutorials on various
practical skills. The theory chapters have exercises that can be assigned in a classroom, however, their
placement in the text is such that a reader not inclined to do exercises can simply take them as statement of
fact.

The tutorials should be done while sitting at a computer. Given the practice of scientific computing, they
have a clear Unix bias.

Victor Eijkhout eijkhout@tacc.utexas.edu
Research Scientist
Texas Advanced Computing Center
The University of Texas at Austin
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Introduction

Scientific computing is the cross-disciplinary field at the intersection of modeling scientific processes, and
the use of computers to produce quantitative results from these models. It is what takes a domain science
and turns it into a computational activity. As a definition, we may posit

The efficient computation of constructive methods in applied mathematics.

This clearly indicates the three branches of science that scientific computing touches on:

• Applied mathematics: the mathematical modeling of real-world phenomena. Such modeling of-
ten leads to implicit descriptions, for instance in the form of partial differential equations. In
order to obtain actual tangible results we need a constructive approach.
• Numerical analysis provides algorithmic thinking about scientific models. It offers a constructive

approach to solving the implicit models, with an analysis of cost and stability.
• Computing takes numerical algorithms and analyzes the efficacy of implementing them on actu-

ally existing, rather than hypothetical, computing engines.

One might say that ‘computing’ became a scientific field in its own right, when the mathematics of real-
world phenomena was asked to be constructive, that is, to go from proving the existence of solutions to
actually obtaining them. At this point, algorithms become an object of study themselves, rather than a mere
tool.

The study of algorithms became especially important when computers were invented. Since mathematical
operations now were endowed with a definable time cost, complexity of algoriths became a field of study;
since computing was no longer performed in ‘real’ numbers but in representations in finite bitstrings, the
accuracy of algorithms needed to be studied. Some of these considerations in fact predate the existence of
computers, having been inspired by computing with mechanical calculators.

A prime concern in scientific computing is efficiency. While to some scientists the abstract fact of the
existence of a solution is enough, in computing we actually want that solution, and preferably yesterday.
For this reason, in this book we will be quite specific about the efficiency of both algorithms and hardware.
It is important not to limit the concept of efficiency to that of efficient use of hardware. While this is
important, the difference between two algorithmic approaches can make optimization for specific hardware
a secondary concern.

This book aims to cover the basics of this gamut of knowledge that a successful computational scientist
needs to master. It is set up as a textbook for graduate students or advanced undergraduate students; others
can use it as a reference text, reading the exercises for their information content.
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Chapter 1

Sequential Computing

In order to write efficient scientific codes, it is important to understand computer architecture. The differ-
ence in speed between two codes that compute the same result can range from a few percent to orders
of magnitude, depending only on factors relating to how well the algorithms are coded for the processor
architecture. Clearly, it is not enough to have an algorithm and ‘put it on the computer’: some knowledge
of computer architecture is advisable, sometimes crucial.

Some problems can be solved on a single CPU, others need a parallel computer that comprises more than
one processor. We will go into detail on parallel computers in the next chapter, but even for parallel pro-
cessing, it is necessary to understand the invidual CPUs.

In this chapter, we will focus on what goes on inside a CPU and its memory system. We start with a brief
general discussion of how instructions are handled, then we will look into the arithmetic processing in the
processor core; last but not least, we will devote much attention to the movement of data between mem-
ory and the processor, and inside the processor. This latter point is, maybe unexpectedly, very important,
since memory access is typically much slower than executing the processor’s instructions, making it the
determining factor in a program’s performance; the days when ‘flop1 counting’ was the key to predicting a
code’s performance are long gone. This discrepancy is in fact a growing trend, so the issue of dealing with
memory traffic has been becoming more important over time, rather than going away.

This chapter will give you a basic understanding of the issues involved in CPU design, how it affects per-
formance, and how you can code for optimal performance. For much more detail, see an online book about
PC architecture [77], and the standard work about computer architecture, Hennesey and Patterson [68].

1.1 The Von Neumann architecture

While computers, and most relevantly for this chapter, their processors, can differ in any number of details,
they also have many aspects in common. On a very high level of abstraction, many architectures can be
described as von Neumann architectures . This describes a design with an undivided memory that stores
both program and data (‘stored program’), and a processing unit that executes the instructions, operating
on the data.

1. Floating Point Operation.
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1. Sequential Computing

This setup distinguishes modern processors for the very earliest, and some special purpose contemporary,
designs where the program was hard-wired. It also allows programs to modify themselves or generate
other programs, since instructions and data are in the same storage. This allows us to have editors and
compilers: the computer treats program code as data to operate on. In this book we will not explicitly
discuss compilers, the programs that translate high level languages to machine instructions. However, on
occasion we will discuss how a program at high level can be written to ensure efficiency at the low level.

In scientific computing, however, we typically do not pay much attention to program code, focusing almost
exclusively on data and how it is moved about during program execution. For most practical purposes it is
as if program and data are stored separately. The little that is essential about instruction handling can be
described as follows.

The machine instructions that a processor executes, as opposed to the higher level languages users write
in, typically specify the name of an operation, as well as of the locations of the operands and the result.
These locations are not expressed as memory locations, but as registers: a small number of named memory
locations that are part of the CPU2. As an example, here is a simple C routine

void store(double *a, double *b, double *c) {

*c = *a + *b;
}

and its X86 assembler output, obtained by3 gcc -O2 -S -o - store.c:

.text

.p2align 4,,15
.globl store

.type store, @function
store:

movsd (%rdi), %xmm0 # Load *a to %xmm0
addsd (%rsi), %xmm0 # Load *b and add to %xmm0
movsd %xmm0, (%rdx) # Store to *c
ret

The instructions here are:

• A load from memory to register;
• Another load, combined with an addition;
• Writing back the result to memory.

Each instruction is processed as follows:

• Instruction fetch: the next instruction according to the program counter is loaded into the pro-
cessor. We will ignore the questions of how and from where this happens.

2. Direct-to-memory architectures are rare, though they have existed. The Cyber 205 supercomputer in the 1980s could have 3
data streams, two from memory to the processor, and one back from the processor to memory, going on at the same time. Such an
architecture is only feasible if memory can keep up with the processor speed, which is no longer the case these days.
3. This is 64-bit output; add the option -m64 on 32-bit systems.
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1.2. Modern floating point units

• Instruction decode: the processor inspects the instruction to determine the operation and the
operands.
• Memory fetch: if necessary, data is brought from memory into a register.
• Execution: the operation is executed, reading data from registers and writing it back to a register.
• Write-back: for store operations, the register contents is written back to memory.

Complicating this story, contemporary CPUs operate on several instructions simultaneously, which are
said to be ‘in flight’, meaning that they are in various stages of completion. This is the basic idea of the
superscalar CPU architecture, and is also referred to as Instruction Level Parallelism (ILP). Thus, while
each instruction can take several clock cycles to complete, a processor can complete one instruction per
cycle in favourable circumstances; in some cases more than one instruction can be finished per cycle.

The main statistic that is quoted about CPUs is their Gigahertz rating, implying that the speed of the pro-
cessor is the main determining factor of a computer’s performance. While speed obviously correlates with
performance, the story is more complicated. Some algorithms are cpu-bound , and the speed of the proces-
sor is indeed the most important factor; other algorithms are memory-bound , and aspects such as bus speed
and cache size, to be discussed later, become important.

In scientific computing, this second category is in fact quite prominent, so in this chapter we will devote
plenty of attention to the process that moves data from memory to the processor, and we will devote rela-
tively little attention to the actual processor.

1.2 Modern floating point units

Many modern processors are capable of doing multiple operations simultaneously, and this holds in partic-
ular for the arithmetic part. For instance, often there are separate addition and multiplication units; if the
compiler can find addition and multiplication operations that are independent, it can schedule them so as to
be executed simultaneously, thereby doubling the performance of the processor. In some cases, a processor
will have multiple addition or multiplication units.

Another way to increase performance is to have a ‘fused multiply-add’ unit, which can execute the in-
struction x ← ax + b in the same amount of time as a separate addition or multiplication. Together with
pipelining (see below), this means that a processor has an asymptotic speed of several floating point opera-
tions per clock cycle.

Processor floating point units max operations per cycle
Intel Pentium4 2 add or 2 mul 2
Intel Woodcrest, AMD Barcelona 2 add + 2 mul 4
IBM POWER4, POWER5, POWER6 2 FMA 4
IBM BG/L, BG/P 1 SIMD FMA 4
SPARC IV 1 add + 1 mul 2
Itanium2 2 FMA 4

Table 1.1: Floating point capabilities of several current processor architectures
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1. Sequential Computing

Incidentally, there are few algorithms in which division operations are a limiting factor. Correspondingly,
the division operation is not nearly as much optimized in a modern CPU as the additions and multiplications
are. Division operations can take 10 or 20 clock cycles, while a CPU can have multiple addition and/or
multiplication units that (asymptotically) can produce a result per cycle.

1.2.1 Pipelining

The floating point add and multiply units of a processor are pipelined, which has the effect that a stream of
independent operations can be performed at an asymptotic speed of one result per clock cycle.

The idea behind a pipeline is as follows. Assume that an operation consists of multiple simpler opera-
tions, and that for each suboperation there is separate hardware in the processor. For instance, an addition
instruction can have the following components:

• Decoding the instruction, including finding the locations of the operands.
• Copying the operands into registers (‘data fetch’).
• Aligning the exponents; the addition .35×10−1 + .6×10−2 becomes .35×10−1 + .06×10−1.
• Executing the addition of the mantissas, in this case giving .41.
• Normalizing the result, in this example to .41 × 10−1. (Normalization in this example does not

do anything. Check for yourself that in .3× 100 + .8× 100 and .35× 10−3 + (−.34)× 10−3

there is a non-trivial adjustment.)
• Storing the result.

These parts are often called the ‘stages’ or ‘segments’ of the pipeline.

If every component is designed to finish in 1 clock cycle, the whole instruction takes 6 cycles. However, if
each has its own hardware, we can execute two operations in less than 12 cycles:

• Execute the decode stage for the first operation;
• Do the data fetch for the first operation, and at the same time the decode for the second.
• Execute the third stage for the first operation and the second stage of the second operation simul-

taneously.
• Et cetera.

You see that the first operation still takes 6 clock cycles, but the second one is finished a mere 1 cycle later.
This idea can be extended to more than two operations: the first operation still takes the same amount of
time as before, but after that one more result will be produced each cycle. Formally, executing n operations
on a s-segment pipeline takes s+ n− 1 cycles, as opposed to ns in the classical case.

Exercise 1.1. Let us compare the speed of a classical floating point unit, and a pipelined one.
If the pipeline has s stages, what is the asymptotic speedup? That is, with T0(n) the
time for n operations on a classical CPU, and Ts(n) the time for n operations on an
s-segment pipeline, what is limn→∞(T0(n)/Ts(n))?
Next you can wonder how long it takes to get close to the asymptotic behaviour. Define
Ss(n) as the speedup achieved on n operations. The quantity n1/2 is defined as the
value of n such that Ss(n) is half the asymptotic speedup. Give an expression for n1/2.

Since a vector processor works on a number of instructions simultaneously, these instructions have to
be independent. The operation ∀i : ai ← bi + ci has independent additions; the operation ∀i : ai+1 ←
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1.2. Modern floating point units

Figure 1.1: Schematic depiction of a pipelined operation

aibi + ci feeds the result of one iteration (ai) to the input of the next (ai+1 = . . .), so the operations are not
independent.

A pipelined processor can speed up operations by a factor of 4, 5, 6 with respect to earlier CPUs. Such
numbers were typical in the 1980s when the first successful vector computers came on the market. These
days, CPUs can have 20-stage pipelines. Does that mean they are incredibly fast? This question is a bit
complicated. Chip designers continue to increase the clock rate, and the pipeline segments can no longer
finish their work in one cycle, so they are further split up. Sometimes there are even segments in which
nothing happens: that time is needed to make sure data can travel to a different part of the chip in time.

The amount of improvement you can get from a pipelined CPU is limited, so in a quest for ever higher
performance several variations on the pipeline design have been tried. For instance, the Cyber 205 had
separate addition and multiplication pipelines, and it was possible to feed one pipe into the next without
data going back to memory first. Operations like ∀i : ai ← bi + c · di were called ‘linked triads’ (because
of the number of paths to memory, one input operand had to be scalar).

Exercise 1.2. Analyse the speedup and n1/2 of linked triads.

Another way to increase performance is to have multiple identical pipes. This design was perfected by the
NEC SX series. With, for instance, 4 pipes, the operation ∀i : ai ← bi + ci would be split module 4, so that
the first pipe operated on indices i = 4 · j, the second on i = 4 · j + 1, et cetera.

Exercise 1.3. Analyze the speedup and n1/2 of a processor with multiple pipelines that operate
in parallel. That is, suppose that there are p independent pipelines, executing the same
instruction, that can each handle a stream of operands.
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1. Sequential Computing

(You may wonder why we are mentioning some fairly old computers here: true pipeline supercomputers
hardly exist anymore. In the US, the Cray X1 was the last of that line, and in Japan only NEC still makes
them. However, the functional units of a CPU these days are pipelined, so the notion is still important.)

Exercise 1.4. The operation
for (i) {

x[i+1] = a[i]*x[i] + b[i];
}

can not be handled by a pipeline because there is a dependency between input of one
iteration of the operation and the output of the previous. However, you can transform
the loop into one that is mathematically equivalent, and potentially more efficient to
compute. Derive an expression that computes x[i+2] from x[i] without involving
x[i+1]. This is known as recursive doubling . Assume you have plenty of temporary
storage. You can now perform the calculation by
• Doing some preliminary calculations;
• computing x[i],x[i+2],x[i+4],..., and from these,
• compute the missing terms x[i+1],x[i+3],....

Analyze the efficiency of this scheme by giving formulas for T0(n) and Ts(n). Can you
think of an argument why the preliminary calculations may be of lesser importance in
some circumstances?

1.2.2 Peak performance

Thanks to pipelining, for modern CPUs there is a simple relation between the clock speed and the peak
performance . Since each floating point unit can produce one result per cycle asymptotically, the peak per-
formance is the clock speed times the number of independent floating point units. The measure of floating
point performance is ‘floating point operations per second’, abbreviated flops . Considering the speed of
computers these days, you will mostly hear floating point performance being expressed in ‘gigaflops’: mul-
tiples of 109 flops.

1.2.3 Pipelining beyond arithmetic: instruction-level parallelism

In fact, nowadays, the whole CPU is pipelined. Not only floating point operations, but any sort of instruction
will be put in the instruction pipeline as soon as possible. Note that this pipeline is no longer limited to iden-
tical instructions: the notion of pipeline is now generalized to any stream of partially executed instructions
that are simultaneously “in flight”.

This concept is also known as Instruction Level Parallelism (ILP), and it is facilitated by various mecha-
nisms:

• multiple-issue: instructions that are independent can be started at the same time;
• pipelining: already mentioned, arithmetic units can deal with multiple operations in various

stages of completion;
• branch prediction and speculative execution: a compiler can ‘guess’ whether a conditional in-

struction will evaluate to true, and execute those instructions accordingly;
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1.2. Modern floating point units

• out-of-order execution: instructions can be rearranged if they are not dependent on each other,
and if the resulting execution will be more efficient;
• prefetching: data can be speculatively requested before any instruction needing it is actually

encountered (this is discussed further in section 1.3.5).

As clock frequency has gone up, the processor pipeline has grown in length to make the segments executable
in less time. You have already seen that longer pipelines have a larger n1/2, so more independent instructions
are needed to make the pipeline run at full efficiency. As the limits to instruction-level parallelism are
reached, making pipelines longer (sometimes called ‘deeper’) no longer pays off. This is generally seen as
the reason that chip designers have moved to multicore architectures as a way of more efficiently using the
transistors on a chip; section 1.4.

There is a second problem with these longer pipelines: if the code comes to a branch point (a conditional or
the test in a loop), it is not clear what the next instruction to execute is. At that point the pipeline can stall.
CPUs have taken to speculative execution for instance, by always assuming that the test will turn out true.
If the code then takes the other branch (this is called a branch misprediction), the pipeline has to be cleared
and restarted. The resulting delay in the execution stream is called the branch penalty.

1.2.4 8-bit, 16-bit, 32-bit, 64-bit

Processors are often characterized in terms of how big a chunk of data they can process as a unit. This can
relate to

• The width of the path between processor and memory: can a 64-bit floating point number be
loaded in one cycle, or does it arrive in pieces at the processor.
• The way memory is addressed: if addresses are limited to 16 bits, only 64,000 bytes can be

identified. Early PCs had a complicated scheme with segments to get around this limitation: an
address was specified with a segment number and an offset inside the segment.
• The number of bits in a register, in particular the size of the integer registers which manipulate

data address; see the previous point. (Floating point register are often larger, for instance 80 bits
in the x86 architecture.) This also corresponds to the size of a chunk of data that a processor can
operate on simultaneously.
• The size of a floating point number. If the arithmetic unit of a CPU is designed to multiply 8-

byte numbers efficiently (‘double precision’; see section 3.2) then numbers half that size (‘single
precision’) can sometimes be processed at higher efficiency, and for larger numbers (‘quadruple
precision’) some complicated scheme is needed. For instance, a quad precision number could be
emulated by two double precision numbers with a fixed difference between the exponents.

These measurements are not necessarily identical. For instance, the original Pentium processor had 64-bit
data busses, but a 32-bit processor. On the other hand, the Motorola 68000 processor (of the original Apple
Macintosh) had a 32-bit CPU, but 16-bit data busses.

The first Intel microprocessor, the 4004, was a 4-bit processor in the sense that it processed 4 bit chunks.
These days, 64 bit processors are becoming the norm.
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1. Sequential Computing

1.3 Memory Hierarchies

We will now refine the picture of the Von Neuman architecture, in which data is loaded immediately from
memory to the processors, where it is operated on. This picture is unrealistic because of the so-called
memory wall : the memory is too slow to load data into the process at the rate the processor can absorb
it. Specifically, a single load can take 1000 cycles, while a processor can perform several operations per
cycle. (After this long wait for a load, the next load can come faster, but still too slow for the processor.
This matter of wait time versus throughput will be addressed below in section 1.3.2.)

In reality, there will be various memory levels in between the floating point unit and the main memory:
the registers and the caches, together called the memory hierarchy . These try to alleviate the memory wall
problem by making recently used data available quicker than it would be from main memory. Of course,
this presupposes that the algorithm and its implementation allow for data to be used multiple times. Such
questions of data reuse will be discussed in more detail below.

Both registers and caches are faster to a degree than main memory; unfortunately, the faster the memory
on a certain level, the smaller it will be. This leads to interesting programming problems, which we will
discuss later in this chapter, and particularly section 1.6.

We will now discuss the various components of the memory hierarchy and the theoretical concepts needed
to analyze their behaviour.

1.3.1 Busses

The wires that move data around in a computer, from memory to cpu or to a disc controller or screen, are
called busses . The most important one for us is the Front-Side Bus (FSB) which connects the processor
to memory. In one popular architecture, this is called the ‘north bridge’, as opposed to the ‘south bridge’
which connects to external devices, with the exception of the graphics controller.

The bus is typically slower than the processor, operating with clock frequencies slightly in excess of 1GHz,
which is a fraction of the CPU clock frequency. This is one reason that caches are needed; the fact that a
processors can consume many data items per clock tick contributes to this. Apart from the frequency, the
bandwidth of a bus is also determined by the number of bits that can be moved per clock cycle. This is
typically 64 or 128 in current architectures. We will now discuss this in some more detail.
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1.3. Memory Hierarchies

1.3.2 Latency and Bandwidth

Above, we mentioned in very general terms that accessing data in registers is almost instantaneous, whereas
loading data from memory into the registers, a necessary step before any operation, incurs a substantial
delay. We will now make this story slightly more precise.

There are two important concepts to describe the movement of data: latency and bandwidth . The assump-
tion here is that requesting an item of data incurs an initial delay; if this item was the first in a stream of
data, usually a consecutive range of memory addresses, the remainder of the stream will arrive with no
further delay at a regular amount per time period.

Latency is the delay between the processor issuing a request for a memory item, and the item actually
arriving. We can distinguish between various latencies, such as the transfer from memory to
cache, cache to register, or summarize them all into the latency between memory and processor.
Latency is measured in (nano) seconds, or clock periods.
If a processor executes instructions in the order they are found in the assembly code, then execu-
tion will often stall while data is being fetched from memory; this is also called memory stall .
For this reason, a low latency is very important. In practice, many processors have ‘out-of-order
execution’ of instructions, allowing them to perform other operations while waiting for the re-
quested data. Programmers can take this into account, and code in a way that achieves latency
hiding . Graphics Processing Units (GPUs) (see section 2.9) can switch very quickly between
threads in order to achieve latency hiding.

Bandwidth is the rate at which data arrives at its destination, after the initial latency is overcome. Band-
width is measured in bytes (kilobyes, megabytes, gigabyes) per second or per clock cycle. The
bandwidth between two memory levels is usually the product of the cycle speed of the channel
(the bus speed ) and the bus width : the number of bits that can be sent simultaneously in every
cycle of the bus clock.

The concepts of latency and bandwidth are often combined in a formula for the time that a message takes
from start to finish:

T (n) = α+ βn

where α is the latency and β is the inverse of the bandwidth: the time per byte.

Typically, the further away from the processor one gets, the longer the latency is, and the lower the band-
width. These two factors make it important to program in such a way that, if at all possible, the processor
uses data from cache or register, rather than from main memory. To illustrate that this is a serious matter,
consider a vector addition

for (i)
a[i] = b[i]+c[i]

Each iteration performs one floating point operation, which modern CPUs can do in one clock cycle by
using pipelines. However, each iteration needs two numbers loaded and one written, for a total of 24 bytes4

of memory traffic. Typical memory bandwidth figures (see for instance figure 1.3) are nowhere near 24

4. Actually, a[i] is loaded before it can be written, so there are 4 memory access, with a total of 32 bytes, per iteration.
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1. Sequential Computing

(or 32) bytes per cycle. This means that, without caches, algorithm performance can be bounded by memory
performance. Of course, caches will not speed up every operations, and in fact will have no effect on the
above example. Strategies for programming that lead to significant cache use are discussed in section 1.6.

The concepts of latency and bandwidth will also appear in parallel computers, when we talk about sending
data from one processor to the next.

1.3.3 Registers

Every processor has a small amount of memory that is internal to the processor: the registers, or together
the register file . The registers are what the processor actually operates on: an operation such as

a := b + c

is actually implemented as

• load the value of b from memory into a register,
• load the value of c from memory into another register,
• compute the sum and write that into yet another register, and
• write the sum value back to the memory location of c.

Looking at assembly code (for instance the output of a compiler), you see the explicit load, compute, and
store instructions. Compute instructions such as add or multiply only operate on registers; for instance

addl %eax, %edx

is an instruction to add the content of one register to another. As you see in this sample instruction, registers
are not numbered in memory, but have distinct names that are referred to in the assembly instruction.
Typically, a processor has 16 or 32 floating point registers; the Intel Itanium was exceptional with 128
floating point registers.

Registers have a high bandwidth and low latency because they are part of the processor. You can consider
data movement to and from registers as essentially instantaneous.

In this chapter you will see stressed that moving data from memory is relatively expensive. Therefore, it
would be a simple optimization to leave data in register when possible. For instance, if the above computa-
tion is followed by a statement

a := b + c
d := a + e

the computed value of a could be left in register. This optimization is typically performed as a compiler
optimization: the compiler will simply not generate the instructions for storing and reloading a. We say
that a stays resident in register .

Keeping values in register is often done to avoid recomputing a quantity. For instance, in

t1 = sin(alpha) * x + cos(alpha) * y;
t2 = -cos(alsph) * x + sin(alpha) * y;
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the sine and cosine quantity will probably be kept in register. You can help the compiler by explicitly
introducing temporary quantities:

s = sin(alpha); c = cos(alpha);
t1 = s * x + c * y;
t2 = -c * x + s * y

Of course, there is a limit to how many quantities can be kept in register; trying to keep too many quantities
in register is called register spill and lowers the performance of a code.

Keeping a variable in register is especially important if that variable appears in an inner loop. In the com-
putation

for i=1,length
a[i] = b[i] * c

the quantity c will probably be kept in register by the compiler, but in

for k=1,nvectors
for i=1,length

a[i,k] = b[i,k] * c[k]

it is a good idea to introduce explicitly a temporary variable to hold c[k].

1.3.4 Caches

In between the registers, which contain the immediate input and output data for instructions, and the main
memory where lots of data can reside for a long time, are various levels of cache memory, that have lower
latency and higher bandwidth than main memory and where data are kept for an intermediate amount of
time. Data from memory travels through the caches to wind up in registers. The advantage to having cache
memory is that if a data item is reused shortly after it was first needed, it will still be in cache, and therefore
it can be accessed much faster than if it would have to be brought in from memory.

1.3.4.1 A motivating example

As an example, let’s suppose a variable x is used twice, and its uses are too far apart that it would stay
resident in register:

... = ... x ..... // instruction using x

......... // several instructions not involving x

... = ... x ..... // instruction using x

The assembly code would then be

• load x from memory into register; operate on it;
• do the intervening instructions;
• load x from memory into register; operate on it;
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Figure 1.2: Cache hiearchy in a single-core and dual-core chip

With a cache, the assembly code stays the same, but the actual behaviour of the memory system now
becomes:

• load x from memory into cache, and from cache into register; operate on it;
• do the intervening instructions;
• request x from memory, but since it is still in the cache, load it from the cache into register;

operate on it.

Since loading from cache is faster than loading from main memoory, the computation will now be faster.
Caches are fairly small, so values can not be kept there indefinitely. We will see the implications of this in
the following discussion.

There is an important difference between cache memory and registers: while data is moved into register by
explicit assembly instructions, the move from main memory to cache is entirely done by hardware. Thus
cache use and reuse is outside of direct programmer control. Later, especially in sections 1.5.2 and 1.6,
you will see how it is possible to influence cache use indirectly.

1.3.4.2 Cache levels, speed and size

The caches are called ‘level 1’ and ‘level 2’ (or, for short, L1 and L2) cache; some processors can have an
L3 cache. The L1 and L2 caches are part of the die , the processor chip, although for the L2 cache that is
a recent development; the L3 cache is off-chip. The L1 cache is small, typically around 16Kbyte. Level 2
(and, when present, level 3) cache is more plentiful, up to several megabytes, but it is also slower. Unlike
main memory, which is expandable, caches are fixed in size. If a version of a processor chip exists with a
larger cache, it is usually considerably more expensive. In multicore chips, the cores typically have some
private cache, while there is also shared cache on the processor chip.
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Figure 1.3: Memory hierarchy of an AMD Xeon, characterized by speed and size.

Data needed in some operation gets copied into the various caches on its way to the processor. If, some
instructions later, a data item is needed again, it is first searched for in the L1 cache; if it is not found there,
it is searched for in the L2 cache; if it is not found there, it is loaded from main memory. Finding data in
cache is called a cache hit , and not finding it a cache miss .

Figure 1.3 illustrates the basic facts of caches, in this case for the AMD Opteron chip: the closer caches are
to the floating point units, the faster, but also the smaller they are. Some points about this figure.

• Loading data from registers is so fast that it does not constitute a limitation on algorithm exe-
cution speed. On the other hand, there are few registers. The Opteron5 has 16 general purpose
registers, 8 media and floating point registers, and 16 SIMD registers.
• The L1 cache is small, but sustains a bandwidth of 32 bytes, that is 4 double precision number,

per cycle. This is enough to load two operands each for two operations, but note that the Opteron
can actually perform 4 operations per cycle. Thus, to achieve peak speed, certain operands need
to stay in register. The latency from L1 cache is around 3 cycles.
• The bandwidth from L2 and L3 cache is not documented and hard to measure due to cache

policies (see below). Latencies are around 15 cycles for L2 and 50 for L3.
• Main memory access has a latency of more than 100 cycles, and a bandwidth of 4.5 bytes per cy-

cle, which is about 1/7th of the L1 bandwidth. However, this bandwidth is shared by the 4 cores
of the opteron chip, so effectively the bandwidth is a quarter of this number. In a machine like
Ranger, which has 4 chips per node, some bandwidth is spent on maintaining cache coherence
(see section 1.4) reducing the bandwidth for each chip again by half.

On level 1, there are separate caches for instructions and data; the L2 and L3 cache contain both data and
instructions.

You see that the larger caches are increasingly unable to supply data to the processors fast enough. For this

5. Specifically the server chip used in the Ranger supercomputer; desktop versions may have different specifications.
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reason it is necessary to code in such a way that data is kept as much as possible in the highest cache level
possible. We will discuss this issue in detail in the rest of this chapter.

Exercise 1.5. The L1 cache is smaller than the L2 cache, and if there is an L3, the L2 is smaller
than the L3. Give a practical and a theoretical reason why this is so.

1.3.4.3 Reuse is the name of the game

The presence of one or more caches is not immediately a guarantee for high performance: this largely
depends on the memory access pattern of the code, and how well this exploits the caches. The first time
that an item is referenced, it is copied from memory into cache, and through to the processor registers. The
latency and bandwidth for this are not mitigated in any way by the presence of a cache. When the same item
is referenced a second time, it may be found in cache, at a considerably reduced cost in terms of latency
and bandwidth: caches have shorter latency and higher bandwidth than main memory.

We conclude that, first, an algorithm has to have an opportunity for data reuse. If every data item is used
only once (as in addition of two vectors), there can be no reuse, and the presence of caches is largely
irrelevant. A code will only benefit from the increased bandwidth and reduced latency of a cache if items
in cache are referenced more than once; see section 1.5.1 for a detailed discussion.. An example would be
the matrix-vector multiplication y = Ax where each element of x is used in n operations, where n is the
matrix dimension.

Secondly, an algorithm may theoretically have an opportunity for reuse, but it needs to be coded in such
a way that the reuse is actually exposed. We will address these points in section 1.5.2. This second point
especially is not trivial.

Some problems are small enough that they fit completely in cache, at least in the L3 cache. This is something
to watch out for when benchmarking , since it gives a too rosy picture of processor performance.

1.3.4.4 Replacement policies

Data in cache and registers is placed there by the system, outside of programmer control. Likewise, the
system decides when to overwrite data in the cache or in registers if it is not referenced in a while, and as
other data needs to be placed there. Below, we will go into detail on how caches do this, but as a general
principle, a Least Recently Used (LRU) cache replacement policy is used: if a cache is full and new data
needs to be placed into it, the data that was least recently used is flushed , meaning that it is overwritten
with the new item, and therefore no longer accessible. LRU is by far the most common replacement policy;
other possibilities are FIFO (first in first out) or random replacement.

Exercise 1.6. Sketch a simple scenario, and give some (pseudo) code, to argue that LRU is
preferable over FIFO as a replacement strategy.

1.3.4.5 Cache lines

Data movement between memory and cache, or between caches, is not done in single bytes, or even words.
Instead, the smallest unit of data moved is called a cache line, sometimes called a cache block . A typical
cache line is 64 or 128 bytes long, which in the context of scientific computing implies 8 or 16 double
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precision floating point numbers. The cache line size for data moved into L2 cache can be larger than for
data moved into L1 cache.

It is important to acknowledge the existence of cache lines in coding, since any memory access costs the
transfer of several words (see section 1.6.4 for some examples). An efficient program then tries to use the
other items on the cache line, since access to them is effectively free. This phenomenon is visible in code
that accesses arrays by stride: elements are read or written at regular intervals.

Figure 1.4: Accessing 4 elements at stride 1

Stride 1 corresponds to sequential access of an array:
for (i=0; i<N; i++)
... = ... x[i] ...

Let us use as illustration a case with 4 words per cache-
line. Requesting the first elements loads the whole
cacheline that contains it into cache. A request for the
2nd, 3rd, and 4th element can then be satisfied from
cache, meaning with high bandwidth and low latency.

Figure 1.5: Accessing 4 elements at stride 3

A larger stride
for (i=0; i<N; i+=stride)
... = ... x[i] ...

implies that in every cache line only certain elements
are used. We illustrate that with stride 3: requesting the
first elements loads a cacheline, and this cacheline also
contains the second element. However, the third element is on the next cacheline, so loading this incurs
the latency and bandwidth of main memory. The same holds for the fourth element. Loading four elements
now needed loading three cache lines instead of one, meaning that two-thirds of the available bandwidth
has been wasted. (This second case would also incur three times the latency of the first, if it weren’t for a
hardware mechanism that notices the regular access patterns, and pre-emtively loads further cachelines; see
section 1.3.5.)

Some applications naturally lead to strides greater than 1, for instance, accessing only the real parts of
an array of complex numbers (for some remarks on the practical realization of complex numbers see sec-
tion 3.4.4). Also, methods that use recursive doubling often have a code structure that exhibits non-unit
strides

for (i=0; i<N/2; i++)
x[i] = y[2*i];

In this discussion of cachelines, we have implicitly assumed the beginning of a cacheline is also the begin-
ning of a word, be that an integer or a floating point number. This need not be true: an 8-byte floating point
number can be placed straddling the boundary between two cachelines. You can image that this is not good
for performance. To force allocated space to be aligned with a cacheline boundary aligment , you can do
the following:
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double *a;
a = malloc( /* some number of bytes */ +8 );
if ( (int)a % 8 != 0 ) { /* it is not 8-byte aligned */

a += 1; /* advance address by 8 bytes, then */
/* either: */
a = ( (a>>3) <<3 );
/* or: */
a = 8 * ( ( (int)a )/8 );

}

This code allocates a block of memory, and, if necessary, shfits it right to have a starting address that is a
multiple of 8. This sort of alignment can sometimes be forced by compiler options.

1.3.4.6 Cache mapping

Caches get faster, but also smaller, the closer to the floating point units they get, yet even the largest cache is
considerably smaller than the main memory size. We already noted that this has implications for the cache
replacement strategy. Another issue we need to address in this context is that of cache mapping , which is
the question of ‘if an item is placed in cache, where does it get placed’. This problem is generally addressed
by mapping the (main memory) address of the item to an address in cache, leading to the question ‘what if
two items get mapped to the same address’.

1.3.4.7 Direct mapped caches

The simplest cache mapping strategy is direct mapping . Suppose that memory addresses are 32 bits long,
so that they can address 4G bytes6; suppose further that the cache has 8K words, that is, 64K bytes, needing
16 bits to address. Direct mapping then takes from each memory address the last (‘least significant’) 16 bits,
and uses these as the address of the data item in cache.

Direct mapping is very efficient because of its address calculations can be performed very quickly, leading
to low latency, but it has a problem in practical applications. If two items are addressed that are separated by
8K words, they will be mapped to the same cache location, which will make certain calculations inefficient.
Example:

double A[3][8192];
for (i=0; i<512; i++)
a[2][i] = ( a[0][i]+a[1][i] )/2.;

or in Fortran:
real*8 A(8192,3);
do i=1,512

a(i,3) = ( a(i,1)+a(i,2) )/2

6. We implicitly use the convention that K,M,G suffixes refer to powers of 2 rather than 10: 1K=1024, 1M=1,048,576,
1G=4,294,967,296.
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end do

Here, the locations of a[0][i], a[1][i], and a[2][i] (or a(i,1),a(i,2),a(i,3)) are 8K
from each other for every i, so the last 16 bits of their addresses will be the same, and hence they will be
mapped to the same location in cache. The execution of the loop will now go as follows:

• The data at a[0][0] is brought into cache and register. This engenders a certain amount of
latency. Together with this element, a whole cache line is transferred.
• The data at a[1][0] is brought into cache (and register, as we will not remark anymore from

now on), together with its whole cache line, at cost of some latency. Since this cache line is
mapped to the same location as the first, the first cache line is overwritten.
• In order to write the output, the cache line containing a[2][0] is brought into memory. This is

again mapped to the same location, causing flushing of the cache line just loaded for a[1][0].
• In the next iteration, a[0][1] is needed, which is on the same cache line as a[0][0]. How-

ever, this cache line has been flushed, so it needs to be brought in anew from main memory or a
deeper cache level. In doing so, it overwrites the cache line that holds a[2][0].
• A similar story hold for a[1][1]: it is on the cache line of a[1][0], which unfortunately has

been overwritten in the previous step.
If a cache line holds four words, we see that each four iterations of the loop involve eight transfers of
elements of a, where two would have sufficed, if it were not for the cache conflicts.
Exercise 1.7. In the example of direct mapped caches, mapping from memory to cache was

done by using the final 16 bits of a 32 bit memory address as cache address. Show that
the problems in this example go away if the mapping is done by using the first (‘most
significant’) 16 bits as the cache address. Why is this not a good solution in general?

1.3.4.8 Associative caches

The problem of cache conflicts, outlined in the previous section, would be solved if any data item could go
to any cache location. In that case there would be no conflicts, other than the cache filling up, in which case
a cache replacement policy (section 1.3.4.4) would flush data to make room for the incoming item. Such a
cache is called fully associative , and while it seems optimal, it is also very costly to build, and much slower
in use than a direct mapped cache.

For this reason, the most common solution is to have a k-way associative cache , where k is at least two.
In this case, a data item can go to any of k cache locations. Code would have to have a k + 1-way conflict
before data would be flushed prematurely as in the above example. In that example, a value of k = 2 would
suffice, but in practice higher values are often encountered.

For instance, the Intel Woodcrest processor has
• an L1 cache of 32K bytes, that is 8-way set associative with a 64 byte cache line size;
• an L2 cache of 4M bytes, that is 8-way set associative with a 64 byte cache line size.

On the other hand, the AMD Barcelona chip has 2-way associativity for the L1 cache, and 8-way for the L2.
A higher associativity (‘way-ness’) is obviously desirable, but makes a processor slower, since determining
whether an address is already in cache becomes more complicated. For this reason, the associativity of the
L1 cache, where speed is of the greatest importance, is typically lower than of the L2.
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Exercise 1.8. Write a small cache simulator in your favourite language. Assume a k-way asso-
ciative cache of 32 entries and an architecture with 16 bit addresses. Run the following
experiment for k = 1, 2, 4, . . .:

1. Let k be the associativity of the simulated cache.
2. Write the translation from 16 bit address to 32/k bit cache address.
3. Generate 32 random machine addresses, and simulate storing them in cache.

Since the cache has 32 entries, optimally the 32 addresses can all be stored in cache.
The chance of this actually happening is small, and often the data of one address will be
evicted from the cache (meaning that it is overwritten) when another address conflicts
with it. Record how many addresses, out of 32, are actually stored in the cache at
the end of the simulation. Do step 3 100 times, and plot the results; give median and
average value, and the standard deviation. Observe that increasing the associativity
improves the number of addresses stored. What is the limit behaviour? (For bonus
points, do a formal statistical analysis.)

1.3.5 Prefetch streams

In the traditional von Neumann model (section 1.1), each instruction contains the location of its operands,
so a CPU implementing this model would make a separate request for each new operand. In practice, often
subsequent data items are adjacent or regularly spaced in memory. The memory system can try to detect
such data patterns by looking at cache miss points, and request a prefetch data stream .

In its simplest form, the CPU will detect that consecutive loads come from two consecutive cache lines, and
automatically issue a request for the next following cache line. This process can be repeated or extended
if the code makes an actual request for that third cache line. Since these cache lines are now brought from
memory well before they are needed, prefetch has the possibility of eliminating the latency for all but the
first couple of data items.

The concept of cache miss now needs to be revisited a little. From a performance point of view we are only
interested in stalls on cache misses, that is, the case where the computation has to wait for the data to be
brought in. Data that is not in cache, but can be brought in while other instructions are still being processed,
is not a problem. If an ‘L1 miss’ is understood to be only a ‘stall on miss’, then the term ‘L1 cache refill’ is
used to describe all cacheline loads, whether the processor is stalling on them or not.

Since prefetch is controlled by the hardware, it is also described as hardware prefetch . Prefetch streams
can sometimes be controlled from software, though often it takes assembly code to do so. On the IBM
BlueGene Q prefetch can be activated by program directives.

1.3.6 Concurrency and memory transfer

In the discussion about the memory hierarchy we made the point that memory is slower than the processor.
As if that is not bad enough, it is not even trivial to exploit all the bandwidth that memory offers. In other
words, if you don’t program carefully you will get even less performance than you would expect based on
the available bandwidth. Let’s analyze this.
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The memory system typically has a bandwidth of more than one floating point number per cycle, so you
need to issue that many requests per cycle to utilize the available bandwidth. This would be true even with
zero latency; since there is latency, it takes a while for data to make it from memory and be processed.
Consequently, any data requested based on computations on the first data has to be requested with a delay
at least equal the memory latency.

For full utilization of the bandwidth, at all times a volume of data equal to the bandwidth times the latency
has to be in flight. Since these data have to be independent, we get a statement of Little’s law [93]:

Concurrency = Bandwidth× Latency.

This is illustrated in figure 1.6. The problem with maintaining this concurrency is not that a program does

Figure 1.6: Illustration of Little’s Law that states how much independent data needs to be in flight

not have it; rather, the program is to get the compiler and runtime system recognize it. For instance, if a
loop traverses a long array, the compiler will not issue a large number of memory requests. The prefetch
mechanism (section 1.3.5) will issue some memory requests ahead of time, but typically not enough. Thus,
in order to use the available bandwidth, multiple streams of data need to be under way simultaneously.
Therefore, we can also phrase Little’s law as

Effectivethroughput = Expressedconcurrency/Latency.

1.3.7 Memory banks

Above, we discussed issues relating to bandwdith. You saw that memory, and to a lesser extent caches, have
a bandwidth that is less than what a processor can maximally absorb. The situation is actually even worse
than the above discussion made it seem. For this reason, memory is often divided into memory banks that
are interleaved: with four memory banks, words 0, 4, 8, . . . are in bank 0, words 1, 5, 9, . . . are in bank 1, et
cetera.

Suppose we now access memory sequentially, then such 4-way interleaved memory can sustain four times
the bandwidth of a single memory bank. Unfortunately, accessing by stride 2 will halve the bandwidth,
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and larger strides are even worse. In practice the number of memory banks will be higher, so that strided
memory access with small strides will still have the full advertised bandwidth.

This concept of banks can also apply to caches. For instance, the cache lines in the L1 cache of the
AMDAMD Barcelona chip are 16 words long, divided into two interleaved banks of 8 words. This means
that sequential access to the elements of a cache line is efficient, but strided access suffers from a deterio-
rated performance.

1.3.8 TLB and virtual memory

All of a program’s data may not be in memory simultaneously. This can happen for a number of reasons:

• The computer serves multiple users, so the memory is not dedicated to any one user;
• The computer is running multiple programs, which together need more than the physically avail-

able memory;
• One single program can use more data than the available memory.

For this reason, computers use Virtual memory: if more memory is needed than is available, certain blocks
of memory are written to disc. In effect, the disc acts as an extension of the real memory. This means that
a block of data can be anywhere in memory, and in fact, if it is swapped in and out, it can be in different
locations at different times. Swapping does not act on individual memory locations, but rather on memory
pages: contiguous blocks of memory, from a few kilobytes to megabytes in size. (In an earlier generation
of operating systems, moving memory to disc was a programmer’s responsibility. Pages that would replace
each other were called overlays .)

For this reason, we need a translation mechanism from the memory addresses that the program uses to the
actual addresses in memory, and this translation has to be dynamic. A program has a ‘logical data space’
(typically starting from address zero) of the addresses used in the compiled code, and this needs to be
translated during program execution to actual memory addresses. For this reason, there is a page table that
specifies which memory pages contain which logical pages.

However, address translation by lookup in this table is slow, so CPUs have a Translation Look-aside Buffer
(TLB). The TLB is a cache of frequently used Page Table Entries: it provides fast address translation for a
number of pages. If a program needs a memory location, the TLB is consulted to see whether this location
is in fact on a page that is remembered in the TLB. If this is the case, the logical address is translated to a
physical one; this is a very fast process. The case where the page is not remembered in the TLB is called a
TLB miss , and the page lookup table is then consulted, if necessary bringing the needed page into memory.
The TLB is (sometimes fully) associative (section 1.3.4.8), using an LRU policy (section 1.3.4.4).

A typical TLB has between 64 and 512 entries. If a program accesses data sequentially, it will typically
alternate between just a few pages, and there will be no TLB misses. On the other hand, a program that
access many random memory locations can experience a slowdown because of such misses.

Section 1.6.5 and appendix D.5 discuss some simple code illustrating the behaviour of the TLB.

[There are some complications to this story. For instance, there is usually more than one TLB. The first
one is associated with the L2 cache, the second one with the L1. In the AMD Opteron , the L1 TLB has 48
entries, and is is fully (48-way) associative, while the L2 TLB has 512 entries, but is only 4-way associative.
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This means that there can actually be TLB conflicts. In the discussion above, we have only talked about the
L2 TLB. The reason that this can be associated with the L2 cache, rather than with main memory, is that
the translation from memory to L2 cache is deterministic.]

1.4 Multicore architectures

In recent years, the limits of performance have been reached for the traditional processor chip design.
• Clock frequency can not increased further, since it increases energy consumption, heating the

chips too much; see section 1.7.
• It is not possible to extract more Instruction Level Parallelism (ILP) from codes, either because

of compiler limitations, because of the limited amount of intrinsically available parallelism, or
because branch prediction makes it impossible (see section 1.2.3).

One of the ways of getting a higher utilization out of a single processor chip is then to move from a
strategy of further sophistication of the single processor, to a division of the chip into multiple processing
‘cores’7. The separate cores can work on unrelated tasks, or, by introducing what is in effect data parallelism
(section 2.2.1), collaborate on a common task at a higher overall efficiency.

This solves the above two problems:
• Two cores at a lower frequency can have the same throughput as a single processor at a higher

frequency; hence, multiple cores are more energy-efficient.
• Discovered ILP is now replaced by explicit task parallelism, managed by the programmer.

While the first multicore CPUs were simply two processors on the same die, later generations incorporated
L3 or L2 caches that were shared between the two processor cores. This design makes it efficient for the
cores to work jointly on the same problem. The cores would still have their own L1 cache, and these separate
caches lead to a cache coherence problem; see section 1.4.1 below.

We note that the term ‘processor’ is now ambiguous: it can refer to either the chip, or the processor core on
the chip. For this reason, we mostly talk about a socket for the whole chip and core for the part containing
one arithmetic and logic unit and having its own registers. Currently, CPUs with 4 or 6 cores are common,
even in laptops, and Intel and AMD are marketing 12-core chips. The core count is likely to go up in
the future: Intel has already shown an 80-core prototype that is developed into the 48 core ‘Single-chip
Cloud Computer’, illustrated in fig 1.7. This chip has a structure with 24 dual-core ‘tiles’ that are connected
through a 2D mesh network. Only certain tiles are connected to a memory controller, others can not reach
memory other than through the on-chip network.

With this mix of shared and private caches, the programming model for multicore processors is becoming
a hybrid between shared and distributed memory:

Core The cores have their own private L1 cache, which is a sort of distributed memory. The above
mentioned Intel 80-core prototype has the cores communicating in a distributed memory fashion.

Socket On one socket, there is often a shared L2 cache, which is shared memory for the cores.

7. Another solution is Intel’s Hyperthreading , which lets a processor mix the instructions of several instruction streams. The
benefits of this are strongly dependent on the individual case. However, this same mechanism is exploited with great success in
GPUs; see section 2.9.
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Figure 1.7: Structure of the Intel Single-chip Cloud Computer chip

Node There can be multiple sockets on a single ‘node’ or motherboard, accessing the same shared
memory.

Network Distributed memory programming (see the next chapter) is needed to let nodes communicate.

Historically, multicore architectures have a precedent in multiprocessor shared memory designs (section 2.3.1)
such as the Sequent Symmetry and the Alliant FX/8 . Conceptually the program model is the same, but the
technology now allows to shrink a multiprocessor board to a multicore chip.

1.4.1 Cache coherence

With parallel processing, there is the potential for a conflict if more than one processor has a copy of the
same data item. The problem of ensuring that all cached data are an accurate copy of main memory, is
referred to as cache coherence: if one processor alters its copy, the other copy needs to be updated.

In distributed memory architectures, a dataset is usually partitioned disjointly over the processors, so con-
flicting copies of data can only arise with knowledge of the user, and it is up to the user to deal with the
problem. The case of shared memory is more subtle: since processes access the same main memory, it
would seem that conflicts are in fact impossible. However, processor typically have some private cache,
which contains copies of data from memory, so conflicting copies can occur. This situation arises in partic-
ular in multicore designs.

Suppose that two cores have a copy of the same data item in their (private) L1 cache, and one modifies its
copy. Now the other has cached data that is no longer an accurate copy of its counterpart, so it needs to
reload that item. This is known as maintaining cache coherence, and it is done on a very low level of the
processor, with no programmer involvement needed. (This makes updating memory locations an atomic
operation; more about this in section 2.5.1.2.) However, it will slow down the computation, and it wastes
bandwidth to the core that could otherwise be used for loading or storing operands.

The state of a cache line with respect to a data item in main memory is usually described as one of the
following:

Scratch: the cache line does not contain a copy of the item;
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Valid: the cache line is a correct copy of data in main memory;
Reserved: the cache line is the only copy of that piece of data;

Dirty: the cache line has been modified, but not yet written back to main memory;
Invalid: the data on the cache line is also present on other processors (it is not reserved ), and another

process has modified its copy of the data.
Exercise 1.9. Consider two processors, a data item x in memory, and cachelines x1,x2 in the

private caches of the two processors to which x is mapped. Describe the transitions
between the states of x1 and x2 under reads and writes of x on the two processors. Also
indicate which actions cause memory bandwidth to be used. (This list of transitions is
a Finite State Automaton (FSA); see section A.6.)

The cache coherence problem can even appear if the cores access different items. For instance, a declaration
double x,y;

will likely allocate x and y next to each other in memory, so there is a high chance they fall on the same
cacheline. Now if one core updates x and the other y, this cacheline will continuously be moved between
the cores. This is called false sharing .

1.4.2 Computations on multicore chips

Multicore chips offer a form of shared memory parallelism and can be programmed as such, for instance
using OpenMP (section 2.5.2). We will go discuss in some detail the scheduling of linear algebra operations
on multicore chips; section 6.10.

1.5 Locality and data reuse

By now it should be clear that there is more to the execution of an algorithm than counting the operations:
the data transfer involved is important, and can in fact dominate the cost. Since we have caches and registers,
the amount of data transfer can be minimized by programming in such a way that data stays as close to the
processor as possible. Partly this is a matter of programming cleverly, but we can also look at the theoretical
question: does the algorithm allow for it to begin with.

It turns out that in scientific computing there is often data often interacts mostly with data that is close by
in some sense, which will lead to data locality; section 1.5.2. Often such locality derives from the nature of
the application, as in the case of the Partial Diffential Equations (PDEs) you will see in chapter 4. In other
cases such as molecular dynamics (chapter 7) there is no such intrinsic locality because all particles interact
with all others, and considerable programming cleverness is needed to get high performance.

1.5.1 Data reuse

In this section we will take a look at data reuse: are data items involved in a calculation used more than
once, so that caches and registers can be exploited? What precisely is the ratio between the number of
operations and the amount of data transferred.

We define the data reuse ratio of an algorithm as follows:
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If n is the number of data items that an algorithm operates on, and f(n) the number of
operations it takes, then the reuse ratio is f(n)/n.

Consider for example the vector addition

∀i : xi ← xi + yi.

This involves three memory accesses (two loads and one store) and one operation per iteration, giving a
data reuse of 1/3. The axpy (for ‘a times x plus y) operation

∀i : xi ← xi + a · yi

has two operations, but the same number of memory access since the one-time load of a is amortized. It is
therefore more efficient than the simple addition, with a reuse of 2/3.

The inner product calculation

∀i : s← s+ xi · yi

is similar in structure to the axpy operation, involving one multiplication and addition per iteration, on two
vectors and one scalar. However, now there are only two load operations, since s can be kept in register and
only written back to memory at the end of the loop. The reuse here is 1.

Next, consider the matrix-matrix product:

∀i,j : cij =
∑
k

aikbkj .

This involves 3n2 data items and 2n3 operations, which is of a higher order. The data reuse is O(n), mean-
ing that every data item will be used O(n) times. This has the implication that, with suitable programming,
this operation has the potential of overcoming the bandwidth/clock speed gap by keeping data in fast cache
memory.

Exercise 1.10. The matrix-matrix product, considered as operation, clearly has data reuse by
the above definition. Argue that this reuse is not trivially attained by a simple imple-
mentation. What determines whether the naive implementation has reuse of data that
is in cache?

[In this discussion we were only concerned with the number of operations of a given implementation, not
the mathematical operation. For instance, there are ways or performing the matrix-matrix multiplication
and Gaussian elimination algorithms in fewer than O(n3) operations [123, 108]. However, this requires a
different implementation, which has its own analysis in terms of memory access and reuse.]

The matrix-matrix product is the heart of the ‘LINPACK benchmark’ [33]; see section 2.10.5. The bench-
mark may give an optimistic view of the performance of a computer: the matrix-matrix product is an oper-
ation that has considerable data reuse, so it is relatively insensitive to memory bandwidth and, for parallel
computers, properties of the network. Typically, computers will attain 60–90% of their peak performance
on the Linpack benchmark. Other benchmark may give considerably lower figures.
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1.5.2 Locality

Since using data in cache is cheaper than getting data from main memory, a programmer obviously wants to
code in such a way that data in cache is reused. While placing data in cache is not under explicit programmer
control, even from assembly language, in most CPUs8, it is still possible, knowing the behaviour of the
caches, to know what data is in cache, and to some extent to control it.

The two crucial concepts here are temporal locality and spatial locality. Temporal locality is the easiest to
explain: this describes the use of a data element within a short time of its last use. Since most caches have
a LRU replacement policy (section 1.3.4.4), if in between the two references less data has been referenced
than the cache size, the element will still be in cache and therefore be quickly accessible. With other
replacement policies, such as random replacement, this guarantee can not be made.

1.5.2.1 Temporal locality

As an example of temporal locality, consider the repeated use of a long vector:
for (loop=0; loop<10; loop++) {
for (i=0; i<N; i++) {

... = ... x[i] ...
}

}

Each element of x will be used 10 times, but if the vector (plus other data accessed) exceeds the cache
size, each element will be flushed before its next use. Therefore, the use of x[i] does not exhibit temporal
locality: subsequent uses are spaced too far apart in time for it to remain in cache.

If the structure of the computation allows us to exchange the loops:
for (i=0; i<N; i++) {
for (loop=0; loop<10; loop++) {

... = ... x[i] ...
}

}

the elements of x are now repeatedly reused, and are therefore more likely to remain in the cache. This
rearranged code displays better temporal locality in its use of x[i].

1.5.2.2 Spatial locality

The concept of spatial locality is slightly more involved. A program is said to exhibit spatial locality if it
references memory that is ‘close’ to memory it already referenced. In the classical von Neumann architec-
ture with only a processor and memory, spatial locality should be irrelevant, since one address in memory
can be as quickly retrieved as any other. However, in a modern CPU with caches, the story is different.
Above, you have seen two examples of spatial locality:

8. Low level memory access can ben controlled by the programmer in the Cell processor and in some GPUs.
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• Since data is moved in cache lines rather than individual words or bytes, there is a great benefit
to coding in such a manner that all elements of the cacheline are used. In the loop

for (i=0; i<N*s; i+=s) {
... x[i] ...

}

spatial locality is a decreasing function of the stride s.
Let S be the cacheline size, then as s ranges from 1 . . . S, the number of elements used of each
cacheline goes down from S to 1. Relatively speaking, this increases the cost of memory traffic
in the loop: if s = 1, we load 1/S cachelines per element; if s = S, we load one cacheline for
each element. This effect is demonstrated in section 1.6.4.
• A second example of spatial locality worth observing involves the TLB (section 1.3.8). If a

program references elements that are close together, they are likely on the same memory page,
and address translation through the TLB will be fast. On the other hand, if a program references
many widely disparate elements, it will also be referencing many different pages. The resulting
TLB misses are very costly; see also section 1.6.5.

1.5.2.3 Examples of locality

Exercise 1.11. Consider the following pseudocode of an algorithm for summing n numbers
x[i] where n is a power of 2:

for s=2,4,8,...,n/2,n:
for i=0 to n-1 with steps s:

x[i] = x[i] + x[i+s/2]
sum = x[0]

Analyze the spatial and temporal locality of this algorithm, and contrast it with the
standard algorithm

sum = 0
for i=0,1,2,...,n-1

sum = sum + x[i]

Let us examine locality issues for a realistic example. The matrix-matrix multiplication C ← A · B can
be computed in several ways. We compare two implementations, assuming that all matrices are stored by
rows, and that the cache size is insufficient to store a whole row or column.

for i=1..n
for j=1..n

for k=1..n
c[i,j] += a[i,k]*b[k,j]

for i=1..n
for k=1..n

for j=1..n
c[i,j] += a[i,k]*b[k,j]

These implementations are illustrated in figure 1.8 The first implemenation constructs the (i, j) element
of C by the inner product of a row of A and a column of B, in the second a row of C is updated by scaling
rows of B by elements of A.
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Figure 1.8: Two loop orderings for the C ← A ·B matrix-matrix product

Our first observation is that both implementations indeed compute C ← C +A ·B, and that they both take
roughly 2n3 operations. However, their memory behaviour, including spatial and temporal locality is very
different.

c[i,j] In the first implementation, c[i,j] is invariant in the inner iteration, which constitutes temporal
locality, so it can be kept in register. As a result, each element of C will be loaded and stored
only once.
In the second implementation, c[i,j] will be loaded and stored in each inner iteration. In
particular, this implies that there are now n3 store operations, a factor of n more than the first
implementation.

a[i,k] In both implementations, a[i,k] elements are accessed by rows, so there is good spatial lo-
cality, as each loaded cacheline will be used entirely. In the second implementation, a[i,k] is
invariant in the inner loop, which constitutes temporal locality; it can be kept in register. As a
result, in the second case A will be loaded only once, as opposed to n times in the first case.

b[k,j] The two implementations differ greatly in how they access the matrix B. First of all, b[k,j] is
never invariant so it will not be kept in register, and B engenders n3 memory loads in both cases.
However, the access patterns differ.
In second case, b[k,j] is access by rows so there is good spatial locality: cachelines will be
fully utilized after they are loaded.
In the first implementation, b[k,j] is accessed by columns. Because of the row storage of the
matrices, a cacheline contains a part of a row, so for each cacheline loaded, only one element is
used in the columnwise traversal. This means that the first implementation has more loads for B
by a factor of the cacheline length. There may also be TLB effects.

Note that we are not making any absolute predictions on code performance for these implementations, or
even relative comparison of their runtimes. Such predictions are very hard to make. However, the above
discussion identifies issues that are relevant for a wide range of classical CPUs.

Exercise 1.12. There are more algorithms for computing the product C ← A ·B. Consider the
following:

for k=1..n:
for i=1..n:

for j=1..n:
c[i,j] += a[i,k]*b[k,j]
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Analyze the memory traffic for the matrix C, and show that it is worse than the two
algorithms given above.

1.5.2.4 Core locality

The above concepts of spatial and temporal locality were mostly properties of programs, although hardware
properties such as cacheline length and cache size play a role in analyzing the amount of locality. There is
a third type of locality that is more intimately tied to hardware: core locality.

A code’s execution is said to exhibit core locality if write accesses that are spatially or temporally close are
performed on the same core or processing unit. The issue here is that of cache coherence (section 1.4.1)
where two cores both have a copy of a certain cacheline in their local stores. If they both read from it there
is no problem. However, if one of them writes to it, the coherence protocol will copy the cacheline to the
other core’s local store. This takes up precious memory bandwidth, so it is to be avoided.

Core locality is not just a property of a program, but also to a large extent of how the program is executed
in parallel.

1.6 Programming strategies for high performance

In this section we will look at how different ways of programming can influence the performance of a
code. This will only be an introduction to the topic; for further discussion see the book by Goedeker and
Hoisie [53].

The full listings of the codes and explanations of the data graphed here can be found in appendix D. All
performance results were obtained on the AMD Opteron processors of the Ranger computer [113].

1.6.1 Peak performance

For marketing purposes, it may be desirable to define a ‘top speed’ for a CPU. Since a pipelined floating
point unit can yield one result per cycle asymptotically, you would calculate the theoretical peak perfor-
mance as the product of the clock speed (in ticks per second), number of floating point units, and the
number of cores; see section 1.4. This top speed is unobtainable in practice, and very few codes come even
close to it. The Linpack benchmark is one of the measures how close you can get to it; the parallel version
of this benchmark is reported in the ‘top 500’; see section 2.10.5.

1.6.2 Pipelining

In section 1.2.1 you learned that the floating point units in a modern CPU are pipelined, and that pipelines
require a number of independent operations to function efficiently. The typical pipelineable operation is a
vector addition; an example of an operation that can not be pipelined is the inner product accumulation

for (i=0; i<N; i++)
s += a[i]*b[i]
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The fact that s gets both read and written halts the addition pipeline. One way to fill the floating point
pipeline is to apply loop unrolling:

for (i = 0; i < N/2-1; i ++) {
sum1 += a[2*i] * b[2*i];
sum2 += a[2*i+1] * b[2*i+1];

}

Now there are two independent multiplies in between the accumulations. With a little indexing optimization
this becomes:

for (i = 0; i < N/2-1; i ++) {
sum1 += *(a + 0) * *(b + 0);
sum2 += *(a + 1) * *(b + 1);

a += 2; b += 2;
}

A first observation about this code is that we are implicitly using associativity and commutativity of addi-
tion: while the same quantities are added, they are now in effect added in a different order. As you will see
in chapter 3, in computer arithmetic this is not guaranteed to give the exact same result.

In a further optimization, we disentangle the addition and multiplication part of each instruction. The hope
is that while the accumulation is waiting for the result of the multiplication, the intervening instructions
will keep the processor busy, in effect increasing the number of operations per second.

for (i = 0; i < N/2-1; i ++) {
temp1 = *(a + 0) * *(b + 0);
temp2 = *(a + 1) * *(b + 1);

sum1 += temp1; sum2 += temp2;

a += 2; b += 2;
}

Finally, we realize that the furthest we can move the addition away from the multiplication, is to put it right
in front of the multiplication of the next iteration:

for (i = 0; i < N/2-1; i ++) {
sum1 += temp1;
temp1 = *(a + 0) * *(b + 0);

sum2 += temp2;
temp2 = *(a + 1) * *(b + 1);

a += 2; b += 2;
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}
s = temp1 + temp2;

Of course, we can unroll the operation by more than a factor of two. While we expect an increased perfor-
mance because of the longer sequence of pipelined operations, large unroll factors need large numbers of
registers. Asking for more registers than a CPU has is called register spill , and it will decrease performance.

Another thing to keep in mind is that the total number of operations is unlikely to be divisible by the
unroll factor. This requires cleanup code after the loop to account for the final iterations. Thus, unrolled
code is harder to write than straight code, and people have written tools to perform such source-to-source
transformations automatically.

Cycle times for unrolling the inner product operation up to six times are given in table 1.2. Note that the
timings do not show a monotone behaviour at the unrolling by four. This sort of variation is due to various
memory-related factors.

1 2 3 4 5 6
6794 507 340 359 334 528

Table 1.2: Cycle times for the inner product operation, unrolled up to six times

1.6.3 Cache size

Above, you learned that data from L1 can be moved with lower latency and higher bandwidth than from L2,
and L2 is again faster than L3 or memory. This is easy to demonstrate with code that repeatedly access the
same data:

for (i=0; i<NRUNS; i++)
for (j=0; j<size; j++)

array[j] = 2.3*array[j]+1.2;

If the size parameter allows the array to fit in cache, the operation will be relatively fast. As the size of
the dataset grows, parts of it will evict other parts from the L1 cache, so the speed of the operation will be
determined by the latency and bandwidth of the L2 cache. This can be seen in figure 1.9. The full code is
given in section D.2.

Exercise 1.13. Argue that with a large enough problem and an LRU replacement policy (sec-
tion 1.3.4.4) essentially all data in the L1 will be replaced in every iteration of the outer
loop. Can you write an example code that will let some of the L1 data stay resident?

Often, it is possible to arrange the operations to keep data in L1 cache. For instance, in our example, we
could write

for (i=0; i<NRUNS; i++) {
blockstart = 0;
for (b=0; b<size/l1size; b++)

for (j=0; j<l1size; j++)
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Figure 1.9: Average cycle count per operation as function of the dataset size

array[blockstart+j] = 2.3*array[blockstart+j]+1.2;
}

assuming that the L1 size divides evenly in the dataset size. This strategy is called cache blocking or
blocking for cache reuse .

1.6.4 Cache lines

Since data is moved from memory to cache in consecutive chunks named cachelines (see section 1.3.4.5),
code that does not utilize all data in a cacheline pays a bandwidth penalty. This is born out by a simple code

for (i=0,n=0; i<L1WORDS; i++,n+=stride)
array[n] = 2.3*array[n]+1.2;

Here, a fixed number of operations is performed, but on elements that are at distance stride. As this
stride increases, we expect an increasing runtime, which is born out by the graph in figure 1.10.

The graph also shows a decreasing reuse of cachelines, defined as the number of vector elements divided
by the number of L1 misses (on stall; see section 1.3.5).

The full code is given in section D.3.

1.6.5 TLB

As explained in section 1.3.8, the Translation Look-aside Buffer (TLB) maintains a small list of frequently
used memory pages and their locations; addressing data that are location on one of these pages is much
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Figure 1.10: Run time in kcycles and L1 reuse as a function of stride

faster than data that are not. Consequently, one wants to code in such a way that the number of pages
accessed is kept low.

Consider code for traversing the elements of a two-dimensional array in two different ways.

#define INDEX(i,j,m,n) i+j*m
array = (double*) malloc(m*n*sizeof(double));

/* traversal #1 */
for (j=0; j<n; j++)
for (i=0; i<m; i++)

array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

/* traversal #2 */
for (i=0; i<m; i++)
for (j=0; j<n; j++)

array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

The results (see Appendix D.5 for the source code) are plotted in figures 1.12 and 1.11.

Using m = 1000 means that, on the AMD Opteron which has pages of 512 doubles, we need roughly
two pages for each column. We run this example, plotting the number ‘TLB misses’, that is, the number of
times a page is referenced that is not recorded in the TLB.

1. In the first traversal this is indeed what happens. After we touch an element, and the TLB records
the page it is on, all other elements on that page are used subsequently, so no further TLB
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Figure 1.11: Number of TLB misses per column as function of the number of columns; columnwise traver-
sal of the array.
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Figure 1.12: Number of TLB misses per column as function of the number of columns; rowwise traversal
of the array.
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misses occur. Figure 1.12 shows that, with increasing n, the number of TLB misses per column
is roughly two.

2. In the second traversal, we touch a new page for every element of the first row. Elements of the
second row will be on these pages, so, as long as the number of columns is less than the number
of TLB entries, these pages will still be recorded in the TLB. As the number of columns grows,
the number of TLB increases, and ultimately there will be one TLB miss for each element access.
Figure 1.11 shows that, with a large enough number of columns, the number of TLB misses per
column is equal to the number of elements per column.

1.6.6 Cache associativity

There are many algorithms that work by recursive division of a problem, for instance the Fast Fourier
Transform (FFT) algorithm. As a result, code for such algorithms will often operate on vectors whose
length is a power of two. Unfortunately, this can cause conflicts with certain architectural features of a
CPU, many of which involve powers of two.

Consider the operation of adding a small number of vectors

∀j : yj = yj +

m∑
i=1

xi,j .

If the length of the vectors y, xi is precisely the right (or rather, wrong) number, yj and xi,j will all be
mapped to the same location in cache. As an example we take the AMD AMD Opteron , which has an
L1 cache of 64K bytes, and which is two-way set associative. Because of the set associativity, the cache
can handle two addresses being mapped to the same cache location, but not three or more. Thus, we let
the vectors be of size n = 4096 doubles, and we measure the effect in cache misses and cycles of letting
m = 1, 2, . . ..

First of all, we note that we use the vectors sequentially, so, with a cacheline of eight doubles, we should
ideally see a cache miss rate of 1/8 times the number of vectors m. Instead, in figure 1.13 we see a rate
approximately proportional to m, meaning that indeed cache lines are evicted immediately. The exception
here is the case m = 1, where the two-way associativity allows the cachelines of two vectors to stay in
cache.

Compare this to figure 1.14, where we used a slightly longer vector length, so that locations with the same
j are no longer mapped to the same cache location. As a result, we see a cache miss rate around 1/8, and a
smaller number of cycles, corresponding to a complete reuse of the cache lines.

Two remarks: the cache miss numbers are in fact lower than the theory predicts, since the processor will use
prefetch streams. Secondly, in figure 1.14 we see a decreasing time with increasing m; this is probably due
to a progressively more favourable balance between load and store operations. Store operations are more
expensive than loads, for various reasons.

1.6.7 Loop tiling

In some cases performance can be increased by breaking up a loop into two nested loops, an outer one for
the blocks in the iteration space, and an inner one that goes through the block:
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Figure 1.13: The number of L1 cache misses and the number of cycles for each j column accumulation,
vector length 4096
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Figure 1.14: The number of L1 cache misses and the number of cycles for each j column accumulation,
vector length 4096 + 8
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for (i=0; i<n; i++)
...

becomes

bs = ... /* the blocksize */
nblocks = n/bs /* assume that n is a multiple of bs */
for (b=0; b<nblocks; b++)

for (i=b*bs,j=0; j<bs; i++,j++)
...

For a single loop this may not make any difference, but given the right context it may. For instance, if an
array is repeatedly used, but it is too large to fit into cache:

for (n=0; n<10; n++)
for (i=0; i<100000; i++)

... = ...x[i] ...

then loop tiling may lead to a situation where the array is divided into blocks that will fit in cache:

bs = ... /* the blocksize */
for (b=0; b<100000/bs; b++)

for (n=0; n<10; n++)
for (i=b*bs; i<(b+1)*bs; i++)

... = ...x[i] ...

For this reason, loop tiling is also known as cache blocking . The block size depends on how much data is
accessed in the loop body; ideally you would try to make data reused in L1 cache, but it is also possible to
block for L2 reuse. Of course, L2 reuse will not give as high a performance as L1 reuse.

Exercise 1.14. Analyze this example. When is x brought into cache, when is it reused, and
when is it flushed? What is the required cache size in this example? Rewrite this ex-
ample, using a constant

#define L1SIZE 65536

In section 1.5.2 we looked at the matrix-matrix multiplication, and concluded that little data could be kept
in cache. With loop tiling we can improve this situation. For instance, the standard way of writing this
product

for i=1..n
for j=1..n

for k=1..n
c[i,j] += a[i,k]*b[k,j]

can only be optimized to keep c[i,j] in register:
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for i=1..n
for j=1..n

s = 0
for k=1..n
s += a[i,k]*b[k,j]

c[i,j] += s

Using loop tiling we can easily keep parts of a[i,:] in cache, assuming that a is stored by rows:

for kk=1..n/bs
for i=1..n

for j=1..n
s = 0
for k=(kk-1)*bs+1..kk*bs

s += a[i,k]*b[k,j]
c[i,j] += s

1.6.8 Case study: Matrix-vector product

Let us consider in some detail the matrix-vector product

∀i,j : yi ← aij · xj

This involves 2n2 operations on n2 + 2n data items, so reuse is O(1): memory accesses and operations are
of the same order. However, we note that there is a double loop involved, and the x, y vectors have only a
single index, so each element in them is used multiple times.

Exploiting this theoretical reuse is not trivial. In

/* variant 1 */
for (i)

for (j)
y[i] = y[i] + a[i][j] * x[j];

the element y[i] seems to be reused. However, the statement as given here would write y[i] to memory
in every inner iteration, and we have to write the loop as

/* variant 2 */
for (i) {

s = 0;
for (j)

s = s + a[i][j] * x[j];
y[i] = s;

}
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to ensure reuse. This variant uses 2n2 loads and n stores.

This code fragment only exploits the reuse of y explicitly. If the cache is too small to hold the whole
vector x plus a column of a, each element of x is still repeatedly loaded in every outer iteration.

Reversing the loops as
/* variant 3 */
for (j)

for (i)
y[i] = y[i] + a[i][j] * x[j];

exposes the reuse of x, especially if we write this as
/* variant 3 */
for (j) {

t = x[j];
for (i)

y[i] = y[i] + a[i][j] * t;
}

but now y is no longer reused. Moreover, we now have 2n2+n loads, comparable to variant 2, but n2 stores,
which is of a higher order.

It is possible to get reuse both of x and y, but this requires more sophisticated programming. The key here
is split the loops into blocks. For instance:

for (i=0; i<M; i+=2) {
s1 = s2 = 0;
for (j) {

s1 = s1 + a[i][j] * x[j];
s2 = s2 + a[i+1][j] * x[j];

}
y[i] = s1; y[i+1] = s2;

}

This is also called loop unrolling , or strip mining . The amount by which you unroll loops is determined by
the number of available registers.

1.6.9 Optimization strategies

Figures 1.15 and 1.16 show that there can be wide discrepancy between the performance of naive implemen-
tations of an operation (sometimes called the ‘reference implementation’), and optimized implementations.
Unfortunately, optimized implementations are not simple to find. For one, since they rely on blocking, their
loop nests are double the normal depth: the matrix-matrix multiplication becomes a six-deep loop. Then,
the optimal block size is dependent on factors like the target architecture.

We make the following observations:
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Figure 1.15: Performance of naive and optimized implementations of the Discrete Fourier Transform

Figure 1.16: Performance of naive and optimized implementations of the matrix-matrix product

• Compilers are not able to extract anywhere close to optimal performance9.
• There are autotuning projects for automatic generation of implementations that are tuned to the

architecture. This approach can be moderately to very successful. Some of the best known of
these projects are Atlas [133] for Blas kernels, and Spiral [112] for transforms.

1.6.10 Cache aware programming

Unlike registers and main memory, both of which can be addressed in (assembly) code, use of caches
is implicit. There is no way a programmer can load data explicitly to a certain cache, even in assembly
language.

9. Presenting a compiler with the reference implementation may still lead to high performance, since some compilers are
trained to recognize this operation. They will then forego translation and simply replace it by an optimized variant.
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However, it is possible to code in a ‘cache aware’ manner. Suppose a piece of code repeatedly operates on
an amount of data that less data than the cache size. We can assume that the first time the data is accessed,
it is brought into cache; the next time it is accessed it will already be in cache. On the other hand, if the
amount of data is more than the cache size10, it will partly or fully be flushed out of cache in the process of
accessing it.

We can experimentally demonstrate this phenomenon. With a very accurate counter, the code fragment

for (x=0; x<NX; x++)
for (i=0; i<N; i++)

a[i] = sqrt(a[i]);

will take time linear in N up to the point where a fills the cache. An easier way to picture this is to compute
a normalized time, essentially a time per execution of the inner loop:

t = time();
for (x=0; x<NX; x++)
for (i=0; i<N; i++)

a[i] = sqrt(a[i]);
t = time()-t;
t_normalized = t/(N*NX);

The normalized time will be constant until the array a fills the cache, then increase and eventually level off
again.

The explanation is that, as long as a[0]...a[N-1] fit in L1 cache, the inner loop will use data from
the L1 cache. Speed of access is then determined by the latency and bandwidth of the L1 cache. As the
amount of data grows beyond the L1 cache size, some or all of the data will be flushed from the L1, and
performance will be determined by the characteristics of the L2 cache. Letting the amount of data grow
even further, performance will again drop to a linear behaviour determined by the bandwidth from main
memory.

1.7 Power consumption

Another important topic in high performance computers is their power consumption. Here we need to
distinguish between the power consumption of a single processor chip, and that of a complete cluster.

As the number of components on a chip grows, its power consumption would also grow. Fortunately, in a
counter acting trend, miniaturization of the chip features has simultaneously been reducing the necessary
power. Suppose that the feature size λ (think: thickness of wires) is scaled down to sλ with s < 1. In order
to keep the electric field in the transistor constant, the length and width of the channel, the oxide thickness,
substrate concentration density and the operating voltage are all scaled by the same factor.

This is known as constant field scaling or Dennard scaling [11, 28]

10. We are conveniently ignoring matters of set-associativity here, and basically assuming a fully associative cache.
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The net result is that the dynamic power consumption P is scaled to s2P , circuit delay T is scaled to sT ,
and operating frequency F is changed to F/s.Correspondingly, the energy consumption is scaled by s3,
and this gives us the space to put more components on a chip.

At the time of this writing (circa 2010), miniaturization of components has almost come to a standstill,
because further lowering of the voltage would give prohibitive leakage. Conversely, the frequency can not
be scaled up since this would raise the heat production of the chip too far. Figure 1.17 gives a dramatic

Figure 1.17: Projected heat dissipation of a CPU if trends had continued – this graph courtesy Pat Helsinger

illustration of the heat that a chip would give off, if single-processor trends had continued.

One conclusion is that computer design is running into a power wall , where the sophistication of a single
core can not be increased any further (so we can for instance no longer increase ILP and pipeline depth )
and the only way to increase pwerformance is to increase the amount of explicitly visible parallelism. This
development has led to the current generation of multicore processors; see section 1.4. It is also the reason
GPUs with their simplified processor design and hence lower energy consumption are attractive; the same
holds for Field-Programmable Gate Arrays (FPGAs).

The total power consumption of a parallel computer is determined by the consumption per processor and
the number of processors in the full machine. At present, this is commonly several Megawatts. By the
above reasoning, the increase in power needed from increasing the number of processors can no longer be
offset by more power-effective processors, so power is becoming the overriding consideration as parallel
computers move from the petascale (attained in 2008 by the IBM Roadrunner) to a projected exascale.
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Chapter 2

Parallel Computing

The largest and most powerful computers are sometimes called ‘supercomputers’. For the last two decades,
this has, without exception, referred to parallel computers: machines with more than one CPU that can be
set to work on the same problem.

Parallelism is hard to define precisely, since it can appear on several levels. In the previous chapter you al-
ready saw how inside a CPU several instructions can be ‘in flight’ simultaneously. This is called instruction-
level parallelism , and it is outside explicit user control: it derives from the compiler and the CPU deciding
which instructions, out of a single instruction stream, can be processed simultaneously. At the other extreme
is the sort of parallelism where more than one instruction stream is handled by multiple processors, often
each on their own circuit board. This type of parallelism is typically explicitly scheduled by the user.

In this chapter, we will analyze this more explicit type of parallelism, the hardware that supports it, the
programming that enables it, and the concepts that analyze it.

For further reading, a good introduction to parallel computers and parallel programming is Wilkinson and
Allen [135].

2.1 Introduction

In scientific codes, there is often a large amount of work to be done, and it is often regular to some extent,
with the same operation being performed on many data. The question is then whether this work can be sped
up by use of a parallel computer. If there are n operations to be done, and they would take time t on a single
processor, can they be done in time t/p on p processors?

Let us start with a very simple example. Adding two vectors of length n

for (i=0; i<n; i++)
a[i] = b[i] + c[i];

can be done with up to n processors. In the idealized case with n processors, each processor has local
scalars a,b,c and executes the single instruction a=b+c. This is depicted in figure 2.1.
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Figure 2.1: Parallelization of a vector addition

In the general case execution time is linearly reduced with the number of processors. If each operation takes
a unit time, the original algorithm takes time n, and the parallel execution on p processors n/p. The parallel
algorithm is faster by a factor of p1.

Next, let us consider summing the elements of a vector. We again assume that each processor contains just
a single array element. The sequential code:

s = 0;
for (i=0; i<n; i++)
s += x[i]

is no longer obviously parallel, but if we recode the loop as

for (s=2; s<n; s*=2)
for (i=0; i<n; i+=s)

x[i] += x[i+s/2]

there is a way to parallelize it: every iteration of the outer loop is now a loop that can be done by n/s
processors in parallel. Since the outer loop will go through log2 n iterations, we see that the new algorithm
has a reduced runtime of n/p · log2 n. The parallel algorithm is now faster by a factor of p/ log2 n. This is
depicted in figure 2.2.

Even from these two simple examples we can see some of the characteristics of parallel computing:

• Sometimes algorithms need to be rewritten slightly to make them parallel.
• A parallel algorithm may not show perfect speedup.

There are other things to remark on. In the first case, if each processors has its xi, yi in a local store the algo-
rithm can be executed without further complications. In the second case, processors need to communicate
data among each other and we haven’t assigned a cost to that yet.

1. We ignore lower order errors in this result when p does not divide perfectly in n. We will also, in general, ignore matters of
loop overhead.
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Figure 2.2: Parallelization of a vector addition

First let us look systematically at communication. We can take the second half of figure 2.2 and turn it
into a tree graph (see Appendix A.5) by defining the inputs as leave nodes, all partial sums as interior
nodes, and the root as the total sum. There is an edge from one node to another if the first is input to
the (partial) sum in the other. This is illustrated in figure 2.3. In this figure nodes are horizontally aligned
with other computations that can be performed simultaneously; each level is sometimes called a superstep
in the computation. Nodes are vertically aligned if they are computed on the same processors, and an
arrow corresponds to a communication if it goes from one processor to another. The vertical alignment in

Figure 2.3: Communication structure of a parallel vector addition

figure 2.3 is not the only one possible. If nodes are shuffled within a superstep or horizontal level, a different
communication pattern arises.
Exercise 2.1. Consider placing the nodes within a superstep on random processors. Show that,

if no two nodes wind up on the same processor, at most twice the number of commu-
nications is performed from the case in figure 2.3.

Exercise 2.2. Can you draw the graph of a computation that leaves the sum result on each
processor? There is a solution that takes twice the number of supersteps, and there is
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one that takes the same number. In both cases the graph is no longer a tree, but a more
general Directed Acyclic Graph (DAG).

Processors are often connected through a network, and moving data through this network takes time. This
introduces a concept of distance between the processors. This is easily see in figure 2.3 where the processors
are linearly ordered. If the network only connects a processor with its immediate neighbours, each iteration
of the outer loop increases the distance over which communication takes place.

Exercise 2.3. Assume that an addition takes a certain unit time, and that moving a number from
one processor to another takes that same unit time. Show that the communication time
equals the computation time.
Now assume that sending a number from processor p to p± k takes time k. Show that
the execution time of the parallel algorithm now is of the same order as the sequential
time.

The summing example made the unrealistic assumption that every processor initially just stored on vector
element: in practice we will have P < N , and every processor stores a number of vector elements. The
obvious strategy is to give each processor a consecutive stretch of elements, but sometimes the obvious
strategy is not the best.

Exercise 2.4. Consider the case of summing 8 elements with 4 processors. Show that some of
the edges in the graph of figure 2.3 no longer correspond to actual communications.
Now consider summing 16 elements with, again, 4 processors. What is the number of
communication edges this time?

These matters of algorithm adaptation, efficiency, and communication, are crucial to all of parallel comput-
ing. We will return to these issues in various guises throughout this chapter.

2.2 Parallel Computers Architectures

For quite a while now, the top computers have been some sort of parallel computer, that is, an architecture
that allows the simultaneous execution of multiple instructions or instruction sequences. One way of char-
acterizing the various forms this can take is due to Flynn [45]. Flynn’s taxonomy distinguishes between
whether one or more different instructions are executed simultaneously, and between whether that happens
on one or more data items. The following four types result, which we will discuss in more detail below:

SISD Single Instruction Single Data: this is the traditional CPU architecture: at any one time only a single
instruction is executed, operating on a single data item.

SIMD Single Instruction Multiple Data: in this computer type there can be multiple processors, each op-
erating on its own data item, but they are all executing the same instruction on that data item.
Vector computers (section 2.2.1.1) are typically also characterized as SIMD.

MISD Multiple Instruction Single Data. No architectures answering to this description exist.
MIMD Multiple Instruction Multiple Data: here multiple CPUs operate on multiple data items, each exe-

cuting independent instructions. Most current parallel computers are of this type.
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2.2.1 SIMD

Parallel computers of the SIMD type apply the same operation simultaneously to a number of data items.
The design of the CPUs of such a computer can be quite simple, since the arithmetic unit does not need
separate logic and instruction decoding units: all CPUs execute the same operation in lock step. This makes
SIMD computers excel at operations on arrays, such as

for (i=0; i<N; i++) a[i] = b[i]+c[i];

and, for this reason, they are also often called array processors . Scientific codes can often be written so that
a large fraction of the time is spent in array operations.

On the other hand, there are operations that can not can be executed efficiently on an array processor. For
instance, evaluating a number of terms of a recurrence xi+1 = axi + bi involves that many additions and
multiplications, but they alternate, so only one operation of each type can be processed at any one time.
There are no arrays of numbers here that are simultaneously the input of an addition or multiplication.

In order to allow for different instruction streams on different parts of the data, the processor would have a
‘mask bit’ that could be set to prevent execution of instructions. In code, this typically looks like

where (x>0) {
x[i] = sqrt(x[i])

The programming model where identical operations are applied to a number of data items simultaneously,
is known as data parallelism .

Such array operations can occur in the context of physics simulations, but another important source is
graphics applications. For this application, the processors in an array processor can be much weaker than
the processor in a PC: often they are in fact bit processors, capable of operating on only a single bit at a
time. Along these lines, ICL had the 4096 processor DAP [75] in the 1980s, and Goodyear built a 16K
processor MPP [5] in the 1970s.

Later, the Connection Machine (CM-1, CM-2, CM-5) were quite popular. While the first Connection Ma-
chine had bit processors (16 to a chip), the later models had traditional processors capable of floating point
arithmetic, and were not true SIMD architectures. All were based on a hyper-cube interconnection network;
see section 2.6.4. Another manufacturer that had a commercially successful array processor was MasPar.

Supercomputers based on array processing do not exist anymore, but the notion of SIMD lives on in various
guises, which we will now discuss.

2.2.1.1 Pipelining

A number of computers have been based on a vector processor or pipeline processor design. The first
commercially successful supercomputers, the Cray-1 and the Cyber-205 were of this type. In recent times,
the Cray-X1 and the NEC SX series have featured vector pipes. The ‘Earth Simulator’ computer [117],
which led the TOP500 (section 2.10.5) for 3 years, was based on NEC SX processors. The general idea
behind pipelining was described in section 1.2.1.
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While supercomputers based on pipeline processors are in a distinct minority, pipelining is now mainstream
in the superscalar CPUs that are the basis for clusters. A typical CPU has pipelined floating point units, often
with separate units for addition and multiplication; see section 1.2.1.

However, there are some important differences between pipelining in a modern superscalar CPU and in,
more old-fashioned, vector units. The pipeline units in these vector computers are not integrated floating
point units in the CPU, but can better be considered as attached vector units to a CPU that itself has a
floating point unit. The vector unit has vector registers2 with a typical length of 64 floating point numbers;
there is typically no ‘vector cache’. The logic in vector units is also simpler, often addressable by explicit
vector instructions. Superscalar CPUs, on the other hand, are fully integrated in the CPU and geared towards
exploiting data streams in unstructured code.

2.2.1.2 True SIMD in CPUs and GPUs

True SIMD array processing can be found in modern CPUs and GPUs, in both cases inspired by the paral-
lelism that is needed in graphics applications.

Modern CPUs from Intel and AMD, as well as PowerPC chips, have instructions that can perform multiple
instances of an operation simultaneously. On Intel processors this is known as SIMD Streaming Extensions
(SSE). These extensions were originally intended for graphics processing, where often the same operation
needs to be performed on a large number of pixels. Often, the data has to be a total of, say, 128 bits, and
this can be divided into two 64-bit reals, four 32-bit reals, or a larger number of even smaller chunks such
as 4 bits.

Current compilers can generate SSE instructions automatically; sometimes it is also possible for the user to
insert pragmas, for instance with the Intel compiler:

void func(float *restrict c, float *restrict a,
float *restrict b, int n)

{
#pragma vector always

for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

Use of these extensions often requires data to be aligned with cache line boundaries (section 1.3.4.5), so
there are special allocate and free calls that return aligned memory.

Array processing on a larger scale can be found in GPUs. A GPU contains a large number of simple proces-
sors, ordered in groups of 32, typically. Each processor group is limited to executing the same instruction.
Thus, this is true example of Single Instruction Multiple Data (SIMD) processing. For further discussion,
see section 2.9.

2. The Cyber205 was an exception, with direct-to-memory architecture.
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2.2.2 MIMD / SPMD computers

By far the most common parallel computer architecture these days is called Multiple Instruction Multiple
Data (MIMD): the processors execute multiple, possibly differing instructions, each on their own data.
Saying that the instructions differ does not mean that the processors actually run different programs: most
of these machines operate in Single Program Multiple Data (SPMD) mode, where the programmer starts
up the same executable on the parallel processors. Since the different instances of the executable can take
differing paths through conditional statements, or execute differing numbers of iterations of loops, they will
in general not be completely in sync as they were on SIMD machines. If this lack of synchronization is due
to processors working on different amounts of data, it is called load unbalance , and it is a major source of
less than perfect speedup .

There is a great variety in MIMD computers. Some of the aspects concern the way memory is organized,
and the network that connects the processors. Apart from these hardware aspects, there are also differing
ways of programming these machines. We will see all these aspects below. Many machines these days are
called clusters . They can be built out of custom or commodity processors (if they consist of PCs, running
Linux, and connected with Ethernet, they are referred to as Beowulf clusters [62]); since the processors are
independent they are examples of the MIMD or SPMD model.

2.2.3 The commoditization of supercomputers

In the 1980s and 1990s supercomputers were radically different from personal computer and mini or
super-mini computers such as the DEC PDP and VAX series. The SIMD vector computers had one (CDC
Cyber205 or Cray-1 ), or at most a few (ETA-10 , Cray-2 , Cray X/MP , Cray Y/MP ), extremely power-
ful processors, often a vector processor. Around the mid-1990s clusters with thousands of simpler (mi-
cro) processors started taking over from the machines with relative small numbers of vector pipes (see
http://www.top500.org/lists/1994/11). At first these microprocessors (IBM Power series ,
Intel i860 , MIPS , DEC Alpha) were still much more powerful than ‘home computer’ processors, but later
this distinction also faded to an extent. Currently, many of the most powerful clusters are powered by essen-
tially the same Intel Xeon and AMD Opteron chips that are available on the consumer market. Others use
IBM Power Series or other ‘server’ chips. See section 2.10.5 for a illustrations of this history since 1993.

2.3 Different types of memory access

In the introduction we defined a parallel computer as a setup where multiple processors work together on
the same problem. In all but the simplest cases this means that these processors need access to a joint pool of
data. In the previous chapter you saw how even on a single processor memory can have a hard time keeping
up with processor demands. For parallel machines, where potentially several processors want to access the
same memory location, this problem becomes even worse. We can characterize parallel machines by the
approach they take to the problem of reconciling multiple accesses, by multiple processes, to a joint pool
of data.
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Figure 2.4: Non-uniform memory access in a four-socket motherboard

2.3.1 Symmetric Multi-Processors: Uniform Memory Access

Parallel programming is fairly simple if any processor can access any memory location. For this reason,
there is a strong incentive for manufacturers to make architectures where processors see no difference
between one memory location and another: any memory location is accessible to every processor, and the
access times do not differ. This is called Uniform Memory Access (UMA), and the programming model for
architectures on this principle is often called Symmetric Multi Processing (SMP).

There are a few ways to realize an SMP architecture. Current desktop computers can have a few processors
accessing a shared memory through a single memory bus; for instance Apple markets a model with 2 six-
core processors. Having a memory bus that is shared between processors works only for small numbers of
processors; for larger numbers one can use a crossbar that connects multiple processors to multiple memory
banks; see section 2.6.5.

On multicore processors there is uniform memory access of a different type: the cores typically have a
shared cache , typically the L3 or L2 cache.

2.3.2 Non-Uniform Memory Access

The UMA approach based on shared memory is obviously limited to a small number of processors. The
crossbar networks are expandable, so they would seem the best choice. However, in practice one puts
processors with a local memory in a configuration with an exchange network. This leads to a situation
where a processor can access its own memory fast, and other processors’ memory slower. This is one case
of so-called Non-Uniform Memory Access (NUMA): a strategy that uses physically distributed memory,
abandoning the uniform access time, but maintaining the logically shared address space: each processor
can still access any memory location.

Figure 2.4 illustrates NUMA in the case of the four-socket motherboard of the Ranger supercomputer. Each
chip has its own memory (8Gb) but the motherboard acts as if the processors have access to a shared pool
of 32Gb. Obviously, accessing the memory of another processor is slower than accessing local memory. In
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addition, note that each processor has three connections that could be used to access other memory, but the
rightmost two chips use one connection to connect to the network. This means that accessing each other’s
memory can only happen through an intermediate processor, slowing down the transfer, and tieing up that
processor’s connections.

While the NUMA approach is convenient for the programmer, it offers some challenges for the system.
Imagine that two different processors each have a copy of a memory location in their local (cache) memory.
If one processor alters the content of this location, this change has to be propagated to the other processors.
If both processors try to alter the content of the one memory location, the behaviour of the program can
become undetermined.

Keeping copies of a memory location synchronized is known as cache coherence (see section 1.4.1, and a
multi-processor system using it is sometimes called a ‘cache-coherent NUMA’ or ccNUMA architecture.

Cache coherence is obviously desirable, since it facilitates parallel programming. However, it carries costs
on several levels. It probably requires hardware support from the processors and the network and it compli-
cates the Operating System software. Moreover, keeping caches coherent means that there is data traveling
through the network, taking up precious bandwidth.

Among current vendors only SGI (the UV line) and Cray (the XE6 ) market products with large scale
NUMA. Both offer strong support for Partitioned Global Address Space (PGAS) languages; see sec-
tion 2.5.6.

2.3.3 Logically and physically distributed memory

The most extreme solution to the memory access problem is to offer memory that is not just physically,
but that is also logically distributed: the processors have their own address space, and can not directly see
another processor’s memory. This approach is often called ‘distributed memory’, but this term is unfortu-
nate, since we really have to consider the questions separately whether memory is distributed and whether
is appears distributed. Note that NUMA also has physically distributed memory, the distributed nature of it
is just not apparent to the programmer.

With logically distributed memory, the only way one processor can exchange information with another is
through passing information explicitly through the network. You will see more about this in section 2.5.3.3.

This type of architecture has the significant advantage that it can scale up to large numbers of processors:
the IBM BlueGene has been built with over 200,000 processors. On the other hand, this is also the hardest
kind of parallel system to program.

Various kinds of hybrids between the above types exist. For instance, the Columbia computer at NASA
consists of twenty nodes, connected by a switch, where each node is an NUMA architecture of 512 proces-
sors.

2.3.4 Latency hiding

Communication between processors is typically slow, slower than data transfer from memory on a single
processor, and much slower than operating on data. For this reason, it is good to think about the relative
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Figure 2.5: The parallel matrix-vector product with a blockrow distribution.

volumes of network traffic versus ‘useful’ operations when designing a parallel program. There has to be
enough work per processor to offset the communication.

Another way of coping with the relative slowness of communication is to arrange the program so that the
communication actually happens while some computation is going on. This is referred to as overlapping
computation with communication or latency hiding .

For example, consider the parallel execution of a matrix-vector product y = Ax (there will be further
discussion of this operation in section 6.1). Assume that the vectors are distributed, so each processor p
executes

∀i∈Ip : yi =
∑
j

aijxj .

Since x is also distributed, we can write this as

∀i∈Ip : yi =

 ∑
j local

+
∑

j not local

 aijxj .

This scheme is illustrated in figure 2.5. We can now proceed as follows:

• Start the transfer of non-local elements of x;
• Operate on the local elements of x while data transfer is going on;
• Make sure that the transfers are finished;
• Operate on the non-local elements of x.

Of course, this scenario presupposes that there is software and hardware support for this overlap. MPI
allows for this (see section 2.5.3.6), through so-called asynchronous communication or non-blocking com-
munication routines. This does not immediately imply that overlap will actually happen, since hardware
support is an entirely separate question.
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2.4 Granularity of parallelism

Let us take a look at the question ‘how much parallelism is there in a program execution’. There is the
theoretical question of the absolutely maximum number of actions that can be taken in parallel, but we also
need to wonder what kind of actions these are and how hard it is to actually execute them in parallel, as
well has how efficient the resulting execution is.

The discussion in this section will be mostly on a conceptual level; in section 2.5 we will go into some
detail on how parallelism can actually be programmed.

2.4.1 Data parallelism

It is fairly common for a program that have loops with a simple body, that gets executed for all elements in
a large data set:

for (i=0; i<1000000; i++)
a[i] = 2*b[i];

Such code is considered an instance of data parallelism or fine-grained parallelism . If you had as many
processors as array elements, this code would look very simple: each processor would execute the statment

a = 2*b

on its local data.

If your code consists predominantly of such loops over arrays, it can be executed efficiently with all proces-
sors in lockstep. Architectures based on this idea, where the processors can in fact only work in lockstep,
have existed, see section 2.2.1. Such fully parallel operations on arrays appear in computer graphics, where
every bit of an image is processed independently. For this reason, GPUs (section 2.9) are strongly based on
data parallelism.

Continuing the above example for a little bit, consider the operation

for 0 ≤ i < max do
ileft = mod (i− 1,max)
iright = mod (i+ 1,max)
ai = (bileft + biright)/2

On a data parallel machine, that could be implemented as

bleft← shiftright(b)
bright← shiftleft(b)
a← (bleft + bright)/2

where the shiftleft/right instructions cause a data item to be sent to the processor with a num-
ber lower or higher by 1. For this second example to be efficient, it is necessary that each processor can
communicate quickly with its immediate neighbours, and the first and last processor with each other.
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In various contexts such a ‘blurr’ operations in graphics, it makes sense to have operations on 2D data:

for 0 < i < m do
for 0 < j < n do

aij ← (bij−1 + bij+1 + bi−1j + bi+1j)

and consequently processors have be able to move data to neighbours in a 2D grid.

2.4.2 Instruction-level parallelism

In ILP, the parallelism is still on the level of individual instructions, but these need not be similar. For
instance, in

a← b+ c
d← e ∗ f

the two assignments are independent, and can therefore be executed simultaneously. This kind of paral-
lelism is too cumbersome for humans to identify, but compilers are very good at this. In fact, identifying
ILP is crucial for getting good performance out of modern superscalar CPUs.

2.4.3 Task-level parallelism

At the other extreme from data and instruction-level parallelism, task parallelism is about identifying whole
subprograms that can be executed in parallel. As an example, searching in a tree data structure could be
implemented as follows:

if optimal (root) then
exit

else
parallel: SearchInTree (leftchild),SearchInTree (rightchild)

Procedure SearchInTree(root)

The search tasks in this example are not synchronized, and the number of tasks is not fixed: it can grow
arbitrarily. In practice, having too many tasks is not a good idea, since processors are most efficient if they
work on just a single task. Tasks can then be scheduled as follows:

while there are tasks left do
wait until a processor becomes inactive;
spawn a new task on it

Unlike in the data parallel example above, the assignment of data to processor is not determined in advance
in such a scheme. Therefore, this mode of parallelism is most suited for thread-programming, for instance
through the OpenMP library; section 2.5.2.

Let us consider a more serious example of task-level parallelism.

A finite element mesh is, in the simplest case, a collection of triangles that covers a 2D object. Since angles
that are too acute should be avoided, the Delauney mesh refinement process can take certain triangles,
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and replace them by better shaped ones. This is illustrated in figure 2.6: the black triangles violate some
angle condition, so either they themselves get subdivided, or they are joined with some neighbouring ones
(rendered in grey) and then jointly redivided.

Figure 2.6: A mesh before and after refinement

In pseudo-code, this can be implemented as in figure 2.7 (for a more detailed discussion, see [82]):

It is clear that this algorithm is driven by a worklist (or task queue) data structure that has to be shared
between all processes. Together with the dynamic assignment of data to processes, this implies that this
type of irregular parallelism is suited to shared memory programming, and is much harder to do with
distributed memory.

2.4.4 Conveniently parallel computing

In certain contexts, a simple, often single processor, calculation needs to be performed on many different
inputs. Since the computations have no data dependencies and need not done in any particular sequence,

Mesh m = /* read in initial mesh */
WorkList wl;
wl.add(mesh.badTriangles());
while (wl.size() != 0) do

Element e = wl.get(); //get bad triangle
if (e no longer in mesh) continue;
Cavity c = new Cavity(e);
c.expand();
c.retriangulate();
mesh.update(c);
wl.add(c.badTriangles());

Figure 2.7: Task queue implementation of Delauney refinement
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this is often called embarassingly parallel or conveniently paralllel computing. This sort of parallelism can
happen at several levels. In examples such as calculation of the Mandelbrot set or evaluating moves in a
chess game, a subroutine-level computation is invoked for many parameter values. On a coarser level it can
be the case that a simple program needs to be run for many inputs. In this case, the overall calculation is
referred to as a parameter sweep .

2.4.5 Medium-grain data parallelism

The above strict realization of data parallelism assumes that there are as many processors as data elements.
In practice, processors will have much more memory than that, and the number of data elements is likely
to be far larger than the processor count of even the largest computers. Therefore, arrays are grouped onto
processors in subarrays. The code then looks like this:

my_lower_bound = // some processor-dependent number
my_upper_bound = // some processor-dependent number
for (i=my_lower_bound; i<my_upper_bound; i++)
// the loop body goes here

This model has some characteristics of data parallelism, since the operation performed is identical on a
large number of data items. It can also be viewed as task parallelism, since each processor executes a larger
section of code, and does not necessarily operate on equal sized chunks of data.

2.5 Parallel programming

Parallel programming is more complicated than sequential programming. While for sequential program-
ming most programming languages operate on similar principles (some exceptions such as functional or
logic languages aside), there is a variety of ways of tackling parallelism. Let’s explore some of the concepts
and practical aspects.

There are various approaches to parallel programming. First of all, there does not seem to be any hope of
a parallelizing compiler that can automagically transform a sequential program into a parallel one. Apart
from the problem of figuring out which operations are independent, the main problem is that the problem
of locating data in a parallel context is very hard. A compiler would need to consider the whole code, rather
than a subroutine at a time. Even then, results have been disappointing.

More productive is the approach where the user writes mostly a sequential program, but gives some in-
dications about what computations can be parallelized, and how data should be distributed. Indicating
parallelism of operations explicitly is done in OpenMP (section 2.5.2); indicating the data distribution and
leaving parallelism to the compiler and runtime is the basis for PGAS languages (section 2.5.6). Such
approaches work best with shared memory.

By far the hardest way to program in parallel, but with the best results in practice, is to expose the paral-
lelism to the programmer and let the programmer manage everything explicitly. This approach is necessary
in the case of distributed memory programming. We will have a general discussion of distributed program-
ming in section 2.5.3.1; section 2.5.3.3 will discuss the MPI library.

Victor Eijkhout 61



2. Parallel Computing

2.5.1 Thread parallelism

As a preliminary to OpenMP (section 2.5.2), we will briefly go into ‘threads’. A thread is an independent
instruction stream, but as part of a Unix process. While processes can belong to different users, or be
different programs that a single user is running concurrently, and therefore have their own data space,
threads are part of one process and therefore share each other’s data. Threads do have a possibility of
having private data, for instance by have their own data stack, but their main characteristic is that they can
collaborate on the same data.

Threads have long existed, even on a single processor. By having more than one thread on a single processor,
a higher processor utilization can result, since the instructions of one thread can be processed while another
thread is waiting for data. On traditional CPUs, switching between threads is fairly expensive (an exception
is the hyper-threading mechanism) but on GPUs it is not, and in fact they need many threads to attain high
performance.

In the context of parallel processing we are also interested in threads, sinc in a shared memory context
multiple threads running on multiple processors or processor cores can be an easy way to parallelize a
computation. The shared memory allows the threads to all see the same data. This can also lead to problems;
see section 2.5.1.2.

2.5.1.1 Threads example

The following example3 uses the pthreads library to spawn a number of tasks that all update a global
counter. Since threads share the same memory space, they indeed see and update the same memory location.

#include <stdlib.h>
#include <stdio.h>
#include "pthread.h"

int sum=0;

void adder() {
sum = sum+1;
return;

}

#define NTHREADS 50
int main() {

int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i<NTHREADS; i++)

if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;
printf("joining\n");

3. This is strictly Unix-centric and will not work on Windows.
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for (i=0; i<NTHREADS; i++)
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;

printf("Sum computed: %d\n",sum);

return 0;
}

The fact that this code gives the right result is a coincidence: it only happens because updating the variable
is so much quicker than creating the thread. (On a multicore processor the chance of errors will greatly
increase.) If we artificially increase the time for the update, we will no longer get the right result:

void adder() {
int t = sum; sleep(1); sum = t+1;
return;

}

Now all threads read out the value of sum, wait a while (presumably calculating something) and then
update.

This can be fixed by having a lock on the code region that should be ‘mutually exclusive’:
pthread_mutex_t lock;

void adder() {
int t,r;
pthread_mutex_lock(&lock);
t = sum; sleep(1); sum = t+1;
pthread_mutex_unlock(&lock);
return;

}

int main() {
....
pthread_mutex_init(&lock,NULL);

The lock and unlock commands guarantee that no two threads can interfere with each other’s update.

For more information on pthreads, see for instance https://computing.llnl.gov/tutorials/
pthreads.

2.5.1.2 Atomic operations

Shared memory makes life easy for the programmer, since every processor has access to all of the data: no
explicit data traffic between the processor is needed. On the other hand, multiple processes/processors can
also write to the same variable, which is a source of potential problems.
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Suppose that two processes both try to increment an integer variable I:
process 1: I=I+2
process 2: I=I+3
If the processes are not completely synchronized, one will read the current value, compute the new value,
write it back, and leave that value for the other processor to find. In this scenario, the parallel program has
the same result (I=I+5) as if all instructions were executed sequentially.

However, it could also happen that both processes manage to read the current value simultaneously, compute
their own new value, and write that back to the location of I. Even if the conflicting writes can be reconciled,
the final result will be wrong: the new value will be either I+2 or I+3, not I+5. Moreover, it will be
indeterminate, depending on details of the execution mechanism.

A very practical example of such conflicting updates is the inner product calculation:
for (i=0; i<1000; i++)

sum = sum+a[i]*b[i];

Here the products are truly independent, so we could choose to have the loop iterations do them in parallel,
for instance by their own threads. However, all threads need to update the same variable sum.

For this reason, such updates of a shared variable are called a critical section of code. This means that the
instructions in the critical section (in the inner product example ‘read sum from memory, update it, write
back to memory’) need to be executed entirely by one thread before any other thread can start them.

OpenMP has a mechanism to declare a critical section, so that it will be executed by only one process at a
time.

One way of implementing this, is to set a temporary lock on certain memory areas. Another solution to
the update problem, is to have atomic operations: the update would be implemented in such a way that a
second process can not get hold of the data item being updated. One implementation of this is transactional
memory, where the hardware itself supports atomic operations; the term derives from database transactions,
which have a similar integrity problem.

One of the solutions for dealing explicitly with critical sections is the semaphore mechanism [30]. Sur-
rounding each critical section there will be two atomic operations controlling a semaphore, a sign post.
The first process to encounter the semaphore will lower it, and start executing the critical section. Other
processes see the lowered semaphore, and wait. When the first process finishes the critical section, it exe-
cutes the second instruction which raises the semaphore, allowing one of the waiting processes to enter the
critical section.

2.5.1.3 Affinity

Thread programming is very flexible, effectively creating parallelism as needed. However, a large part of
this book is about the importance of data movement in scientific computations, and that aspect can not be
ignored in thread programming.

In the context of a multicore processor, any thread can be scheduled to any core, and there is no immediate
problem with this. The problem in cases where we have two subsequent regions that are handled with
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thread-level parallelism. If the first region computes data, and the second uses that data, then we have to
make sure that the thread producing a particular data item and the thread consuming (or updating) it are
scheduled to the same core.

We call affinity the maintaining of a fixed mapping between threads (thread affinity) or processes (process
affinity) and cores.

Maintaining thread affinity is easy in some cases. If the loop structure that is being parallelized stays the
same, a fixed mapping of threads to cores makes sense:

for (i=0; i<ndata; i++) // this loop will be done by threads
x[i] = ....

for (i=0; i<ndata; i++) // as will this one
... = .... x[i] ...

In other cases a fixed mapping is not the right solution:

for (i=0; i<ndata; i++) // produces loop
x[i] = ....

for (i=0; i<ndata; i+=2) // use even indices
... = ... x[i] ...

for (i=1; i<ndata; i+=2) // use odd indices
... = ... x[i] ...

In this second example, either the program has to be transformed, or the programmer has to maintain in
effect a task queue .

2.5.1.4 Concurrency

In this book, we discuss threads in the context of scientific computing. However, threads also facilitate
parallelism in other contexts, such as operating systems. In this case, the term concurrency is often used,
rather than ‘parallelism’. Concurrent tasks are typically asynchronous, rather than tightly coupled.

Concurrency has been studied for a long time. Often, the question addressed is that of resource contention:
what if two processes, for instance users on the same system, request access to the same resource, for
instance a printer. This means that the system call to print is another example of a critical section of code;
see section 2.5.1.2 above. Another problem with concurrency is that two processes can both request access
to two devices with exclusive use, for instance a printer and some hardware input device. If one process gets
hold of the one resource first, and the other process the other resource, we have another case of deadlock .

2.5.1.5 Cilk

Other programming models based on threads exist. For instance, Cilk is a set of extensions of C/C++ with
which a programmer can create threads.
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Sequential code:
int fib(int n){

if (n<2) return 1;
else {

int rst=0;
rst += fib(n-1);
rst += fib(n-2);
return rst;

}

Cilk code:
cilk int fib(int n){

if (n<2) return 1;
else {

int rst=0;
rst += spawn fib(n-1);
rst += spawn fib(n-2);
sync;
return rst;

}

2.5.2 OpenMP

OpenMP is an extension to the programming languages C and Fortran. Its main approach to parallelism
is the parallel execution of loops: based on compiler directives, a preprocessor can schedule the parallel
execution of the loop iterations.

The amount of parallelism is flexible: the user merely specifies a parallel region, indicating that all iterations
are independent to some extent, and the runtime system will then use whatever resources are available.
Because of this dynamic nature, and because no data distribution is specified, OpenMP can only work with
threads on shared memory.

OpenMP is not a language, but an extension to the existing C and Fortran languages. It mostly operates by
inserting directives into source code, which are interpreted by the compiler. It also has a modest number
of library calls, but these are not the main point, unlike in MPI (section 2.5.3.3). Finally, there is a runtime
system that manages the parallel execution.

Many compilers, such as GCC or the Intel compiler, support the OpenMP extensions. In Fortran, OpenMP
directives are placed in comment statements; in C, they are placed in #pragma CPP directives, which
indicate compiler specific extensions. As a result, OpenMP code still looks like legal C or Fortran to a
compiler that does not support OpenMP. Programs need to be linked to an OpenMP runtime library, and
their behaviour can be controlled through environment variables.

OpenMP features dynamic parallelism: the number of execution streams operating in parallel can vary from
one part of the code to another.

For more information about OpenMP, see [18].

2.5.2.1 OpenMP examples

The simplest example of OpenMP use is the parallel loop.
#pragma omp for
for (i=0; i<ProblemSize; i++) {
a[i] = b[i];

}
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Clearly, all iterations can be executed independently and in any order. The pragma CPP directive then
conveys this fact to the compiler.

Some loops are fully parallel conceptually, but not in implementation:

for (i=0; i<ProblemSize; i++) {
t = b[i]*b[i];
a[i] = sin(t) + cos(t);

}

Here it looks as if each iteration writes to, and reads from, a shared variable t. However, t is really a tem-
porary variable, local to each iteration. Code that should be parallelizable, but is not due to such constructs,
is called not thread safe .

OpenMP indicates that the temporary is private to each iteration as follows:

#pragma parallel for shared(a,b), private(t)
for (i=0; i<ProblemSize; i++) {

t = b[i]*b[i];
a[i] = sin(t) + cos(t);

}

If a scalar is indeed shared, OpenMP has various mechanisms for dealing with that. For instance, shared
variables commonly occur in reduction operations:

s = 0;
#pragma parallel for reduction(+:sum)

for (i=0; i<ProblemSize; i++) {
s = s + a[i]*b[i];

}

As you see, a sequential code can be easily parallelized this way.

The assignment of iterations to threads is done by the runtime system, but the user can guide this assign-
ment. We are mostly concerned with the case where there are more iterations than threads: if there are P
threads and N iterations and N > P , how is iteration i going to be assigned to a thread?

The simplest assignment uses round-robin task scheduling , a static scheduling strategy where thread p get
iterations p× (N/P ), . . . , (p+ 1)× (N/P )−1. This has the advantage that if some data is reused between
iterations, it will stay in the data cache of the processor executing that thread. On the other hand, if the
iterations differ in the amount of work involved, the process may suffer from load unbalance with static
scheduling. In that case, a dynamic scheduling strategy would work better, where each thread starts work
on the next unprocessed iteration as soon as it finishes its current iteration. The example in figure 2.8 shows
static versus dynamic scheduling of a number of tasks that gradually decrease in individual running time.
In static scheduling, the first thread gets tasks 1 and 4, the second 2 and 5, et cetera. In dynamic scheduling,
any thread that finishes its task gets the next task. This clearly gives a better running time in this particular
example. On the other hand, dynamic scheduling is likely to have a higher overhead.
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Figure 2.8: Static or round-robin (left) vs dynamic (right) thread scheduling; the task numbers are indicated.

2.5.3 Distributed memory programming through message passing

While OpenMP programs, and programs written using other shared memory paradigms, still look very
much like sequential programs, this does not hold true for message passing code. Before we discuss the
Message Passing Interface (MPI) library in some detail, we will take a look at this shift the way parallel
code is written.

2.5.3.1 The global versus the local view in distributed programming

There can be a marked difference between how a parallel algorithm looks to an observer, and how it is ac-
tually programmed. Consider the case where we have an array of processors {Pi}i=0..p−1, each containing
one element of the arrays x and y, and Pi computes{

yi ← yi + xi−1 i > 0

yi unchanged i = 0
(2.1)

The global description of this could be

• Every processor Pi except the last sends its x element to Pi+1;
• every processor Pi except the first receive an x element from their neighbour Pi−1, and
• they add it to their y element.

However, in general we can not code in these global terms. In the SPMD model (section 2.2.2) each proces-
sor executes the same code, and the overall algorithm is the result of these individual behaviours. The local
program has access only to local data – everything else needs to be communicated with send and receive
operations – and the processor knows its own number.

One possible way of writing this would be

• If I am processor 0 do nothing, otherwise receive a y element from the left, add it to my x
element.
• If I am the last processor do nothing, otherwise send my y element to the right.

At first we look at the case where sends and receives are so-called blocking communication instructions: a
send instruction does not finish until the sent item is actually received, and a receive instruction waits for
the corresponding send. This means that sends and receives between processors have to be carefully paired.
We will now see that this can lead to various problems on the way to an efficient code.

The above solution is illustrated in figure 2.9, where we show the local timelines depicting the local proces-
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Figure 2.9: Local and resulting global view of an algorithm for sending data to the right

Figure 2.10: Local and resulting global view of an algorithm for sending data to the right

sor code, and the resulting global behaviour. You see that the processors are not working at the same time:
we get serialized execution .

What if we reverse the send and receive operations?

• If I am not the last processor, send my x element to the right;
• If I am not the first processor, receive an x element from the left and add it to my y element.

This is illustrated in figure 2.10 and you see that again we get a serialized execution, except that now the
processor are activated right to left.

If the algorithm in equation 2.1 had been cyclic:{
yi ← yi + xi−1 i = 1 . . . n− 1

y0 ← y0 + xn−1 i = 0
(2.2)
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Figure 2.11: Local and resulting global view of an algorithm for sending data to the right

the problem would be even worse. Now the last processor can not start its receive since it is blocked
sending xn−1 to processor 0. This situation, where the program can not progress because every processor
is waiting for another, is called deadlock .

The solution to getting an efficient code is to make as much of the communication happen simultaneously
as possible. After all, there are no serial dependencies in the algorithm. Thus we program the algorithm as
follows:

• If I am an odd numbered processor, I send first, then recieve;
• If I am an even numbered processor, I receive first, then send.

This is illustrated in figure 2.11, and we see that the execution is now parallel.

2.5.3.2 Blocking and non-blocking communication

The reason for blocking instructions is to prevent accumulation of data in the network. If a send instruc-
tion were to complete before the corresponding receive started, the network would have to store the data
somewhere in the mean time. Consider a simple example:

buffer = ... ; // generate some data
send(buffer,0); // send to processor 0
buffer = ... ; // generate more data
send(buffer,1); // send to processor 1

After the first send, we start overwriting the buffer. If the data in it hasn’t been received, the first set of values
would have to be buffered somewhere in the network, which is not realistic. By having the send operation
block, the data stays in the sender’s buffer until it is guaranteed to have been copied to the recipient’s buffer.

One way out of the problem of sequentialization or deadlock that arises from blocking instruction is the use
of non-blocking communication instructions, which include explicit buffers for the data. With non-blocking
send instruction, the user needs to allocate a buffer for each send, and check when it is safe to overwrite the
buffer.

buffer0 = ... ; // data for processor 0
send(buffer0,0); // send to processor 0
buffer1 = ... ; // data for processor 1
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send(buffer1,1); // send to processor 1
...
// wait for completion of all send operations.

2.5.3.3 The MPI library

If OpenMP is the way to program shared memory, Message Passing Interface (MPI) [121] is the standard
solution for programming distributed memory. MPI (‘Message Passing Interface’) is a specification for a
library interface for moving data between processes that do not otherwise share data. The MPI routines can
be divided roughly in the following categories:

• Process management. This includes querying the parallel environment and constructing subsets
of processors.
• Point-to-point communication. This is a set of calls where two processes interact. These are

mostly variants of the send and receive calls.
• Collective calls. In these routines, all processors (or the whole of a specified subset) are involved.

Examples are the broadcast call, where one processor shares its data with every other processor,
or the gather call, where one processor collects data from all participating processors.

Let us consider how the OpenMP examples can be coded in MPI4. First of all, we no longer allocate

double a[ProblemSize];

but

double a[LocalProblemSize];

where the local size is roughly a 1/P fraction of the global size. (Practical considerations dictate whether
you want this distribution to be as evenly as possible, or rather biased in some way.)

The parallel loop is trivially parallel, with the only difference that it now operates on a fraction of the arrays:

for (i=0; i<LocalProblemSize; i++) {
a[i] = b[i];

}

However, if the loop involves a calculation based on the iteration number, we need to map that to the global
value:

for (i=0; i<LocalProblemSize; i++) {
a[i] = b[i]+f(i+MyFirstVariable);

}

4. This is not a course in MPI programming, and consequently the examples will leave out many details of the MPI calls. If
you want to learn MPI programming, consult for instance [60].
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(We will assume that each process has somehow calculated the values of LocalProblemSize and
MyFirstVariable.) Local variables are now automatically local, because each process has its own
instance:

for (i=0; i<LocalProblemSize; i++) {
t = b[i]*b[i];
a[i] = sin(t) + cos(t);

}

However, shared variables are harder to implement. Since each process has its own data, the local accumu-
lation has to be explicitly assembled:

for (i=0; i<LocalProblemSize; i++) {
s = s + a[i]*b[i];

}
MPI_Allreduce(s,globals,1,MPI_DOUBLE,MPI_SUM);

The ‘reduce’ operation sums together all local values s into a variable globals that receives an identical
value on each processor. This is known as a collective operation .

Let us make the example slightly more complicated:

for (i=0; i<ProblemSize; i++) {
if (i==0)

a[i] = (b[i]+b[i+1])/2
else if (i==ProblemSize-1)

a[i] = (b[i]+b[i-1])/2
else

a[i] = (b[i]+b[i-1]+b[i+1])/3

If we had shared memory, we could write the following parallel code:

for (i=0; i<LocalProblemSize; i++) {
bleft = b[i-1]; bright = b[i+1];
a[i] = (b[i]+bleft+bright)/3

To turn this into valid distributed memory code, first we account for the fact that bleft and bright
need to be obtained from a different processor for i==0 (bleft), and for i==LocalProblemSize-1
(bright). We do this with a exchange operation with our left and right neighbour processor:

// get bfromleft and bfromright from neighbour processors, then
for (i=0; i<LocalProblemSize; i++) {
if (i==0) bleft=bfromleft;

else bleft = b[i-1]
if (i==LocalProblemSize-1) bright=bfromright;

else bright = b[i+1];
a[i] = (b[i]+bleft+bright)/3
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Obtaining the neighbour values is done as follows. First we need to ask our processor number, so that we
can start a communication with the processor with a number one higher and lower.

MPI_Comm_rank(MPI_COMM_WORLD,&myTaskID);
MPI_Sendrecv

(/* to be sent: */ &b[LocalProblemSize-1],
/* destination */ myTaskID+1,
/* to be recvd: */ &bfromleft,
/* source: */ myTaskID-1,
/* some parameters omited */

);
MPI_Sendrecv(&b[0],myTaskID-1,

&bfromright, /* ... */ );

There are still two problems with this code. First, the sendrecv operations need exceptions for the first and
last processors. This can be done elegantly as follows:

MPI_Comm_rank(MPI_COMM_WORLD,&myTaskID);
MPI_Comm_size(MPI_COMM_WORLD,&nTasks);
if (myTaskID==0) leftproc = MPI_PROC_NULL;
else leftproc = myTaskID-1;

if (myTaskID==nTasks-1) rightproc = MPI_PROC_NULL;
else rightproc = myTaskID+1;

MPI_Sendrecv( &b[LocalProblemSize-1], &bfromleft, rightproc );
MPI_Sendrecv( &b[0], &bfromright, leftproc);

Exercise 2.5. There is still a problem left with this code: the boundary conditions from the
original, global, version have not been taken into account. Give code that solves that
problem.

MPI gets complicated if different processes need to take different actions, for example, if one needs to send
data to another. The problem here is that each process executes the same executable, so it needs to contain
both the send and the receive instruction, to be executed depending on what the rank of the process is.

if (myTaskID==0) {
MPI_Send(myInfo,1,MPI_INT,/* to: */ 1,/* labeled: */,0,
MPI_COMM_WORLD);

} else {
MPI_Recv(myInfo,1,MPI_INT,/* from: */ 0,/* labeled: */,0,

/* not explained here: */&status,MPI_COMM_WORLD);
}
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2.5.3.4 Blocking

Although MPI is sometimes called the ‘assembly language of parallel programming’, for its perceived
difficulty and level of explicitness, it is not all that hard to learn, as evinced by the large number of scientific
codes that use it. The main issues that make MPI somewhat intricate to use, are buffer management and
blocking semantics.

These issues are related, and stem from the fact that, ideally, data should not be in two places at the same
time. Let us briefly consider what happens if processor 1 sends data to processor 2. The safest strategy is
for processor 1 to execute the send instruction, and then wait until processor 2 acknowledges that the data
was successfully received. This means that processor 1 is temporarily blocked until processor 2 actually
executes its receive instruction, and the data has made its way through the network. This is the standard
behaviour of the MPI_Send and MPI_Recv calls, which are said to use blocking communication .

Alternatively, processor 1 could put its data in a buffer, tell the system to make sure that it gets sent at some
point, and later checks to see that the buffer is safe to reuse. This second strategy is called non-blocking
communication , and it requires the use of a temporary buffer.

2.5.3.5 Collective operations

In the above examples, you saw the MPI_Allreduce call, which computed a global sum and left the
result on each processor. There is also a local version MPI_Reduce which computes the result only on
one processor. These calls are examples of collective operations or collectives . The collectives are:

reduction : each processor has a data item, and these items need to be combined arithmetically with an
addition, multiplication, max, or min operation. The result can be left on one processor, or on all,
in which case we call this an allreduce operation.

broadcast : one processor has a data item that all processors need to receive.
gather : each processor has a data item, and these items need to be collected in an array, without combining

them in an operations such as an addition. The result can be left on one processor, or on all, in
which case we call this an allgather.

scatter : one processor has an array of data items, and each processor receives one element of that array.
all-to-all : each processor has an array of items, to be scattered to all other processors.

We will analyze the cost of collective operations in detail in section 6.2.1.

2.5.3.6 Non-blocking communication

In a simple computer program, each instruction takes some time to execute, in a way that depends on what
goes on in the processor. In parallel programs the situation is more complicated. A send operation, in its
simplest form, declares that a certain buffer of data needs to be sent, and program execution will then stop
until that buffer has been safely sent and received by another processor. This sort of operation is called
a non-local operation since it depends on the actions of other processes, and a blocking communication
operation since execution will halt until a certain event takes place.

Blocking operations have the disadvantage that they can lead to deadlock , if two processes wind up waiting
for each other. Even without deadlock, they can lead to considerable idle time in the processors, as they
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wait without performing any useful work. On the other hand, they have the advantage that it is clear when
the buffer can be reused: after the operation completes, there is a guarantee that the data has been safely
received at the other end.

The blocking behaviour can be avoided, at the cost of complicating the buffer semantics, by using non-
blocking communication operations. A non-blocking send (MPI_Isend) declares that a data buffer needs
to be sent, but then does not wait for the completion of the corresponding receive. There is a second
operation MPI_Wait that will actually block until the receive has been completed. The advantage of this
decoupling of sending and blocking is that it now becomes possible to write:

MPI_ISend(somebuffer,&handle); // start sending, and
// get a handle to this particular communication

{ ... } // do useful work on local data
MPI_Wait(handle); // block until the communication is completed;
{ ... } // do useful work on incoming data

With a little luck, the local operations take more time than the communication, and you have completely
eliminated the communication time.

In addition to non-blocking sends, there are non-blocking receives. A typical piece of code then looks like

MPI_ISend(sendbuffer,&sendhandle);
MPI_IReceive(recvbuffer,&recvhandle);
{ ... } // do useful work on local data
MPI_Wait(sendhandle); Wait(recvhandle);
{ ... } // do useful work on incoming data

Exercise 2.6. Take another look at equation (2.2) and give pseudocode that solves the problem
using non-blocking sends and receives. What is the disadvantage of this code over a
blocking solution?

2.5.3.7 MPI version 1 and 2

The first MPI standard [105] had a number of notable omissions, which are included in the MPI 2 stan-
dard [61]. One of these concerned parallel input/output: there was no facility for multiple processes to
access the same file, even if the underlying hardware would allow that. A separate project MPI-I/O has now
been rolled into the MPI-2 standard. We will discuss parallel I/O in this book.

A second facility missing in MPI, though it was present in PVM [32, 49] which predates MPI, is process
management: there is no way to create new processes and have them be part of the parallel run.

Finally, MPI-2 has support for one-sided communication: one process put data into the memory of an-
other, without the receiving process doing an actual receive instruction. We will have a short discussion in
section 2.5.5 below.
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2.5.4 Hybrid shared/distributed memory computing

Modern architectures are often a mix of shared and distributed memory. For instance, a cluster will be
distributed on the level of the nodes, but sockets and cores on a node will have shared memory. One level
up, each socket can have a shared L3 cache but separate L2 and L1 caches. Intuitively it seems clear that
a mix of shared and distributed programming techniques would give code that is optimally matched to the
architecture. In this section we will discuss such hybrid programming models, and discuss their efficacy.

A common setup of clusters uses distributed memory nodes , where each node contains several sockets , that
share memory. This suggests using MPI to communicate between the nodes (inter-node communication)
and OpenMP for parallelism on the node (intra-node communication).

In practice this is realized as follows:

• On each node a single MPI process is started (rather than one per socket or core);
• This one MPI process than uses OpenMP (or another threading protocol) to spawn as many

threads are there are independent sockets or cores on the node.
• The OpenMP threads can then easily access the same shared memory.

The alternative would be to have an MPI process on each core or socket, and do all communication through
message passing, even between processes that can see the same shared memory.

This hybrid strategy may sound like a good idea but the truth is complicated.

• Message passing between MPI processes sounds like it’s more expensive than communicating
through shared memory. However, optimized versions of MPI can typically detect when pro-
cesses are on the same node, and they will replace the message passing by a simple data copy.
The only argument against using MPI is then that each process has its own data space, so there
is memory overhead because each process has to allocate space for buffers and duplicates of the
data that is copied.
• Theading is more flexible: if a certain part of the code needs more memory per process, an

OpenMP approach could limit the number of threads on that part. On the other hand, flexible
handling of threads incurs a certain amount of Operating System (OS) overhead that MPI does
not have with its fixed processes.
• If a program reaches a point where all processes communicate, then the hybrid approach offers

some advantage since it bundles messages. For instance, if two MPI processes on one node send
messages to each of two processes on another node there would be four messages; in the hybrid
model these would be bundled into one message. The distributed sparse matrix-vector product
would be a good illustration of this scenario; see section 6.4.
• Shared memory programming is conceptually simple, but there can be unexpected performance

pitfalls. For instance, the performance of two processes now can impeded by the need for main-
taining cache coherence and by false sharing .

Exercise 2.7. Analyze the discussion in the last item above. Assume that the bandwidth be-
tween the two nodes is only enough to sustain one message at a time. What is the
cost savings of the hybrid model over the purely distributed model? Hint: consider
bandwidth and latency separately.
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2.5.5 One-sided communication

The MPI way of writing matching send and receive instructions is not ideal for a number of reasons. First
of all, it requires the programmer to give the same data description twice, once in the send and once in
the receive call. Secondly, it requires a rather precise orchestration of communication if deadlock is to be
avoided; the alternative of using asynchronous calls is tedious to program, requiring the program to manage
a lot of buffers. Lastly, it requires a receiving processor to know how many incoming messages to expect,
which can be tricky in irregular applications. Life would be so much easier if it was possible to pull data
from another processor, or conversely to put it on another processor, without that other processor being
explicitly involved.

This style of programming is further encouraged by the existence of Remote Direct Memory Access
(RDMA) support on some hardware. An early example was the Cray T3E . These days, one-sided com-
munication is widely available through its incorporation in the MPI-2 library; section 2.5.3.7.

Let us take a brief look at one-sided communication in MPI-2, using averaging of array values as an exam-
ple:

∀i : ai ← (ai + ai−1 + ai+1)/3.

The MPI parallel code will look like

// do data transfer
a_local = (a_local+left+right)/3

It is clear what the transfer has to accomplish: the a_local variables needs to become the left variable
on the processor with the next higher rank, and the right variables on the one with the next lower rank.

First of all, processors need to declare explicitly what memory area is available for one-sided transfer, the
so-called ‘window’. In this example, that consists of the a_local, left, and right variables on the
processors:

MPI_Win_create(&a_local,...,&data_window);
MPI_Win_create(&left,....,&left_window);
MPI_Win_create(&right,....,&right_window);

The code now has two options: it is possible to push data out

target = my_tid-1;
MPI_Put(&a_local,...,target,right_window);
target = my_tid+1;
MPI_Put(&a_local,...,target,left_window);

or to pull it in

data_window = a_local;
source = my_tid-1;
MPI_Get(&right,...,data_window);
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source = my_tid+1;
MPI_Get(&left,...,data_window);

The above code will have the right semantics if the Put and Get calls are blocking; see section 2.5.3.4. How-
ever, part of the attraction of one-sided communication is that it makes it easier to express communication,
and for this, a non-blocking semantics is assumed.

The problem with non-blocking one-sided calls is that it becomes necessary to ensure explicitly that com-
munication is successfully completed. For instance, if one processor does a one-sided put operation on
another, the other processor has no way of checking that the data has arrived, or indeed that transfer has
begun at all. Therefore it is necessary to insert a global barrier in the program, for which every package
has its own implementation. In MPI-2 the relevant call is the MPI_Win_fence routine. These barriers in
effect divide the program execution in supersteps; see section 2.5.9.

Another form of one-sided communication is used in the Charm++ package; see section 2.5.8.

2.5.5.1 The Global Arrays library

The Global Arrays library (http://www.emsl.pnl.gov/docs/global/) is another example of
one-sided communication , and in fact it predates MPI. This library has as its prime data structure cartesian
product arrays5, distributed over a processor grid of the same or lower dimension. Through library calls,
any processor can access any sub-brick out of the array in either a put or get operation. These operations
are non-collective. As with any one-sided protocol, a barrier sync is necessary to ensure completion of the
sends/receives.

2.5.6 Parallel languages

One approach to mitigating the difficulty of parallel programming is the design of languages that offer
explicit support for parallelism. There are several approaches, and we will see some examples.

• Some languages reflect the fact that many operations in scientific computing are data parallel
(section 2.4.1). Languages such as High Performance Fortran (HPF) (section 2.5.6.4) have an
array syntax , where operations such addition of arrays can be expressed A = B+C. This syntax
simplifies programming, but more importantly, it specifies operations at an abstract level, so
that a lower level can make specific decision about how to handle parallelism. However, the
data parallelism expressed in HPF is only of the simplest sort, where the data are contained in
regular arrays. Irregular data parallelism is harder; the Chapel language (section 2.5.6.6) makes
an attempt at addressing this.
• Another concept in parallel languages, not necessarily orthogonal to the previous, is that of Parti-

tioned Global Address Space (PGAS) model: there is only one address space (unlike in the MPI
model), but this address space is partitioned, and each partition has affinity with a thread or pro-
cess. Thus, this model encompasses both SMP and distributed shared memory. A typical PGAS
language, Unified Parallel C (UPC), allows you to write programs that for the most part looks

5. This means that if the array is three-dimensional, it can be described by three integers n1, n2, n3, and each point has a
coordinate (i1, i2, i3) with 1 ≤ i1 ≤ n1 et cetera.
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like regular C code. However, by indicating how the major arrays are distributed over processors,
the program can be executed in parallel.

2.5.6.1 Discussion

Parallel languages hold the promise of making parallel programming easier, since they make communica-
tion operations appear as simple copies or arithmetic operations. However, by doing so they invite the user
to write code that may not be efficient, for instance by inducing many small messages.

Figure 2.12: Data shift that requires communication

As an example, consider arrays a,b that have been horizontally partitioned over the processors, and that
are shifted (see figure 2.12):

for (i=0; i<N; i++)
for (j=0; j<N/np; j++)

a[i][j+joffset] = b[i][j+1+joffset]

If this code is executed on a shared memory machine, it will be efficient, but a naive translation in the
distributed case will have a single number being communicated in each iteration of the i loop. Clearly,
these can be combined in a single buffer send/receive operation, but compilers are usually unable to make
this transformation. As a result, the user is forced to, in effect, re-implement the blocking that needs to be
done in an MPI implementation:

for (i=0; i<N; i++)
t[i] = b[i][N/np+joffset]

for (i=0; i<N; i++)
for (j=0; j<N/np-1; j++) {
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a[i][j] = b[i][j+1]
a[i][N/np] = t[i]

}

On the other hand, certain machines support direct memory copies through global memory hardware. In that
case, PGAS languages can be more efficient than explicit message passing, even with physically distributed
memory.

2.5.6.2 Unified Parallel C

Unified Parallel C (UPC) [125] is an extension to the C language. Its main source of parallelism is data
parallelism , where the compiler discovers indepence of operations on arrays, and assigns them to separate
processors. The language has an extended array declaration, which allows the user to specify whether the
array is partitioned by blocks, or in a round-robin fashion.

The following program in UPC performs a vector-vector addition.

//vect_add.c
#include <upc_relaxed.h>
#define N 100*THREADS
shared int v1[N], v2[N], v1plusv2[N];
void main() {

int i;
for(i=MYTHREAD; i<N; i+=THREADS)

v1plusv2[i]=v1[i]+v2[i];
}

The same program with an explicitly parallel loop construct:

//vect_add.c
#include <upc_relaxed.h>
#define N 100*THREADS
shared int v1[N], v2[N], v1plusv2[N];
void main()
{

int i;
upc_forall(i=0; i<N; i++; i)

v1plusv2[i]=v1[i]+v2[i];
}

2.5.6.3 Titanium

Titanium is comparable to UPC in spirit, but based on Java rather than on C.
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2.5.6.4 High Performance Fortran

High Performance Fortran6 (HPF) is an extension of Fortran 90 with constructs that support parallel com-
puting, published by the High Performance Fortran Forum (HPFF). The HPFF was convened and chaired
by Ken Kennedy of Rice University. The first version of the HPF Report was published in 1993.

Building on the array syntax introduced in Fortran 90, HPF uses a data parallel model of computation to
support spreading the work of a single array computation over multiple processors. This allows efficient
implementation on both SIMD and MIMD style architectures. HPF features included:

• New Fortran statements, such as FORALL, and the ability to create PURE (side effect free)
procedures
• Compiler directives for recommended distributions of array data
• Extrinsic procedure interface for interfacing to non-HPF parallel procedures such as those using

message passing
• Additional library routines - including environmental inquiry, parallel prefix/suffix (e.g., ’scan’),

data scattering, and sorting operations
Fortran 95 incorporated several HPF capabilities. While some vendors did incorporate HPF into their com-
pilers in the 1990s, some aspects proved difficult to implement and of questionable use. Since then, most
vendors and users have moved to OpenMP-based parallel processing. However, HPF continues to have
influence. For example the proposed BIT data type for the upcoming Fortran-2008 standard contains a
number of new intrinsic functions taken directly from HPF.

2.5.6.5 Co-array Fortran

Co-array Fortran (CAF) is an extension to the Fortran 95/2003 language. The main mechanism to support
parallelism is an extension to the array declaration syntax, where an extra dimension indicates the parallel
distribution. For instance,

real,allocatable,dimension(:,:,:)[:,:] :: A

declares an array that is three-dimensional on each processor, and that is distributed over a two-dimensional
processor grid.

Communication between processors is now done through copies along the dimensions that describe the
processor grid:

COMMON/XCTILB4/ B(N,4)[*]
SAVE /XCTILB4/

C
CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) )
B(:,3) = B(:,1)[IMG_S]
B(:,4) = B(:,2)[IMG_N]
CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) )

The Fortran 2008 standard will include co-arrays.

6. This section quoted from Wikipedia
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2.5.6.6 Chapel

Chapel [17] is a new parallel programming language7 being developed by Cray Inc. as part of the DARPA-
led High Productivity Computing Systems program (HPCS). Chapel is designed to improve the productivity
of high-end computer users while also serving as a portable parallel programming model that can be used
on commodity clusters or desktop multicore systems. Chapel strives to vastly improve the programmability
of large-scale parallel computers while matching or beating the performance and portability of current
programming models like MPI.

Chapel supports a multithreaded execution model via high-level abstractions for data parallelism, task par-
allelism, concurrency, and nested parallelism. Chapel’s locale type enables users to specify and reason
about the placement of data and tasks on a target architecture in order to tune for locality. Chapel supports
global-view data aggregates with user-defined implementations, permitting operations on distributed data
structures to be expressed in a natural manner. In contrast to many previous higher-level parallel languages,
Chapel is designed around a multiresolution philosophy, permitting users to initially write very abstract
code and then incrementally add more detail until they are as close to the machine as their needs require.
Chapel supports code reuse and rapid prototyping via object-oriented design, type inference, and features
for generic programming.

Chapel was designed from first principles rather than by extending an existing language. It is an imperative
block-structured language, designed to be easy to learn for users of C, C++, Fortran, Java, Perl, Matlab,
and other popular languages. While Chapel builds on concepts and syntax from many previous languages,
its parallel features are most directly influenced by ZPL, High-Performance Fortran (HPF), and the Cray
MTA’s extensions to C and Fortran.

Here is vector-vector addition in Chapel:

const BlockDist= newBlock1D(bbox=[1..m], tasksPerLocale=...);
const ProblemSpace: domain(1, 64)) distributed BlockDist = [1..m];
var A, B, C: [ProblemSpace] real;
forall(a, b, c) in(A, B, C) do
a = b + alpha * c;

2.5.6.7 Fortress

Fortress [46] is a programming language developed by Sun Microsystems. Fortress8 aims to make paral-
lelism more tractable in several ways. First, parallelism is the default. This is intended to push tool design,
library design, and programmer skills in the direction of parallelism. Second, the language is designed to be
more friendly to parallelism. Side-effects are discouraged because side-effects require synchronization to
avoid bugs. Fortress provides transactions, so that programmers are not faced with the task of determining
lock orders, or tuning their locking code so that there is enough for correctness, but not so much that per-
formance is impeded. The Fortress looping constructions, together with the library, turns ”iteration” inside
out; instead of the loop specifying how the data is accessed, the data structures specify how the loop is run,

7. This section quoted from the Chapel homepage.
8. This section quoted from the Fortress homepage.
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and aggregate data structures are designed to break into large parts that can be effectively scheduled for
parallel execution. Fortress also includes features from other languages intended to generally help produc-
tivity – test code and methods, tied to the code under test; contracts that can optionally be checked when
the code is run; and properties, that might be too expensive to run, but can be fed to a theorem prover or
model checker. In addition, Fortress includes safe-language features like checked array bounds, type check-
ing, and garbage collection that have been proven-useful in Java. Fortress syntax is designed to resemble
mathematical syntax as much as possible, so that anyone solving a problem with math in its specification
can write a program that can be more easily related to its original specification.

2.5.6.8 X10

X10 is an experimental new language currently under development at IBM in collaboration with academic
partners. The X10 effort is part of the IBM PERCS project (Productive Easy-to-use Reliable Computer Sys-
tems) in the DARPA program on High Productivity Computer Systems. The PERCS project is focused on
a hardware-software co-design methodology to integrate advances in chip technology, architecture, operat-
ing systems, compilers, programming language and programming tools to deliver new adaptable, scalable
systems that will provide an order-of-magnitude improvement in development productivity for parallel ap-
plications by 2010.

X10 aims to contribute to this productivity improvement by developing a new programming model, com-
bined with a new set of tools integrated into Eclipse and new implementation techniques for delivering
optimized scalable parallelism in a managed runtime environment. X10 is a type-safe, modern, parallel,
distributed object-oriented language intended to be very easily accessible to Java(TM) programmers. It is
targeted to future low-end and high-end systems with nodes that are built out of multi-core SMP chips with
non-uniform memory hierarchies, and interconnected in scalable cluster configurations. A member of the
Partitioned Global Address Space (PGAS) family of languages, X10 highlights the explicit reification of
locality in the form of places; lightweight activities embodied in async, future, foreach, and ateach con-
structs; constructs for termination detection (finish) and phased computation (clocks); the use of lock-free
synchronization (atomic blocks); and the manipulation of global arrays and data structures.

2.5.6.9 Linda

As should be clear by now, the treatment of data is by far the most important aspect of parallel programing,
far more important than algorithmic considerations. The programming system Linda [50, 51], also called a
coordination language , is designed to address the data handling explicitly. Linda is not a language as such,
but can, and has been, incorporated into other languages.

The basic concept of Linda is tuple space: data is added to a pool of globally accessible information by
adding a label to it. Processes then retrieve data by their label, and without needing to know which processes
added them to the tuple space.

Linda is aimed primarily at a different computation model than is relevant for High-Performance Computing
(HPC): it addresses the needs of asynchronous communicating processes. However, is has been used for
scientific computation [29]. For instance, in parallel simulations of the heat equation (section 4.3), proces-
sors can write their data into tuple space, and neighbouring processes can retrieve their ghost region without
having to know its provenance. Thus, Linda becomes one way of implementing one-sided communication .
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2.5.7 OS-based approaches

It is possible to design an architecture with a shared address space, and let the data movement be handled
by the operating system. The Kendall Square computer [79] had an architecture name ‘all-cache’, where
no data was natively associated with any processor. Instead, all data was considered to be cached on a
processor, and moved through the network on demand, much like data is moved from main memory to
cache in a regular CPU. This idea is analogous to the numa support in current SGI architectures.

2.5.8 Active messages

The MPI paradigm (section 2.5.3.3) is traditionally based on two-sided operations: each data transfer re-
quires an explicit send and receive operation. This approach works well with relatively simple codes, but
for complicated problems it becomes hard to orchestrate all the data movement. One of the ways to simplify
consists of using active messages . This is used in the package Charm++[76].

With active messages, one processor can send data to another, without that second processor doing an ex-
plicit receive operation. Instead, the recipient declares code that handles the incoming data, a ‘method’ in
objective orientation parlance, and the sending processor calls this method with the data that it wants to
send. Since the sending processor in effect activates code on the other processor, this is also known as re-
mote method invocation . A big advantage of this method is that overlap of communication and computation
becomes easier to realize.

As an example, consider the matrix-vector multiplication with a tridiagonal matrix

∀i : yi ← 2xi − xi+1 − xi−1.

See section 4.2.2.1 for an explanation of the origin of this problem in PDEs. Assuming that each processor
has exactly one index i, the MPI code could look like:

if ( /* I am the first or last processor */ )
n_neighbours = 1;

else
n_neighbours = 2;

/* do the MPI_Isend operations on my local data */

sum = 2*local_x_data;
received = 0;
for (neighbour=0; neighbour<n_neighbours; neighbour++) {

MPI_WaitAny( /* wait for any incoming data */ )
sum = sum - /* the element just received */
received++
if (received==n_neighbours)

local_y_data = sum
}
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With active messages this looks like

void incorporate_neighbour_data(x) {
sum = sum-x;
if (received==n_neighbours)

local_y_data = sum
}
sum = 2*local_xdata;
received = 0;
all_processors[myid+1].incorporate_neighbour_data(local_x_data);
all_processors[myid-1].incorporate_neighbour_data(local_x_data);

2.5.9 Bulk synchronous parallelism

The MPI library (section 2.5.3.3 can lead to very efficient code. The price for this is that the programmer
needs to spell out the communication in great detail. On the other end of the spectrum, PGAS languages
(section 2.5.6) ask very little of the programmer, but give not much performance in return. One attempt
to find a middle ground is the Bulk Synchronous Parallel (BSP) model [126, 120]. Here the programmer
needs to spell out the communications, but not their ordering.

The BSP model orders the program into a sequence of supersteps , each of which ends with a barrier
synchronization. The communications that are started in one superstep are all asynchronous and rely on the
barrier to be completed. This makes programming easier and removes the possibility of deadlock.

Exercise 2.8. Consider the parallel summing example in section 2.1. Argue that a BSP imple-
mentation needs log2 n supersteps.

Because of its synchronization of the processors through the barriers concluding the supersteps the BSP
model can do a simple cost analysis of parallel algorithms. Also, in its originally proposed form the BSP
model called for an overdecomposition of the problem which assigns multiple processes to each processor,
as well as random placement of data and tasks. A statistical argument tells us then that with high likelihood
this will give a good balance of work and communication.

The BSP model is implemented in BSPlib [71], and recently was also used for Google’s Pregel [94].

2.6 Topologies

If a number of processors are working together on a single task, most likely they need to communicate data.
For this reason there needs to be a way for data to make it from any processor to any other. In this section
we will discuss some of the possible schemes to connect the processors in a parallel machine.

In order to get an appreciation for the fact that there is a genuine problem here, consider two simple schemes
that do not ‘scale up’:
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• Ethernet is a connection scheme where all machines on a network are on a single cable9. If one
machine puts a signal on the wire to send a message, and another also wants to send a message,
the latter will detect that the sole available communication channel is occupied, and it will wait
some time before retrying its send operation. Receiving data on ethernet is simple: messages
contain the address of the intended recipient, so a processor only has to check whether the signal
on the wire is intended for it.
The problems with this scheme should be clear. The capacity of the communication channel is
finite, so as more processors are connected to it, the capacity available to each will go down.
Because of the scheme for resolving conflicts, the average delay before a message can be started
will also increase10.
• In a fully connected configuration, each processor has one wire for the communications with

each other processor. This scheme is perfect in the sense that messages can be sent in the mini-
mum amount of time, and two messages will never interfere with each other. The amount of data
that can be sent from one processor is no longer a decreasing function of the number of proces-
sors; it is in fact an increasing function, and if the network controller can handle it, a processor
can even engage in multiple simultaneous communications.
The problem with this scheme is of course that the design of the network interface of a processor
is no longer fixed: as more processors are added to the parallel machine, the network interface
gets more connecting wires. The network controller similarly becomes more complicated, and
the cost of the machine increases faster than linearly in the number of processors.

In this section we will see a number of schemes that can be increased to large numbers of processors.

2.6.1 Some graph theory

The network that connects the processors in a parallel computer can conveniently be described with some
elementary graph theory concepts. We describe the parallel machine with a graph where each processor is
a node, and two nodes are connected11 if there is a direct connection between them.

We can then analyze two important concepts of this graph.

First of all, the degree of a node in a graph is the number of other nodes it is connected to. With the
nodes representing processors, and the edges the wires, it is clear that a high degree is not just desirable for
efficiency of computing, but also costly from an engineering point of view. We assume that all processors
have the same degree.

Secondly, a message traveling from one processor to another, through one or more intermediate nodes, will
most likely incur some delay at each stage of the path between the nodes. For this reason, the diameter
of the graph is important. The diameter is defined as the maximum shortest distance, counting numbers of
links, between any two nodes:

d(G) = max
i,j
|shortest path between i and j|.

9. We are here describing the original design of Ethernet. With the use of switches, especially in an HPC context, this descrip-
tion does not really apply anymore.
10. It was initially thought that ethernet would be inferior to other solutions such as IBM’s ‘token ring’. It takes fairly sophisti-
cated statistical analysis to prove that it works a lot better than was naively expected.
11. We assume that connections are symmetric, so that the network is an undirected graph .
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If d is the diameter, and if sending a message over one wire takes unit time, this means a message will
always arrive in at most time d.

Exercise 2.9. Find a relation between the number of processors, their degree, and the diameter
of the connectivity graph.

In addition to the question ‘how long will a message from processor A to processor B take’, we often worry
about conflicts between two simultaneous messages: is there a possibility that two messages, under way at
the same time, will need to use the same network link? In figure 2.13 we illustrate what happens if every
processor pi with i < n/2 send a message to pi+n/2: there will be n/2 messages trying to get through the
wire between pn/2−1 and pn/2. This sort of conflict is called congestion or contention . Clearly, the more

Figure 2.13: Contention for a network link due to simultaneous messages

links a parallel comupter has, the smaller the chance of congestion.

A precise way to describe the likelihood of congestion, is to look at the bisection width . This is defined as
the minimum number of links that have to be removed to partition the processor graph into two unconnected
graphs. For instance, consider processors connected as a linear array, that is, processor Pi is connected to
Pi−1 and Pi+1. In this case the bisection width is 1.

The bisection width w describes how many messages can, guaranteed, be under way simultaneously in a
parallel computer. Proof: take w sending and w receiving processors. The w paths thus defined are disjoint:
if they were not, we could separate the processors into two groups by removing only w − 1 links.

In practice, of course, more than w messages can be under way simultaneously. For instance, in a linear
array, which has w = 1, P/2 messages can be sent and received simultaneously if all communication is
between neighbours, and if a processor can only send or receive, but not both, at any one time. If processors
can both send and receive simultaneously, P messages can be under way in the network.

Bisection width also describes redundancy in a network: if one or more connections are malfunctioning,
can a message still find its way from sender to receiver?

While bisection width is a measure express as a number of wires, in practice we care about the capacity
through those wires. The relevant concept here is bisection bandwidth : the bandwidth across the bisection
width, which is the product of the bisection width, and the capacity (in bits per second) of the wires.
Bisection bandwidth can be considered as a measure for the bandwidth that can be attained if an arbitrary
half of the processors communicates with the other half. Bisection bandwidth is a more realistic measure
than the aggregate bandwidth which is sometimes quoted and which is defined as the total data rate if every
processor is sending: the number of processors times the bandwidth of a connection times the number
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of simultaneous sends a processor can perform. This can be quite a high number, and it is typically not
representative of the communication rate that is achieved in actual applications.

2.6.2 Linear arrays and rings

A simple way to hook up multiple processors is to connect them in a linear array: every processor has
a number i, and processor Pi is connected to Pi−1 and Pi+1. The first and last processor are possible
exceptions: if they are connected to each other, we call the architecture a ring network .

This solution requires each processor to have two network connections, so the design is fairly simple.

Exercise 2.10. What is the bisection width of a linear array? Of a ring?

Exercise 2.11. With the limited connections of a linear array, you may have to be clever about
how to program parallel algorithms. For instance, consider a ‘broadcast’ operation:
processor 0 has a data item that needs to be sent to every other processor.
We make the following simplifying assumptions:
• a processor can send any number of messages simultaneously,
• but a wire can can carry only one message at a time; however,
• communication between any two processors takes unit time, regardless the num-

ber of processors in between them.
In a fully connected network or a star network you can simply write
for i = 1 . . . N − 1:

send the message to processor i
With the assumption that a processor can send multiple messages, this means that the
operation is done in one step.
Now consider a linear array. Show that, even with this unlimited capacity for sending,
the above algorithm runs into trouble because of congestion.
Find a better way to organize the send operations. Hint: pretend that your processors
are connected as a binary tree. Assume that there are N = 2n − 1 processors. Show
that the broadcast can be done in logN stages, and that processors only need to be
able to send a single message simultaneously.

This exercise is an example of embedding a ‘logical’ communication pattern in a physical one.

2.6.3 2D and 3D arrays

A popular design for parallel computers is to organize the processors in a two-dimensional or three-
dimensional cartesian mesh . This means that every processor has a coordinate (i, j) or (i, j, k), and it is
connected to its neighbours in all coordinate directions. The processor design is still fairly simple: the num-
ber of network connections (the degree of the connectivity graph) is twice the number of space dimensions
(2 or 3) of the network.

It is a fairly natural idea to have 2D or 3D networks, since the world around us is three-dimensional, and
computers are often used to model real-life phenomena. If we accept for now that the physical model
requires nearest neighbour type communications (which we will see is the case in section 4.2.2.2), then a
mesh computer is a natural candidate for running physics simulations.
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Exercise 2.12. What is the diameter of a 3D cube of n×n×n processors? What is the bisection
width? How does that change if you add wraparound torus connections?

Exercise 2.13. Your parallel computer has its processors organized in a 2D grid. The chip man-
ufacturer comes out with a new chip with same clock speed that is dual core instead of
single core, and that will fit in the existing sockets. Critique the following argument:
”the amount work per second that can be done (that does not involve communication)
doubles; since the network stays the same, the bisection bandwidth also stays the same,
so I can reasonably expect my new machine to become twice as fast12.”

Grid-based designs often have so-called wrap-around or torus connections, which connect the left and right
sides of a 2D grid, as well as the top and bottom. This is illustrated in figure 2.14.

Figure 2.14: A 2D grid with torus connections

Some computer designs claim to be a grid of high dimensionality, for instance 5D, but not all dimensional
are equal here. For instance a 3D grid where each node is quad-socket quad-core can be considered as a 5D
grid. However, the last two dimensions are fully connected.

2.6.4 Hypercubes

Above we gave a hand-waving argument for the suitability of mesh-organized processors, based on the
prevalence of nearest neighbour communications. However, sometimes sends and receives between arbi-
trary processors occur. One example of this is the above-mentioned broadcast. For this reason, it is desirable
to have a network with a smaller diameter than a mesh. On the other hand we want to avoid the complicated
design of a fully connected network.

A good intermediate solution is the hypercube design. An n-dimensional hypercube computer has 2n pro-
cessors, with each processor connected to one other in each dimension; see figure 2.15.

An easy way to describe this is to give each processor an address consisting of d bits: we give each node of
a hypercube a number that is the bit pattern describing its location in the cube; see figure 2.16.

12. With the numbers one and two replaced by higher numbers, this is actually not a bad description of current trends in
processor design.
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Figure 2.15: Hypercubes

Figure 2.16: Numbering of the nodes of a hypercube

With this numbering scheme, a processor is then connected to all others that have an address that differs by
exactly one bit. This means that, unlike in a grid, a processor’s neighbours do not have numbers that differ
by 1 or

√
P , but by 1, 2, 4, 8, . . ..

The big advantages of a hypercube design are the small diameter and large capacity for traffic through the
network.

Exercise 2.14. What is the diameter of a hypercube? What is the bisection width?

One disadvantage is the fact that the processor design is dependent on the total machine size. In prac-
tice, processors will be designed with a maximum number of possible connections, and someone buying a
smaller machine then will be paying for unused capacity. Another disadvantage is the fact that extending a
given machine can only be done by doubling it: other sizes than 2p are not possible.

Exercise 2.15. Consider the parallel summing example of section 2.1, and give the execution
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time of a parallel implementation on a hypercube. Show that the theoretical speedup
from the example is attained (up to a factor) for the implementation on a hypercube.

2.6.4.1 Embedding grids in a hypercube

Above we made the argument that mesh-connected processors are a logical choice for many applications
that model physical phenomena. Hypercubes do not look like a mesh, but they have enough connections
that they can simply pretend to be a mesh by ignoring certain connections.

Let’s say that we want the structure of a 1D array: we want processors with a numbering so that processor i
can directly send data to i− 1 and i+ 1. We can not use the obvious numbering of nodes as in figure 2.16.
For instance, node 1 is directly connected to node 0, but has a distance of 2 to node 2. The right neighbour
of node 3 in a ring, node 4, even has the maximum distance of 3 in this hypercube. Clearly we need to
renumber the nodes in some way.

What we will show is that it’s possible to walk through a hypercube, touching every corner exactly once,
which is equivalent to embedding a 1D mesh in the hypercube.

The basic concept here is a (binary reflected) Gray code [58]. This is a way of ordering the binary numbers
0 . . . 2d − 1 as g0, . . . g2d−1 so that gi and gi+1 differ in only one bit. Clearly, the ordinary binary numbers
do not satisfy this: the binary representations for 1 and 2 already differ in two bits. Why do Gray codes help
us? Well, since gi and gi+1 differ only in one bit, it means they are the numbers of nodes in the hypercube
that are directly connected.

Figure 2.17 illustrates how to construct a Gray code. The procedure is recursive, and can be described
informally as ‘divide the cube into two subcubes, number the one subcube, cross over to the other subcube,
and number its nodes in the reverse order of the first one’.

1D Gray code : 0 1

2D Gray code :
1D code and reflection: 0 1

... 1 0

append 0 and 1 bit: 0 0
... 1 1

3D Gray code :
2D code and reflection: 0 1 1 0

... 0 1 1 0

0 0 1 1
... 1 1 0 0

append 0 and 1 bit: 0 0 0 0
... 1 1 1 1

Figure 2.17: Gray codes

Since a Gray code offers us a way to embed a one-dimensional ‘mesh’ into a hypercube, we can now work
our way up.

Exercise 2.16. Show how a square mesh of 22d nodes can be embedded in a hypercube by
appending the bit patterns of the embeddings of two 2d node cubes. How would you
accomodate a mesh of 2d1+d2 nodes? A three-dimensional mesh of 2d1+d2+d3 nodes?
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2.6.5 Switched networks

Above, we briefly discussed fully connected processors. They are impractical if the connection is made
by making a large number of wires between all the processors. There is another possibility, however, by
connecting all the processors to a switch or switching network. Some popular network designs are the
crossbar , the butterfly exchange , and the fat tree .

Switching networks are made out of switching elements, each of which have a small number (up to about a
dozen) of inbound and outbound links. By hooking all processors up to some switching element, and having
multiple stages of switching, it then becomes possible to connect any two processors by a path through the
network.

2.6.5.1 Cross bar

Figure 2.18: A simple cross bar connecting 6 inputs to 6 outputs

The simplest switching network is a cross bar, an arrangement of n horizontal and vertical lines, with a
switch element on each intersection that determines whether the lines are connected; see figure 2.18. If
we designate the horizontal lines as inputs the vertical as outputs, this is clearly a way of having n inputs
be mapped to n outputs. Every combination of inputs and outputs (sometimes called a ‘permutation’) is
allowed.

2.6.5.2 Butterfly exchange

Butterfly exchanges are typically built out of small switching elements, and they have multiple stages; as
the number of processors grows, the number of stages grows with it. As you can see in figure 2.20, butterfly
exchanges allow several processors to access memory simultaneously. Also, their access times are identical,
so exchange networks are a way of implementing a UMA architecture; see section 2.3.1. One computer that
was based on a Butterfly exchange network was the BBN Butterfly13.

Exercise 2.17. For both the simple cross bar and the butterfly exchange, the network needs to
be expanded as the number of processors grows. Give the number of wires (of some
unit length) and the number of switching elements that is needed in both cases to
connect n processors and memories. What is the time that a data packet needs to go

13. http://en.wikipedia.org/wiki/BBN_Butterfly
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Figure 2.19: A butterfly exchange network for two and four processors/memories

Figure 2.20: Two independent routes through a butterfly exchange network

from memory to processor, expressed in the unit time that it takes to traverse a unit
length of wire and the time to traverse a switching element?

Routing through a butterfly network is done based on considering the bits in the destination address. On the
i-th level the i-th digit is considered; if this is 1, the left exit of the switch is taken, if 0, the right exit. This
is illustrated in figure 2.21.

2.6.5.3 Fat-trees

If we were to connect switching nodes like a tree, there would be a big problem with congestion close to
the root since there are only two wires attached to the root note. Say we have a k-level tree, so there are 2k

leaf nodes. If all leaf nodes in the left subtree try to communicate with nodes in the right subtree, we have
2k−1 messages going through just one wire into the root, and similarly out through one wire. A fat-tree
is a tree network where each level has the same total bandwidth, so that this congestion problem does not
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Figure 2.21: Routing through a three-stage butterfly exchange network

occur: the root will actually have 2k−1 incoming and outgoing wires attached [59]; see figure 2.22. The first
successful computer architecture based on a fat-tree was the Connection Machines CM5.

In fat-trees, as in other switching networks, each message carries its own routing information. Since in a
fat-tree the choices are limited to going up a level, or switching to the other subtree at the current level,
a message needs to carry only as many bits routing information as there are levels, which is log2 n for n
processors.

The theoretical exposition of fat-trees in [90] shows that fat-trees are optimal in some sense: it can deliver
messages as fast (up to logarithmic factors) as any other network that takes the same amount of space to
build. The underlying assumption of this statement is that switches closer to the root have to connect more
wires, therefore take more components, and correspondingly are larger.

This argument, while theoretically interesting, is of no practical significance, as the physical size of the
network hardly plays a role in the biggest currently available computers that use fat-tree interconnect. For
instance, in the Ranger supercomputer of The University of Texas at Austin, the fat-tree switch connects
60,000 cores, yet takes less than 10 percent of the floor space.

A fat tree, as sketched above, would be costly to build, since for every next level a new, bigger, switch would
have to be designed. In practice, therefore, a network with the characteristics of a fat-tree is constructed
from simple switching elements; see figure 2.23. This network is equivalent in its bandwidth and routing
possibilities to a fat-tree. Routing algorithms will be slightly more complicated: in a fat-tree, a data packet
can go up in only one way, but here a packet has to know to which of the two higher switches to route.
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Figure 2.22: A fat tree with a three-level interconnect

Figure 2.23: A fat-tree built from simple switching elements
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This type of switching network is one case of a Clos network [22].

2.6.6 Co-processors

Current CPUs are built to be moderately efficient at just about any conceivable computation. This implies
that by restricting the functionality of a processor it may be possible to raise its efficiency, or lower its
power consumption at similar efficiency. Thus, the idea of incorporating a co-processor has been explored
many times. For instance, Intel’s 8086 chip, which powered the first generation of IBM PCs, could have a
numerical co-processor, the 80287, added to it. This processor was very efficient at transcendental functions
and it also incorporated SIMD technology. Using a separate processor for graphics has also been popular14,
leading to the SSE instructions for the x86 processor, and separate GPU units to be attached to the PCI-X
bus.

Co-processors can be programmed in two different ways: sometimes it is seamlessly integrated, and certain
instructions are automatically executed there, rather than on the ‘host’ processor. On the other hahd, it
is also possible that co-processor functions need to be explicitly invoked, and it may even be possible to
overlap co-processor functions with host functions. The latter case may sound attractive from an efficiency
point of view, but it raises a serious problem of programmability. The programmer now needs to identify
explicitly two streams of work: one for the host processor and one for the co-processor.

Some notable parallel machines with co-processors where:

• The Intel Paragon (1993) had two processors per node, one for communication and the other for
computation. These were in fact identical, the Intel i860 Intel i860 processor. In a later revision,
it became possible to pass data and function pointers to the communication processors.
• The IBM Roadrunner at Los Alamos was the first machine to reach a PetaFlop15. It achieved

this speed through the use of Cell co-processors. Incidentally, the Cell processor is in essence the
engine of the Sony Playstation3, showing again the commoditization of supercomputers (sec-
tion 2.2.3).
• The Chinese Tianhe-1A topped the Top 500 list in 2010, reaching about 2.5 PetaFlops through

the use of NVidia GPUs.

The Roadrunner and Tianhe-1A are examples of co-processors that are very powerful, and that need to be
explicitly programmed independently of the host CPU. For instance, code runing on the the GPUs of the
Tianhe-1A is programmed in CUDA and compiled separately.

In both cases the programmability problem is further exacerbated by the fact that the co-processor can not
directly talk to the network. To send data from one co-processor to another it has to be passed to a host
processor, from there through the network to the other host processor, and only then moved to the target
co-processor.

14. Further examples are the use of co-processors for Digital Signal Processing (DSP) instructions, as well as FPGA boards
which can be reconfigured to accomodate specific needs. We will not go into these.
15. The Grape computer had reached this point earlier, but that was a special purpose machine for molecular dynamics calcula-
tions.
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2.6.7 Bandwidth and latency

The statement above that sending a message can be considered a unit time operation, is of course unrealistic.
A large message will take longer to transmit than a short one. There are two concepts to arrive at a more
realistic description of the transmission process; we have already seen this in section 1.3.2 in the context of
transferring data between cache levels of a processor.

latency Setting up a communication between two processors takes an amount of time that is independent
of the message size. The time that this takes is known as the latency of a message. There are
various causes for this delay.
• The two processors engage in ‘hand-shaking’, to make sure that the recipient is ready, and

that appropriate buffer space is available for receiving the message.
• The message needs to be encoded for transmission by the sender, and decoded by the re-

ceiver.
• The actual transmission may take time: parallel computers are often big enough that, even

at lightspeed, the first byte of a message can take hundreds of cycles to traverse the distance
between two processors.

bandwidth After a transmission between two processors has been initiated, the main number of interest is
the number of bytes per second that can go through the channel. This is known as the bandwidth .
The bandwidth can usually be determined by the channel rate , the rate at which a physical link
can deliver bits, and the channel width , the number of physical wires in a link. The channel width
is typically a multiple of 16, usually 64 or 128. This is also expressed by saying that a channel
can send one or two 8-byte words simultaneously.

Bandwidth and latency are formalized in the expression

T (n) = α+ βn

for the transmission time of an n-byte message. Here, α is the latency and β is the time per byte, that is,
the inverse of bandwidth.

It would be possible to refine this formulas as

T (n, p) = α+ βn+ γp

where p is the number of network ‘hops’ that is traversed. However, on most networks the value of γ is far
lower than of α, so we will ignore it here. Also, in fat-tree networks (section 2.6.5.3) the number of hops is
of the order of logP , where P is the total number of processors, so it can never be very large anyway.

2.7 Efficiency of parallel computing

There are two important reasons for using a parallel computer: to have access to more memory or to obtain
higher performance. It is easy to characterize the gain in memory, as the total memory is the sum of the
individual memories. The speed of a parallel computer is harder to characterize. This section will have an
extended discussion on theoretical measures for expressing and judging the gain in execution speed from
going to a parallel architecture.
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2.7.1 Definitions

A simple approach to defining speedup is to let the same program run on a single processor, and on a parallel
machine with p processors, and to compare runtimes. With T1 the execution time on a single processor and
Tp the time on p processors, we define the speedup as Sp = T1/Tp. (Sometimes T1 is defined as ‘the best
time to solve the problem on a single processor’, which allows for using a different algorithm on a single
processor than in parallel.) In the ideal case, Tp = T1/p, but in practice we don’t expect to attain that,
so SP ≤ p. To measure how far we are from the ideal speedup, we introduce the efficiency Ep = Sp/p.
Clearly, 0 < Ep ≤ 1.

There is a practical problem with this definition: a problem that can be solved on a parallel machine may
be too large to fit on any single processor. Conversely, distributing a single processor problem over many
processors may give a distorted picture since very little data will wind up on each processor. Below we will
discuss more realistic measures of speed-up.

There are various reasons why the actual speed is less than P . For one, using more than one processors
necessitates communication, which is overhead that was not part of the original computation. Secondly, if
the processors do not have exactly the same amount of work to do, they may be idle part of the time (this is
known as load unbalance), again lowering the actually attained speedup. Finally, code may have sections
that are inherently sequential.

Communication between processors is an important source of a loss of efficiency. Clearly, a problem that
can be solved without communication will be very efficient. Such problems, in effect consisting of a number
of completely independent calculations, is called embarassingly parallel ; it will have close to a perfect
speedup and efficiency.
Exercise 2.18. The case of speedup larger than the number of processors is called superlinear

speedup . Give a theoretical argument why this can never happen.
In practice, superlinear speedup can happen. For instance, suppose a problem is too large to fit in memory,
and a single processor can only solve it by swapping data to disc. If the same problem fits in the memory of
two processors, the speedup may well be larger than 2 since disc swapping no longer occurs. Having less,
or more localized, data may also improve the cache behaviour of a code.

2.7.2 Asymptotics

If we ignore limitations such as that the number of processors has to be finite, or the physicalities of the
interconnect between them, we can derive theoretical results on the limits of parallel computing. This sec-
tion will give a brief introduction to such results, and discuss their connection to real life high performance
computing.

Consider for instance the matrix-matrix multiplication C = AB, which takes 2N3 operations where N
is the matrix size. Since there are no dependencies between the operations for the elements of C, we can
perform them all in parallel. If we had N2 processors, we could assign each to an (i, j) coordinate in C,
and have it compute cij in 2N time. Thus, this parallel operation has efficiency 1, which is optimal.
Exercise 2.19. Show that this algorithm ignores some serious issues about memory usage:

• If the matrix is kept in shared memory, how many simultaneous reads from each
memory locations are performed?
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• If the processors keep the input and output to the local computations in local
storage, how much duplication is there of the matrix elements?

Adding N numbers {xi}i=1...N can be performed in log2N time with N/2 processors. As a simple exam-
ple, consider the sum of n numbers: s =

∑n
i=1 ai. If we have n/2 processors we could compute:

1. Define s(0)
i = ai.

2. Iterate with j = 1, . . . , log2 n:
3. Compute n/2j partial sums s(j)

i = s
(j−1)
2i + s

(j−1)
2i+1

We see that the n/2 processors perform a total of n operations (as they should) in log2 n time. The efficiency
of this parallel scheme is O(1/ log2 n), a slowly decreasing function of n.
Exercise 2.20. Show that, with the scheme for parallel addition just outlined, you can multiply

two matrices in log2N time with N3/2 processors. What is the resulting efficiency?
It is now a legitimate theoretical question to ask

• If we had infinitely many processors, what is the lowest possible time complexity for matrix-
matrix multiplication, or
• Are there faster algorithms that still have O(1) efficiency?

Such questions have been researched (see for instance [67]), but they have little bearing on high perfor-
mance computing.

A first objection to these kinds of theoretical bounds is that they implicitly assume some form of shared
memory. In fact, the formal model for these algorithms is called a Parallel Random Access Machine
(PRAM), where the assumption is that every memory location is accessible to any processor. Often an
additional assumption is made that multiple access to the same location are in fact possible16. These as-
sumptions are unrealistic in practice, especially in the context of scaling up the problem size and the number
of processors. A further objection to the PRAM model is that even on a single processor it ignores the mem-
ory hierarchy; section 1.3.

But even if we take distributed memory into account, theoretical results can still be unrealistic. The above
summation algorithm can indeed work unchanged in distributed memory, except that we have to worry
about the distance between active processors increasing as we iterate further. If the processors are connected
by a linear array, the number of ‘hops’ between active processors doubles, and with that, asymptotically,
the computation time of the iteration. The total execution time then becomes n/2, a disappointing result
given that we throw so many processors at the problem.

What if the processors are connected with a hypercube topology? It is not hard to see that the summation
algorithm can then indeed work in log2 n time. However, as n→∞, can we build a sequence of hypercubes
of n nodes and keep the communication time between two connected constant? Since communication time
depends on latency, which partly depends on the length of the wires, we have to worry about the physical
distance between nearest neighbours.

The crucial question here is whether the hypercube (an n-dimensional object) can be embedded in 3-
dimensional space, while keeping the distance (measured in meters) constant between connected neigh-
bours. It is easy to see that a 3-dimensional grid can be scaled up arbitrarily while maintaining a unit wire

16. This notion can be made precise; for instance, one talks of a CREW-PRAM, for Concurrent Read, Exclusive Write PRAM.
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length, but the question is not clear for a hypercube. There, the length of the wires may have to increase as
n grows, which runs afoul of the finite speed of electrons.

We sketch a proof (see [44] for more details) that, in our three dimensional world and with a finite speed
of light, speedup is limited to 4

√
n for a problem on n processors, no matter the interconnect. The argument

goes as follows. Consider an operation that involves collecting a final result on one processor. Assume
that each processor takes a unit volume of space, produces one result per unit time, and can send one data
item per unit time. Then, in an amount of time t, at most the processors in a ball with radius t, that is,
O(t3) processors can contribute to the final result; all others are too far away. In time T , then, the number
of operations that can contribute to the final result is

∫ T
0 t3dt = O(T 4). This means that the maximum

achievable speedup is the fourth root of the sequential time.

Finally, the question ‘what if we had infinitely many processors’ is not realistic as such, but we will allow it
in the sense that we will ask the weak scaling question (section 2.7.4) ‘what if we let the problem size and
the number of processors grow proportional to each other’. This question is legitimate, since it corresponds
to the very practical deliberation whether buying more processors will allow one to run larger problems,
and if so, with what ‘bang for the buck’.

2.7.3 Amdahl’s law

One reason for less than perfect speedup is that parts of a code can be inherently sequential. This limits the
parallel efficiency as follows. Suppose that 5% of a code is sequential, then the time for that part can not be
reduced, no matter how many processors are available. Thus, the speedup on that code is limited to a factor
of 20. This phenomenon is known as Amdahl’s Law [1], which we will now formulate.

Let Fs be the sequential fraction and Fp be the parallel fraction (or more strictly: the ‘parallelizable’
fraction) of a code, respectively. Then Fp + Fs = 1. The parallel execution time Tp on p processors is the
sum of the part that is sequential T1Fs and the part that can be parallelized T1Fp/P :

TP = T1(Fs + Fp/P ). (2.3)

As the number of processors grows P → ∞, the parallel execution time now approaches that of the
sequential fraction of the code: TP ↓ T1Fs. We conclude that speedup is limited by SP ≤ 1/Fs and
efficiency is a decreasing function E ∼ 1/P .

The sequential fraction of a code can consist of things such as I/O operations. However, there are also parts
of a code that in effect act as sequential. Consider a program that executes a single loop, where all iterations
can be computed independently. Clearly, this code is easily parallelized. However, by splitting the loop in
a number of parts, one per processor, each processor now has to deal with loop overhead: calculation of
bounds, and the test for completion. This overhead is replicated as many times as there are processors. In
effect, loop overhead acts as a sequential part of the code.

Exercise 2.21. Investigate the implications of Amdahls’s law: if the number of processors P
increases, how does the parallel fraction of a code have to increase to maintain a fixed
efficiency?
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2.7.3.1 Amdahl’s law with communication overhead

In a way, Amdahl’s law, sobering as it is, is even optimistic. Parallelizing a code will give a certain speedup,
but it also introduces communication overhead that will lower the speedup attained. Let us refine our model
of equation (2.3) (see [86, p. 367]):

Tp = T1(Fs + Fp/P ) + Tc,

where Tc is a fixed communication time.

To assess the influence of this communication overhead, we assume that the code is fully parallelizable,
that is, Fp = 1. We then find that

Sp =
T1

T1/p+ Tc
.

For this to be close to p, we need Tc � T1/p or p � T1/Tc. In other words, the number of processors
should not grow beyond the ratio of scalar execution time and communication overhead.

2.7.3.2 Gustafson’s law

Amdahl’s law was thought to show that large numbers of processors would never pay off. However, the
implicit assumption in Amdahl’s law is that there is a fixed computation which gets executed on more
and more processors. In practice this is not the case: typically there is a way of scaling up a problem (in
chapter 4 you will learn the concept of ‘discretization’), and one tailors the size of the problem to the
number of available processors.

A more realistic assumption would be to say that the sequential fraction is independent of the problem size,
and the parallel fraction can be arbitrarily extended. To formalize this, instead of starting with the execution
time of the sequential program, let us start with the execution time of the parallel program, and say that

Tp = Fs + Fp ≡ 1,

and the execution time of this problem on a sequential processor would then be

T1 = Fs + p · Fp.

This gives us a speedup of

Sp =
T1

Tp
=
Fs + p · Fp
Fs + Fp

= Fs + p · Fp = p− (p− 1) · Fs.

That is, speedup is now a function that decreases from p, linearly with p.
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2.7.3.3 Amdahl’s law and hybrid programming

Above, you learned about hybrid programming, a mix between distributed and shared memory program-
ming. This leads to a new form of Amdahl’s law.

Suppose we have p nodes with c cores each, and Fp describes the fraction of the code that uses c-way thread
parallelism. We assume that the whole code is fully parallel over the p nodes. The ideal speed up would be
pc, and the ideal parallel running time T1/(pc), but the actual running time is

Tp,c = T1

(
Fs
p

+
Fp
pc

)
=
T1

pc
(Fsc+ Fp) =

T1

pc
(1 + Fs(c− 1)) .

Exercise 2.22. Show that the speedup T1/Tp,c can be approximated by p/Fs.
In the original Amdahl’s law, speedup was limited by the sequential portion to a fixed number 1/Fs, in
hybrid programming it is limited by the task parallel portion to p/Fs.

2.7.4 Scalability

Above, we remarked that splitting a given problem over more and more processors does not make sense: at
a certain point there is just not enough work for each processor to operate efficiently. Instead, in practice,
users of a parallel code will either choose the number of processors to match the problem size, or they will
solve a series of increasingly larger problems on correspondingly growing numbers of processors. In both
cases it is hard to talk about speedup. Instead, the concept of scalability is used.

We distinguish two types of scalability. So-called strong scalability is in effect the same as speedup, dis-
cussed above. We say that a program shows strong scalability if, partitioned over more and more processors,
it shows perfect or near perfect speedup. Typically, one encounters statements like ‘this problem scales up
to 500 processors’, meaning that up to 500 processors the speedup will not noticeably decrease from op-
timal. It is not necessary for this problem to fit on a single processors: often a smaller number such as 64
processors is used as the baseline from which scalability is judged.

More interestingly, weak scalability is a more vaguely defined term. It describes that, as problem size and
number of processors grow in such a way that the amount of data per processor stays constant, the speed in
operations per second of each processor also stays constant. This measure is somewhat hard to report, since
the relation between the number of operations and the amount of data can be complicated. If this relation
is linear, one could state that the amount of data per processor is kept constant, and report that parallel
execution time is constant as the number of processors grows.

Although in industry parlance the term ‘scalability’ is sometimes applied to architectures or whole computer
systems17, in scientific computing scalability is a property of an algorithm and the way it is parallelized on
an architecture, in particular noting the way data is distributed. In section 6.2 you will find an analysis of
the matrix-vector product operation: distributing a matrix by block rows turns out not to be scalable, but a
two-dimensional distribution by submatrices is.

17. “A scalable computer is a computer designed from a small number of basic components, without a single bottleneck com-
ponent, so that the computer can be incrementally expanded over its designed scaling range, delivering linear incremental perfor-
mance for a well-defined set of scalable applications. General-purpose scalable computers provide a wide range of processing,
memory size, and I/O resources. Scalability is the degree to which performance increments of a scalable computer are linear” [6].
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2.8 Multi-threaded architectures

The architecture of modern CPUs is largely dictated by the fact that getting data from memory is much
slower than processing it. Hence, a hierarchy of ever faster and smaller tries to keep data as close to the
processing unit as possible, mitigating the long latency and small bandwidth of main memory. The ILP in
the processing unit also helps to hide the latency and more fully utilize the available bandwidth.

However, finding ILP is a job for the compiler and there is a limit to what it can practically find. On the other
hand, scientific codes are often very data parallel in a sense that is obvious to the programmer, though not
necessarily to the compiler. Would it be possible for the programmer to specify this parallelism explicitly
and for the processor to use it?

In section 2.2.1 you saw that SIMD architectures can be programmed in an explicitly data parallel way.
What if we have a great deal of data parallelism but not that many processing units? In that case, we could
turn the parallel instruction streams into threads (see section 2.5.1) and have multiple threads be executed
on each processing unit. Whenever a tread would stall because of an outstanding memory request, the
processor could switch to another thread for which all the necessary inputs are available. This is called
multi-threading . While it sounds like a way of preventing the processor from waiting for memory, it can
also be viewed as a way of keeping memory maximally occupied.
Exercise 2.23. If you consider the long latency and limited bandwidth of memory as two sepa-

rate problems, does multi-threading address them both?
The problem here is that most CPUs are not good at switching quickly between threads. A context switch
(switching between one thread and another) takes a large number of cycles, comparable to a wait for data
from main memory. In a so-called Multi-Threaded Architecture (MTA) a context-switch is very efficient,
sometimes as little as a single cycle, which makes it possible for one processor to work on many threads
simultaneously.

The multi-threaded concept was explored in the Tera Computer MTA machine, which evolved into the
current Cray XMT 18.

The other example of an MTA is the GPU, where the processors work as SIMD units, while being them-
selves multi-threaded; see section 2.9.

2.9 GPU computing

A Graphics Processing Unit (GPU) (or sometimes General Purpose Graphics Processing Unit (GPGPU)) is
a special purpose processor, designed for fast graphics processing. However, since the operations done for
graphics are a form of arithmetic, GPUs have gradually evolved a design that is also useful for non-graphics
computing. The general design of a GPU is motivated by the ‘graphics pipeline’: identical operations are
performed on many data elements in a form of data parallelism (section 2.4.1), and a number of such blocks
of data parallelism can be active at the same time.

The basic limitations that hold for a CPU hold for a GPU: accesses to memory incur a long latency. The
solution to this problem in a CPU is to introduce levels of cache; in the case of a GPU a different approach

18. Tera Computer renamed itself Cray Inc. after acquiring Cray Research from SGI .
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is taken (see also section 2.8). GPUs are concerned with throughput computing , delivering large amounts
of data with high average rates, rather than any single result as quickly as possible. This is made possible
by supporting many threads (section 2.5.1) and having very fast switching between them. While one thread
is waiting for data from memory, another thread that already has its data can proceed with its computations.

Present day GPUs19have an architecture that combines SIMD and SPMD parallelism. Threads are not
completely independent, but are ordered in thread blocks , where all threads in the block execute the same
instruction, making the execution SIMD. It is also possible to schedule the same instruction stream (a ‘ker-
nel’ in Cuda terminology) on more than one thread block. In this case, thread blocks can be out of sync,
much like processes in an SPMD context. However, since we are dealing with threads here, rather than
processes, the term Single Instruction Multiple Thread (SIMT) is used.

This software design is apparent in the hardware; for instance, an NVidia GPU has 16–30 Streaming
Multiprocessors (SMs), and a SMs consists of 8 Streaming Processors (SPs), which correspond to pro-
cessor cores; see figure 2.24. The SPs act in true SIMD fashion. The number of cores in a GPU is typically
larger than in traditional multi-core processors, but the cores are more limited. Hence, the term manycore
is used here.

Figure 2.24: Diagram of a GPU

The SIMD, or data parallel , nature of GPUs becomes apparent in the way CUDA starts processes. A kernel ,
that is, a function that will be executed on the GPU, is started on mn cores by:

KernelProc<< m,n >>(args)

The collection of mn cores executing the kernel is known as a grid , and it is structured as m thread blocks
of n threads each. A thread block can have up to 512 threads.

19. The most popular GPUs today are made by NVidia, and are programmed in CUDA , an extension of the C language.
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Recall that threads share an address space (see section 2.5.1), so they need a way to identify what part of
the data each thread will operate on. For this, the blocks in a thread are numbered with x, y coordinates,
and the threads in a block are numbered with x, y, z coordinates. Each thread knows its coordinates in the
block, and its block’s coordinates in the grid.

We illustrate this with a vector addition example:
// Each thread performs one addition
__global__ void vecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

}
int main()
{

// Run grid of N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

This shows the SIMD nature of GPUs: every thread executes the same scalar program, just on different
data.

Threads in a thread block are truly data parallel: if there is a conditional that makes some threads take the
true branch and others the false branch, then one branch will be executed first, with all threads in the other
branch stopped. Subsequently, and not simultaneously, the threads on the other branch will then execute
their code. This may induce a severe performance penalty.

GPUs rely on large amount of data parallelism and the ability to do a fast context switch . This means that
they will thrive in graphics and scientific applications, where there is lots of data parallelism. However they
are unlikely to do well on ‘business applications’ and operatings systems, where the parallelism is of the
Instruction Level Parallelism (ILP) type, which is usually limited.

2.9.1 GPUs versus CPUs

These are some of the differences between GPUs and regular CPUs:
• First of all, as of this writing (late 2010), GPUs are attached processors, for instance over a

PCI-X bus , so any data they operate on has to be transferred from the CPU. Since the memory
bandwidth of this transfer is low, at least 10 times lower than the memory bandwidth in the GPU,
sufficient work has to be done on the GPU to overcome this overhead.
• Since GPUs are graphics processors, they put an emphasis on single precision floating point

arithmetic. To accomodate the scientific computing community, double precision support is in-
creasing, but double precision speed is typically half the single precision flop rate. This discrep-
ancy is likely to be addressed in fugure generations.
• A CPU is optimized to handle a single stream of instructions that can be very heterogeneous in

character; a GPU is made explicitly for data parallelism, and will perform badly on traditional
codes.
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• A CPU is made to handle one thread , or at best a small number of threads. A GPU needs a large
number of threads, far larger than the number of computational cores, to perform efficiently.

2.9.2 Expected benefit from GPUs

GPUs have rapidly gained a reputation for achieving high performance, highly cost effectively. Stories
abound of codes that were ported with minimal effort to CUDA, with a resulting speedup of sometimes 400
times. Is the GPU really such a miracle machine? Were the original codes badly programmed? Why don’t
we use GPUs for everything if they are so great?

The truth has several aspects.

First of all, a GPU is not as general-purpose as a regular CPU: GPUs are very good at doing data parallel
computing, and CUDA is good at expressing this fine-grained parallelism elegantly. In other words, GPUs
are suitable for a certain type of computation, and will be a poor fit for many others.

Conversely, a regular CPU is not necessarily good at data parallelism. Unless the code is very carefully
written, performance can degrade from optimal by approximately the following factors:

• Unless directives or explicit parallel constructs are used, compiled code will only use 1 out of
the available cores, say 4.
• If instructions are not pipelined, the latency because of the floating point pipeline adds another

factor of 4.
• If the core has independent add and multiply pipelines, another factor of 2 will be lost if they are

not both used simultaneously.
• Failure to use SIMD registers can add more to the slowdown with respect to peak performance.

Writing the optimal CPU implementation of a computational kernel often requires writing in assembler,
whereas straightforward CUDA code will achieve high performance with comparatively little effort, pro-
vided of course the computation has enough data parallelism.

2.10 Remaining topics

2.10.1 Load balancing

In much of this chapter, we assumed that a problem could be perfectly divided over processors, that is, a
processor would always be performing useful work, and only be idle because of latency in communication.
In practice, however, a processor may be idle because it is waiting for a message, and the sending processor
has not even reached the send instruction in its code. Such a situation, where one processor is working and
another is idle, is described as load unbalance: there is no intrinsic reason for the one processor to be idle,
and it could have been working if we had distributed the work load differently.

There is an asymmetry between processors having too much work and having not enough work: it is better
to have one processor that finishes a task early, than having one that is overloaded so that all others wait for
it.

Exercise 2.24. Make this notion precise. Suppose a parallel task takes time 1 on all processors
but one.
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• Let 0 < α < 1 and let one processor take time 1 + α. What is the speedup
and efficiency as function of the number of processors? Consider this both in the
Amdahl and Gustafsson sense (section 2.7.3).
• Answer the same questions if one processor takes time 1− α.

Load balancing is often expensive since it requires moving relatively large amounts of data. For instance,
section 6.4 has an analysis showing that the data exchanges during a sparse matrix-vector product is of a
lower order than what is stored on the processor. However, we will not go into the actual cost of moving: our
main concerns here are to balance the workload, and to preserve any locality in the original load distribution.

2.10.1.1 Load balancing of independent tasks

Let us first consider the case of a job that can be partitioned into independent tasks that do not communicate.
An example would be computing the pixels of a Mandelbrot set picture, where each pixel is set according
to a mathematical function that does not depend on surrounding pixels. If we could predict the time it would
take to draw an arbitrary part of the picture, we could make a perfect division of the work and assign it to
the processors. This is known as static load balancing .

More realistically, we can not predict the running time of a part of the job perfectly, and we use an overde-
composition of the work: we divide the work in more tasks than there are processors. These tasks are then
assigned to a work pool , and processors take the next job from the pool whenever they finish a job. This is
known as dynamic load balancing . Many graph and combinatorial problems can be approached this way;
see section 2.4.3.

There are results that show that randomized assignment of tasks to processors is statistically close to opti-
mal [78], but this ignores the aspect that in scientific computing tasks typically communicate frequently.

2.10.1.2 Load balancing as graph problem

Next let us consider a parallel job where the parts do communicate. In this case we need to balance both
the scalar workload and the communication.

A parallel computation can be formulated as a graph (see Appendix A.5 for an introduction to graph theory)
where the processors are the vertices, and there is an edge between two vertices if their processors need to
communicate at some point. Such a graph is often derived from an underlying graph of the problem being
solved. As an example consider the matrix-vector product y = Ax where A is a sparse matrix, and look
in detail at the processor that is computing yi for some i. The statement yi ← yi + Aijxj implies that this
processor will need the value xj , so, if this variable is on a different processor, it needs to be sent over.

We can formalize this: Let the vectors x and y be distributed disjointly over the processors, and define
uniquely P (i) as the processor that owns index i. Then there is an edge (P,Q) if there is a nonzero ele-
ment aij with P = P (i) and Q = P (j). This graph is undirected if the matrix is structurally symmetric ,
that is aij 6= 0⇔ aji 6= 0.

The distribution of indices over the processors now gives us vertex and edge weights: a processor has a
vertex weight that is the number of indices owned by it; an edge (P,Q) has a weight that is the number of
vector components that need to be sent from Q to P , as described above.
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The load balancing problem can now be formulated as follows:

Find a partitioning P = ∪iPi, such the variation in vertex weights is minimal, and
simultaneously the edge weights are as low as possible.

Minimizing the variety in vertex weights implies that all processor have approximately the same amount of
work. Keeping the edge weights low means that the amount of communication is low. These two objectives
need not be satisfiable at the same time: some trade-off is likely.

Exercise 2.25. Consider the limit case where processors are infinitely fast and bandwidth be-
tween processors is also unlimited. What is the sole remaining factor determining the
runtime? What graph problem do you need to solve now to find the optimal load bal-
ance? What property of a sparse matrix gives the worst case behaviour?

An interesting approach to load balancing comes from spectral graph theory (section A.5.5): if AG is the
adjacency matrix of an undirected graph and DG − AG the graph Laplacian , then the eigenvector u1 to
the smallest eigenvalue zero is positive, and the eigenvector u2 to the next eigenvalue is orthogonal to it.
Therefore u2 has to have elements of alternating sign; further analysis shows that the elements with positive
sign are connected, as are the negative ones. This leads to a natural bisection of the graph.

2.10.1.3 Load redistributing

In certain applications an initial load distribution is clear, but later adjustments are needed. A typical exam-
ple is in Finite Element Method (FEM) codes, where load can be distributed by a partitioning of the physical
domain; see section 6.4.1. If later the discretization of the domain changes, the load has to be rebalanced
or redistributed . In the next subsection we will see one technique for load balancing and rebalancing that is
aimed at preserving locality.

2.10.1.4 Load balancing with space-filling curves

In the previous sections we considered two aspects of load balancing: making sure all processors have an
approximately equal amount of work, and letting the distribution reflect the structure of the problem so that
communication is kept within reason. We can phrase the second point as follows: we try to preserve the
locality of the problem when we distribute it over a parallel machine.

Striving to preserve locality is not obviously the right strategy. In BSP (see section 2.5.9) a statistical argu-
ment is made that random placement will give a good load balance as well as balance of communication.

Exercise 2.26. Consider the assignment of processes to processors, where the structure of the
problem is such that each processes only communicates with its nearest neighbours,
and let processors be ordered in a two-dimensional grid. If we do the obvious as-
signment of the process grid to the processor grid, there will be no contention. Now
write a program that assigns processes to random processors, and evaluate how much
contention there will be.

In the previous section you saw how graph partitioning techniques can help with the second point of pre-
serving problem locality. In this section you will see a different technique that is attractive both for the
initial load assignment and for subsequent load rebalancing . In the latter case, a processor’s work may
increase or decrease, necessitating moving some of the load to a different processor.
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For instance, some problems are adaptively refined20. This is illustrated in figure 2.25. If we keep track

Figure 2.25: Adaptive refinement of a domain in subsquent levels

of these refinement levels, the problem gets a tree structure, where the leaves contain all the work. Load
balancing becomes a matter of partitioning the leaves of the tree over the processors; figure 2.26. Now we

Figure 2.26: Load distribution of an adaptively refined domain

observe that the problem has a certain locality: the subtrees of any non-leaf node are physically close, so
there will probably be communication between them.

• Likely there will be more subdomains than processors; to minimize communication between pro-
cessors, we want each processor to contain a simply connected group of subdomains. Moreover,
we want each processor to cover a part of the domain that is ‘compact’ in the sense that it has
low aspect ratio, and low surface-to-volume ratio.

20. For a detailed discussion see [15].
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• When a subdomain gets further subdivided, part of the load of its processor may need to be
shifted to another processor. This process of load redistributing should preserve locality.

To fulfill these requirements we use Space-Filling Curves (SFCs). A Space-Filling Curve (SFC) for the
load balanced tree is shown in figure 2.27. We will not give a formal discussion of SFCs; instead we will let

Figure 2.27: A space filling curve for to the load balanced tree

figure 2.28 stand for a definition: a SFC is a recursively defined curve that touches each subdomain once21.
The SFC has the property that domain elements that are close together physically will be close together

Figure 2.28: Space filling curves, regularly refined and irregularly

on the curve, so if we map the SFC to a linear ordering of processors we will preserve the locality of the
problem.

More importantly, if the domain is refined by another level, we can refine the curve accordingly. Load can
then be redistributed to neighbouring processors on the curve, and we will still have locality preserved.

21. Space-Filling Curves (SFCs) were introduced by Peano as a mathematical device for constructing a continuous surjective
function from the line segment [0, 1] to a higher dimensional cube [0, 1]d. This upset the intuitive notion of dimension that ‘you
can not stretch and fold a line segment to fill up the square’. A proper treatment of the concept of dimension was later given by
Brouwer.
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2.10.2 Distributed computing, grid computing, cloud computing

In this section we will take a short look at terms such as cloud computing, and an earlier term distributed
computing. These are concepts that have a relation to parallel computing in the scientific sense, but that
differ in certain fundamental ways.

Distributed computing can be traced back as coming from large database servers, such as airline reservations
systems, which had to be accessed by many travel agents simultaneously. For a large enough volume of
database accesses a single server will not suffice, so the mechanism of remote procedure call was invented,
where the central server would call code (the procedure in question) on a different (remote) machine. The
remote call could involve transfer of data, the data could be already on the remote machine, or there would
be some mechanism that data on the two machines would stay synchronized. This gave rise to the Storage
Area Network (SAN). A generation later than distributed database systems, web servers had to deal with
the same problem of many simultaneous accesses to what had to act like a single server.

We already see one big difference between distributed computing and high performance parallel comput-
ing. Scientific computing needs parallelism because a single simulation becomes too big or slow for one
machine; the business applications sketched above deal with many users executing small programs (that is,
database or web queries) against a large data set. For scientific needs, the processors of a parallel machine
(the nodes in a cluster) have to have a very fast connection to each other; for business needs no such network
is needed, as long as the central dataset stays coherent.

Both in HPC and in business computing, the server has to stay available and operative, but in distributed
computing there is considerably more liberty in how to realize this. For a user connecting to a service such
as a database, it does not matter what actual server executes their request. Therefore, distributed computing
can make use of virtualization: a virtual server can be spawned off on any piece of hardware.

An analogy can be made between remote servers, which supply computing power wherever it is needed,
and the electric grid, which supplies electric power wherever it is needed. This has led to grid computing or
utility computing , with the Teragrid, owned by the US National Science Foundation, as an example. Grid
computing was originally intended as a way of hooking up computers connected by a Local Area Network
(LAN) or Wide Area Network (WAN), often the Internet. The machines could be parallel themselves, and
were often owned by different institutions. More recently, it has been viewed as a way of sharing resources,
both datasets, software resources, and scientific instruments, over the network.

The notion of utility computing as a way of making services available, which you recognize from the above
description of distributed computing, went mainstream with Google’s search engine, which indexes the
whole of the Internet. Another example is the GPS capability of Android mobile phones, which combines
GIS, GPS, and mashup data. The computing model by which Google’s gathers and processes data has
been formalized in MapReduce [24]. It combines a data parallel aspect (the ‘map’ part) and a central
accumulation part (‘reduce’). Neither involves the tightly coupled neighbour-to-neighbour communication
that is common in scientific computing. An open source framework for MapReduce computing exists in
Hadoop [63]. Amazon offers a commercial Hadoop service.

The concept of having a remote computer serve user needs is attractive even if no large datasets are involved,
since it absolves the user from the need of maintaining software on their local machine. Thus, Google Docs
offers various ‘office’ applications without the user actually installing any software. This idea is sometimes
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called Software as-a Service (SAS), where the user connects to an ‘application server’, and accesses it
through a client such as a web browser. In the case of Google Docs, there is no longer a large central
dataset, but each user interacts with their own data, maintained on Google’s servers. This of course has the
large advantage that the data is available from anywhere the user has access to a web browser.

The SAS concept has several connections to earlier technologies. For instance, after the mainframe and
workstation eras, the so-called thin client idea was briefly popular. Here, the user would have a workstation
rather than a terminal, yet work on data stored on a central server. One product along these lines was Sun’s
Sun Ray (circa 1999) where users relied on a smartcard to establish their local environment on an arbitary,
otherwise stateless, workstation.

The term cloud computing usually refers to the internet-based model of SAS where the data is not main-
tained by the user. However, it can span some or all of the above concepts, depending on who uses the term.
Here is a list of characteristics:

• A cloud is centrally administered and maintained, involving applications running on servers that
are not owned by the user. The user has local and homogeneous access to services on a subscrip-
tion basis, as pay-as-you-go.
• Cloud computing is typically associated with large amounts of data, either a single central dataset

such as on airline database server, or many independent datasets such as for Google Docs, each
of which are used by a single user or a small group of users. In the case of large datasets, they
are stored distributedly, with concurrent access for the clients.
• Cloud computing, like earlier grid computing, allows the user freedom of choice in the client

platform. In an extreme example, Amazon’s Kindle books allow one to read the same book on a
PC, and a smartphone; the cloud-stored book ‘remembers’ where the reader left off, regardless
the platform.
• Cloud computing makes a whole datacenter appear as a single computer to the user [110].
• The services offered by cloud computing are typically business applications and IT services,

rather than scientific computing. Cloud service providers are starting to offer clusters that allow
tightly coupled parallelism, but tests show that this is not yet efficient.
• Computing in a cloud is probably virtualized, or at least the client interfaces to an abstract notion

of a server. These strategies often serve to ‘move the work to the data’.
• Server processes are loosely coupled, at best synchronized through working on the same dataset.
• Cloud computing can be interfaced through a web browser; it can involve a business model that

is ‘pay as you go’.

Cloud computing clearly depends on the following factors:

• The ubiquity of the internet;
• Virtualization of servers;
• Commoditization of processors and hard drives.

The model where services are available on demand is attractive for businesses, which increasingly are
using cloud services. The advantages are that it requires no initial monetary and time investment, and that
no decisions about type and size of equipment have to be made. At the moment, cloud services are mostly
focused on databases and office applications, but scientific clouds with a high performance interconnect are
under development.
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The following is a broad classification of usage scenarios of cloud resources22.
• Scaling. Here the cloud resources are used as a platform that can be expanded based on user

demand. This can be considered Platform-as-a-Service (PaaS): the cloud provides software and
development platforms, eliminating the administration and maintenance for the user.
We can distinguish between two cases: if the user is running single jobs and is actively waiting
for the output, resources can be added to minimize the wait time for these jobs (capability com-
puting). On the other hand, if the user is submitting jobs to a queue and the time-to-completion
of any given job is not crucial (capacity computing), resouces can be added as the queue grows.
In HPC applications, users can consider the cloud resources as a cluster; this falls under Infrastructure-
as-a-Service (IaaS): the cloud service is a computing platforms allowing customization at the
operating system level.
• Multi-tenancy. Here the same software is offered to multiple users, giving each the opportunity

for individual customizations. This falls under Software-as-a-Service (SaaS): software is pro-
vided on demand; the customer does not purchase software, but only pays for its use.
• Batch processing. This is a limited version of one of the Scaling scenarios above: the user has a

large amount of data to process in batch mode. The cloud then becomes a batch processor. This
model is a good candidate for MapReduce computations; section 2.10.4.
• Storage. Most cloud providers offer database services, so this model absolves the user from

maintaining their own database, just like the Scaling and Batch processing models take away the
user’s concern with maintaining cluster hardware.
• Synchronization. This model is popular for commercial user applications. Netflix and Amazon’s

Kindle allow users to consume online content (streaming movies and ebooks respectively); after
pausing the content they can resume from any other platform. Apple’s recent iCloud provides
synchronization for data in office applications, but unlike Google Docs the applications are not
‘in the cloud’ but on the user machine.

The first Cloud to be publicly accessible was Amazon’s Elastic Compute cloud (EC2), launched in 2006.
EC2 offers a variety of different computing platforms and storage facilities. Nowadays more than a hundred
companies provide cloud based services, well beyond the initial concept of computers-for-rent.

The infrastructure for cloud computing can be interesting from a computer science point of view, involving
distributed file systems, scheduling, virtualization, and mechanisms for ensuring high reliability.

An interesting project, combining aspects of grid and cloud computing is the Canadian Advanced Network
For Astronomical Research[118]. Here large central datasets are being made available to astronomers as in
a grid, together with compute resources to perform analysis on them, in a cloud-like manner. Interestingly,
the cloud resources even take the form of user-configurable virtual clusters.

2.10.3 Capability versus capacity computing

Large parallel computers can be used in two different ways. In later chapters you will see how scientific
problems can be scaled up almost arbitrarily. This means that with an increasing need for accuracy or
scale, increasingly large computers are needed. The use of a whole machine for a single problem, with only
time-to-solution as the measure of success, is known as capability computing .

22. Based on a blog post by Ricky Ho: http://blogs.globallogic.com/five-cloud-computing-patterns.
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On the other hand, many problems need less than a whole supercomputer to solve, so typically a computing
center will set up a machine so that it serves a continuous stream of user problems, each smaller than the
full machine. In this mode, the measure of success is the sustained performance per unit cost. This is known
as capacity computing , and it requires a finely tuned job scheduling strategy. This topic, while interesting,
is not further discussed in this book.

2.10.4 MapReduce

MapReduce [25] is a programming model for certain parallel operations. One of its distinguishing charac-
teristics is that it is implemented using functional programming . The MapReduce model handles computa-
tions of the following form:

• For all available data, select items that satisfy a certain criterium;
• and emit a key-value pair for them. This is the mapping stage.
• Optionally there can be a combine/sort stage where all pairs with the same key value are grouped

together.
• Then do a global reduction on the keys, yielding one or more of the corresponding values. This

is the reduction stage.

We will now give a few examples of using MapReduce, and present the functional programming model that
underlies the MapReduce abstraction.

Expressive power of the MapReduce model The reduce part of the MapReduce model makes it a prime
candidate for computing global statistics on a dataset. One example would be to count how many times
each of a set of words appears in some set of documents. The function being mapped knows the set of
words, and outputs for each document a pair of document name and a list with the occurrence counts of the
words. The reduction then does a componentwise sum of the occurrence counts.

The combine stage of MapReduce makes it possible to transform data. An example is a ‘Reverse Web-Link
Graph’: the map function outputs target-source pairs for each link to a target URL found in a page named
”source”. The reduce function concatenates the list of all source URLs associated with a given target URL
and emits the pair target-list(source).

A less obvious example is computing PageRank (section 8.2.2) with MapReduce. Here we use the fact that
the PageRank computation relies on a distributed sparse matrix-vector product. Each web page corresponds
to a column of the web matrix W ; given a probability pj of being on page j, that page can then compute
tuples 〈i, wijpj . The combine stage of MapReduce then sums together (Wp)i =

∑
j wijpj .

Database operations can be implemented with MapReduce but since it has a relatively large latency, it is
unlikely to be competitive with standalone databases, which are optimized for fast processing of a sin-
gle query, rather than bulk statistics. For other applications see http://horicky.blogspot.com/
2010/08/designing-algorithmis-for-map-reduce.html.

Functional programming The mapping and reduction operations are easily implemented on any type
of parallel architecture, using a combination of threading and message passing. However, at Google where
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this model was developed traditional parallelism was not attractive for two reasons. First of all, processors
could fail during the computation, so a traditional model of parallelism would have to be enhanced with
fault tolerance mechanisms. Secondly, the computing hardware could already have a load, so parts of the
computation may need to be migrated, and in general any type of synchronization between tasks would be
very hard.

MapReduce is one way to abstract from such details of parallel computing, namely through adopting a
functional programming model. In such a model the only operation is the evaluation of a function, applied
to some arguments, where the arguments are themselves the result of a function application, and the result
of the computation is again used as argument for another function application. In particular, in a strict
functional model there are no variables, so there is no static data.

A function application, written in Lisp style as (f a b) (meaning that the function f is applied to argu-
ments a and b) would then be executed by collecting the inputs from whereven they are to the processor
that evaluates the function f. The mapping stage of a MapReduce process is denoted

(map f (some list of arguments))

and the result is a list of the function results of applying f to the input list. All details of parallelism and of
guaranteeing that the computation successfully finishes are handled by the map function.

Now we are only missing the reduction stage, which is just as simple:

(reduce g (map f (the list of inputs)))

The reduce function takes a list of inputs and performs a reduction on it.

The attractiveness of this functional model lies in the fact that functions can not have side effects: because
they can only yield a single output result, they can not change their environment, and hence there is no
coordination problem of multiple tasks accessing the same data.

Thus, MapReduce is a useful abstraction for programmers dealing with large amounts of data. Of course,
on an implementation level the MapReduce software uses familiar concepts such as decomposing the data
space, keeping a work list, assigning tasks to processors, retrying failed operations, et cetera.

2.10.5 The top500 list

There are several informal ways of measuring just ‘how big’ a computer is. The most popular is the TOP500
list, maintained at http://www.top500.org/, which records a computer’s performance on the Lin-
pack benchmark . Linpack is a package for linear algebra operations, and no longer in use, since it has been
superseded by Lapack for shared memory and Scalapack for distritubed memory computers. The bench-
mark operation is the solution of a (square, nonsingular, dense) linear system through LU factorization with
partial pivoting, with subsequent forward and backward solution.

The LU factorization operation is one that has great opportunity for cache reuse, since it is based on the
matrix-matrix multiplication kernel discussed in section 1.5.1. It also has the property that the amount of
work outweighs the amount of communication: O(n3) versus O(n2). As a result, the Linpack benchmark
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is likely to run at a substantial fraction of the peak speed of the machine. Another way of phrasing this is to
say that the Linpack benchmark is a CPU-bound algorithm .

Typical efficiency figures are between 60 and 90 percent. However, it should be noted that many scientific
codes do not feature the dense linear solution kernel, so the performance on this benchmark is not indicative
of the performance on a typical code. Linear system solution through iterative methods (section 5.5), for
instance, is much less efficient in a flops-per-second sense, being dominated by the bandwidth between
CPU and memory (a bandwidth bound algorithm).

One implementation of the Linpack benchmark that is often used is ‘High-Performance LINPACK’ (http:
//www.netlib.org/benchmark/hpl/), which has several parameters such as blocksize that can be
chosen to tune the performance.

2.10.5.1 The top500 list as a recent history of supercomputing

The top500 list offers a history of almost 20 years of supercomputing. In this section we will take a brief
look at historical developments23. First of all, figure 2.29 shows the evolution of architecture types by

Figure 2.29: Evolution of the architecture types on the top500 list

charting what portion of the aggregate peak performance of the whole list si due to each type.

23. The graphs contain John McCalpin’s analysis of the top500 data.
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• Vector machines feature a relatively small number of very powerful vector pipeline processors
(section 2.2.1.1). This type of architecture has largely disappeared; the last major machine of this
type was the Japanese Earth Simulator which is seen as the spike in the graph around 2002, and
which was at the top of the list for two years.
• Micro-processor based architectures get their power from the large number of processors in one

machine. The graph distinguishes between x86 (Intel and AMD processors with the exception
of the Intel Itanium) processors and others; see also the next graph.
• A number of systems were designed as highly scalable architectures: these are denoted MPP for

‘massively parallel processor’. In the early part of the timeline this includes architectures such as
the Connection Machine , later it is almost exclusively the IBM BlueGene .
• In recent years ‘accelerated systems’ are the upcoming trend. Here, a processing unit such as a

GPU is attached to the networked main processor.
Next, figure 2.30 shows the dominance of the x86 processor type relative to other micro-processors. (Since

Figure 2.30: Evolution of the architecture types on the top500 list

we classified the IBM BlueGene as an MPP, its processors are not in the ‘Power’ category here.)

Finally, figure 2.31 shows the gradual increase in core count. Here we can make the following observations:

• In the 1990s many processors consisted of more than one chip. In the rest of the graph, we count
the number of cores per ‘package’, that is, per socket . In some cases a socket can actually contain
two separate dies.
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Figure 2.31: Evolution of the architecture types on the top500 list

• With the advent of multi-core processors, it is remarkable how close to vertical the section in
the graph are. This means that new processor types are very quickly adopted, and the lower core
counts equally quickly completely disappear.
• For accelerated systems (mostly systems with GPUs) the concept of ‘core count’ is harder to

define; the graph merely shows the increasing importance of this type of architecture.
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Chapter 3

Computer Arithmetic

Of the various types of data that one normally encounters, the ones we are concerned with in the context
of scientific computing are the numerical types: integers (or whole numbers) . . . ,−2,−1, 0, 1, 2, . . ., real
numbers 0, 1,−1.5, 2/3,

√
2, log 10, . . ., and complex numbers 1 + 2i,

√
3 −
√

5i, . . .. Computer memory
is organized to give only a certain amount of space to represent each number, in multiples of bytes , each
containing 8 bits . Typical values are 4 bytes for an integer, 4 or 8 bytes for a real number, and 8 or 16 bytes
for a complex number.

Since only a certain amount of memory is available to store a number, it is clear that not all numbers of
a certain type can be stored. For instance, for integers only a range is stored. In the case of real numbers,
even storing a range is not possible since any interval [a, b] contains infinitely many numbers. Therefore,
any representation of real numbers will cause gaps between the numbers that are stored. As a result, any
computation that results in a number that is not representable will have to be dealt with by issuing an error
or by approximating the result. In this chapter we will look at the ramifications of such approximations of
the ‘true’ outcome of numerical calculations.

3.1 Integers

In scientific computing, most operations are on real numbers. Computations on integers rarely add up to any
serious computation load1. It is mostly for completeness that we start with a short discussion of integers.

Integers are commonly stored in 16, 32, or 64 bits, with 16 becoming less common and 64 becoming more
and more so. The main reason for this increase is not the changing nature of computations, but the fact that
integers are used to index arrays. As the size of data sets grows (in particular in parallel computations),
larger indices are needed. For instance, in 32 bits one can store the numbers zero through 232− 1 ≈ 4 · 109.
In other words, a 32 bit index can address 4 gigabytes of memory. Until recently this was enough for most
purposes; these days the need for larger data sets has made 64 bit indexing necessary.

When we are indexing an array, only positive integers are needed. In general integer computations, of
course, we need to accomodate the negative integers too. There are several ways of implementing negative
integers. The simplest solution is to reserve one bit as a sign bit , and use the remaining 31 (or 15 or 63;

1. Some computations are done on bit strings. We will not mention them at all.

119



3. Computer Arithmetic

from now on we will consider 32 bits the standard) bits to store the absolute magnitude. By comparison,
we will call the straightforward interpretation of bitstring unsigned integers.

bitstring 00 · · · 0 . . . 01 · · · 1 10 · · · 0 . . . 11 · · · 1
interpretation as unsigned int 0 . . . 231 − 1 231 . . . 232 − 1

interpretation as negative integer 0 · · · 231 − 1 −0 · · · −(231 − 1)

This scheme has some disadvantages, one being that there is both a positive and negative number zero. This
means that a test for equality becomes more complicated than simply testing for equality as a bitstring.
More importantly, adding a positive number to a negative number now has to be treated differently from
adding it to a positive number.

Another solution would be to let an unsigned number n be interpreted as n−B where B is some plausible
base, for instance 231.

bitstring 00 · · · 0 . . . 01 · · · 1 10 · · · 0 . . . 11 · · · 1
interpretation as unsigned int 0 . . . 231 − 1 231 . . . 232 − 1

interpretation as shifted int −231 . . . −1 0 . . . −231 + 1

This shifted scheme does not suffer from the ±0 problem, and addition now works properly. However, it
would be nice if for positive numbers int n and unsigned int n had the same bit pattern. To get
this, we flip the first and second half of the number line.

The resulting scheme, which is the one that is used most commonly, is called 2’s complement . Using this
scheme, the representation of integers is formally defined as follows.

• If 0 ≤ m ≤ 231 − 1, the normal bit pattern for m is used.
• For −231 ≤ n ≤ −1, n is represented by the bit pattern for 232 − |n|.

The following diagram shows the correspondence between bitstrings and their interpretation as 2’s comple-
ment integer:

bitstring 00 · · · 0 . . . 01 · · · 1 10 · · · 0 . . . 11 · · · 1
interpretation as unsigned int 0 . . . 231 − 1 231 . . . 232 − 1

interpretation as 2’s comp. integer 0 · · · 231 − 1 −231 · · · −1

Some observations:

• There is no overlap between the bit patterns for positive and negative integers, in particular, there
is only one pattern for zero.
• The positive numbers have a leading bit zero, the negative numbers have the leading bit set.

Exercise 3.1. For the ‘naive’ scheme and the 2’s complement scheme for negative numbers,
give pseudocode for the comparison test m < n, where m and n are integers. Be
careful to distinguish between all cases of m,n positive, zero, or negative.
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Adding two numbers with the same sign, or multiplying two numbers of any sign, may lead to a result that
is too large or too small to represent. This is called overflow.

Exercise 3.2. Investigate what happens when you perform such a calculation. What does your
compiler say if you try to write down a nonrepresentible number explicitly, for instance
in an assignment statement?

In exercise 3.1 above you explored comparing two integers. Let us know explore how subtracting numbers
in two’s complement is implemented. Consider 0 ≤ m ≤ 231 − 1 and 1 ≤ n ≤ 231 and let us see what
happens in the computation of m− n.

Suppose we have an algorithm for adding and subtracting unsigned 32-bit numbers. Can we use that to
subtract two’s complement integers? We start by observing that the integer subtraction m− n becomes the
unsigned addition m+ (232 − n).

• Case: m < n. In this case, m−n is negative and 1 ≤ |m−n| ≤ 231, so the bit pattern for m−n
is that of 232 − (n−m). Now, 232 − (n−m) = m+ (232 − n), so we can compute m− n in
2’s complement by adding the bit patterns of m and −n as unsigned integers.
• Case: m > n. Here we observe that m + (232 − n) = 232 + m − n. Since m − n > 0, this

is a number > 232 and therefore not a legitimate representation of a negative number. However,
if we store this number in 33 bits, we see that it is the correct result m − n, plus a single bit in
the 33-rd position. Thus, by performing the unsigned addition, and ignoring the overflow bit , we
again get the correct result.

In both cases we conclude that we can perform the subtraction m− n by adding the unsigned number that
represent m and −n and ignoring overflow if it occurs.

3.2 Representation of real numbers

In this section we will look at how various kinds of numbers are represented in a computer, and the limita-
tions of various schemes. The next section will then explore the ramifications of this for arithmetic involving
computer numbers.

Real numbers are stored using a scheme that is analogous to what is known as ‘scientific notation’, where
a number is represented as a significant and an exponent , for instance 6.022 · 1023, which has a significant
6022 with a radix point after the first digit, and an exponent 23. This number stands for

6.022 · 1023 =
[
6× 100 + 0× 10−1 + 2× 10−2 + 2× 10−3

]
· 1023.

We introduce a base , a small integer number, 10 in the preceding example, and 2 in computer numbers, and
write numbers in terms of it as a sum of t terms:

x = ±1×
[
d1β

0 + d2β
−1 + d3β

−2 + · · ·+ dtβ
−t+1b

]
× βe = ±Σt

i=1diβ
1−i × βe (3.1)

where the components are

• the sign bit : a single bit storing whether the number is positive or negative;
• β is the base of the number system;
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• 0 ≤ di ≤ β−1 the digits of the mantissa or significant – the location of the radix point (decimal
point in decimal numbers) is implicitly assumed to the immediately following the first digit;
• t is the length of the mantissa;
• e ∈ [L,U ] exponent; typically L < 0 < U and L ≈ −U .

Note that there is an explicit sign bit for the whole number; the sign of the exponent is handled differently.
For reasons of efficiency, e is not a signed number; instead it is considered as an unsigned number in excess
of a certain minimum value. For instance, the bit pattern for the number zero is interpreted as e = L.

3.2.1 Some examples

Let us look at some specific examples of floating point representations. Base 10 is the most logical choice
for human consumption, but computers are binary, so base 2 predominates there. Old IBM mainframes
grouped bits to make for a base 16 representation.

β t L U

IEEE single precision (32 bit) 2 24 -126 127
IEEE double precision (64 bit) 2 53 -1022 1023

Old Cray 64 bit 2 48 -16383 16384
IBM mainframe 32 bit 16 6 -64 63

packed decimal 10 50 -999 999
Setun 3

Of these, the single and double precision formats are by far the most common. We will discuss these in
section 3.2.6 and further.

3.2.1.1 Binary coded decimal

Decimal numbers are not relevant in scientific computing, but they are useful in financial calculations,
where computations involving money absolutely have to be exact. Binary arithmetic is at a disadvantage
here, since numbers such as 1/10 are repeating fractions in binary. With a finite number of bits in the
mantissa, this means that the number 1/10 can not be represented exactly in binary. For this reason, binary-
coded-decimal schemes were used in old IBM mainframes, and are in fact being standardized in revisions
of IEEE754 [73]; see also section 3.2.6.

In BCD schemes, one or more decimal digits are encoded in a number of bits. The simplest scheme would
encode the digits 0 . . . 9 in four bits. This has the advantage that in a BCD number each digit is readily
identified; it has the disadvantage that about 1/3 of all bits are wasted, since 4 bits can encode the num-
bers 0 . . . 15. More efficient encodings would encode 0 . . . 999 in ten bits, which could in principle store the
numbers 0 . . . 1023. While this is efficient in the sense that few bits are wasted, identifying individual digits
in such a number takes some decoding. For this reason, BCD arithmetic needs hardware support from the
processor, which is rarely found these days; one example is the IBM Power architecture, starting with the
IBM Power6 .
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3.2.1.2 Other number bases for computer arithmetic

There have been some experiments with ternary arithmetic (see http://en.wikipedia.org/wiki/
Ternary_computer and http://www.computer-museum.ru/english/setun.htm), how-
ever, no practical hardware exists.

3.2.2 Limitations

Since we use only a finite number of bits to store floating point numbers, not all numbers can be represented.
The ones that can not be represented fall into two categories: those that are too large or too small (in some
sense), and those that fall in the gaps. Numbers can be too large or too small in the following ways.

Overflow The largest number we can store is (1 − β−t−1)βU , and the smallest number (in an absolute
sense) is −(1 − β−t−1)βU ; anything larger than the former or smaller than the latter causes a
condition called overflow.

Underflow The number closest to zero is β−t−1 ·βL. A computation that has a result less than that (in abso-
lute value) causes a condition called underflow. In fact, most computers use normalized floating
point numbers: the first digit d1 is taken to be nonzero; see section 3.2.5 for more about this.
In this case, any number less than β−1 · βL causes underflow. Trying to compute a number less
than that in absolute value is sometimes handled by using unnormalized floating point numbers
(a process known as gradual underflow), but this is typically tens or hundreds of times slower
than computing with regular floating point numbers2. At the time of this writing, only the IBM
Power6 has hardware support for gradual underflow.

The fact that only a small number of real numbers can be represented exactly is the basis of the field of
round-off error analysis. We will study this in some detail in the following sections.

For detailed discussions, see the book by Overton [106]; it is easy to find online copies of the essay by Gold-
berg [55]. For extensive discussions of round-off error analysis in algorithms, see the books by Higham [70]
and Wilkinson [136].

3.2.3 Normalized numbers

The general definition of floating point numbers, equation (3.1), leaves us with the problem that numbers
have more than one representation. For instance, .5 × 102 = .05 × 103. Since this would make computer
arithmetic needlessly complicated, for instance in testing equality of numbers, we use normalized floating
point numbers . A number is normalized if its first digit is nonzero. The implies that the mantissa part is
β > xm ≥ 1.

A practical implication in the case of binary numbers is that the first digit is always 1, so we do not need to
store it explicitly. In the IEEE 754 standard, this means that every floating point number is of the form

1.d1d2 . . . dt × 2exp.

2. In real-time applications such as audio processing this phenomenon is especially noticable; see http://phonophunk.
com/articles/pentium4-denormalization.php?pg=3.
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3.2.4 Representation error

Let us consider a real number that is not representable in a computer’s number system.

An unrepresentable number is approximated either by rounding or truncation . This means that a machine
number x̃ is the representation for all x in an interval around it. With t digits in the mantissa, this is the
interval of numbers that differ from x̄ in the t+ 1st digit. For the mantissa part we get:{

x ∈
[
x̃, x̃+ β−t+1

)
truncation

x ∈
[
x̃− 1

2β
−t+1, x̃+ 1

2β
−t+1

)
rounding

If x is a number and x̃ its representation in the computer, we call x− x̃ the representation error or absolute
representation error , and x−x̃

x the relative representation error . Often we are not interested in the sign of the
error, so we may apply the terms error and relative error to |x− x̃| and |x−x̃x | respectively.

Often we are only interested in bounds on the error. If ε is a bound on the error, we will write

x̃ = x± ε ≡
D
|x− x̃| ≤ ε⇔ x̃ ∈ [x− ε, x+ ε]

For the relative error we note that

x̃ = x(1 + ε)⇔
∣∣∣∣ x̃− xx

∣∣∣∣ ≤ ε
Let us consider an example in decimal arithmetic, that is, β = 10, and with a 3-digit mantissa: t = 3. The
number x = 1.256 has a representation that depends on whether we round or truncate: x̃round = 1.26,
x̃truncate = 1.25. The error is in the 4th digit: if ε = x− x̃ then |ε| < βt−1.

Exercise 3.3. The number in this example had no exponent part. What are the error and relative
error if there had been one?

3.2.5 Machine precision

Often we are only interested in the order of magnitude of the representation error, and we will write x̃ =
x(1 + ε), where |ε| ≤ β−t. This maximum relative error is called the machine precision , or sometimes
machine epsilon . Typical values are:{

ε ≈ 10−7 32-bit single precision
ε ≈ 10−16 64-bit double precision

Machine precision can be defined another way: ε is the smallest number that can be added to 1 so that 1 + ε
has a different representation than 1. A small example shows how aligning exponents can shift a too small
operand so that it is effectively ignored in the addition operation:

1.0000 ×100

+ 1.0000 ×10−5 ⇒
1.0000 ×100

+ 0.00001 ×100

= 1.0000 ×100
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sign exponent mantissa
s e1 · · · e8 s1 . . . s23

31 30 · · · 23 22 · · · 0

(e1 · · · e8) numerical value
(0 · · · 0) = 0 ±0.s1 · · · s23 × 2−126

(0 · · · 01) = 1 ±1.s1 · · · s23 × 2−126

(0 · · · 010) = 2 ±1.s1 · · · s23 × 2−125

· · ·
(01111111) = 127 ±1.s1 · · · s23 × 20

(10000000) = 128 ±1.s1 · · · s23 × 21

· · ·
(11111110) = 254 ±1.s1 · · · s23 × 2127

(11111111) = 255 ±∞ if s1 · · · s23 = 0, otherwise NaN

Figure 3.1: Single precision arithmetic

Yet another way of looking at this is to observe that, in the addition x+y, if the ratio of x and y is too large,
the result will be identical to x.

The machine precision is the maximum attainable accuracy of computations: it does not make sense to ask
for more than 6-or-so digits accuracy in single precision, or 15 in double.

Exercise 3.4. Write a small program that computes the machine epsilon. Does it make any
difference if you set the compiler optimization levels low or high?

Exercise 3.5. The number e ≈ 2.72, the base for the natural logarithm, has various definitions.
One of them is

e = lim
n→∞

(1 + 1/n)n.

Write a single precision program that tries to compute e in this manner. Evaluate the
expression for n = 10k with k = 1, . . . , 10. Explain the output for large n. Comment
on the behaviour of the error.

3.2.6 The IEEE 754 standard for floating point numbers

Some decades ago, issues like the length of the mantissa and the rounding behaviour of operations could
differ between computer manufacturers, and even between models from one manufacturer. This was obvi-
ously a bad situation from a point of portability of codes and reproducibility of results. The IEEE standard
75434 codified all this, for instance stipulating 24 and 53 bits for the mantissa in single and double precision
arithmetic, using a storage sequence of sign bit, exponent, mantissa.

3. IEEE 754 is a standard for binary arithmetic; there is a further standard, IEEE 854, that allows decimal arithmetic.
4. “ It was remarkable that so many hardware people there, knowing how difficult p754 would be, agreed that it should benefit
the community at large. If it encouraged the production of floating-point software and eased the development of reliable software,
it would help create a larger market for everyone’s hardware. This degree of altruism was so astonishing that MATLAB’s creator
Dr. Cleve Moler used to advise foreign visitors not to miss the country’s two most awesome spectacles: the Grand Canyon, and
meetings of IEEE p754.” W. Kahan, http://www.cs.berkeley.edu/˜wkahan/ieee754status/754story.html.

Victor Eijkhout 125

http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html


3. Computer Arithmetic

The standard also declared the rounding behaviour to be correct rounding: the result of an operation should
be the rounded version of the exact result. There will be much more on the influence of rounding (and
truncation) on numerical computations, below.

Above (section 3.2.2), we have seen the phenomena of overflow and underflow, that is, operations leading
to unrepresentable numbers. There is a further exceptional situation that needs to be dealt with: what result
should be returned if the program asks for illegal operations such as

√
−4? The IEEE 754 standard has two

special quantities for this: Inf and NaN for ‘infinity’ and ‘not a number’. Infinity is the result of overflow
or dividing by zero, not-a-number is the result of, for instance, subtracting infinity from infinity. If NaN
appears in an expression, the whole expression will evaluate to that value. The rule for computing with
Inf is a bit more complicated [55].

An inventory of the meaning of all bit patterns in IEEE 754 double precision is given in figure 3.1. Note
that for normalized numbers the first nonzero digit is a 1, which is not stored, so the bit pattern d1d2 . . . dt
is interpreted as 1.d1d2 . . . dt.
Exercise 3.6. Every programmer, at some point in their life, makes the mistake of storing a real

number in an integer or the other way around. This can happen for instance if you call
a function differently from how it was defined.

void a(float x) {....}
int main() {

int i;
.... a(i) ....

}

What happens when you print x in the function? Consider the bit pattern for a small
integer, and use the table in figure 3.1 to interpret it as a floating point number. Explain
that it will be an unnormalized number5.

These days, almost all processors adhere to the IEEE 754 standard, with only occasional exceptions.
For instance, Nvidia Tesla GPUs are not standard-conforming in single precision; see http://en.
wikipedia.org/wiki/Nvidia_Tesla. The justification for this is that single precision is more
likely used for graphics, where exact compliance matters less. For many scientific computations, double
precision is necessary, since the precision of calculations gets worse with increasing problem size or run-
time. This is true for the sort of calculations in chapter 4, but not for others such as Lattice-Boltzmann.

3.3 Round-off error analysis
Numbers that are too large or too small to be represented, leading to overflow and underflow, are uncom-
mon: usually computations can be arranged so that this situation will not occur. By contrast, the case that the
result of a computation between computer numbers (even something as simple as a single addition) is not
representable is very common. Thus, looking at the implementation of an algorithm, we need to analyze the
effect of such small errors propagating through the computation. This is commonly called round-off error
analysis .

5. This is one of those errors you won’t forget after you make it. In the future, whenever you see a number on the order of
10−305 you’ll recognize that you made this error.
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3.3.1 Correct rounding

The IEEE 754 standard, mentioned in section 3.2.6, does not only declare the way a floating point number is
stored, it also gives a standard for the accuracy of operations such as addition, subtraction, multiplication,
division. The model for arithmetic in the standard is that of correct rounding: the result of an operation
should be as if the following procedure is followed:

• The exact result of the operation is computed, whether this is representable or not;
• This result is then rounded to the nearest computer number.

In short: the representation of the result of an operation is the rounded exact result of that operation. (Of
course, after two operations it no longer needs to hold that the computed result is the exact rounded version
of the exact result.)

If this statement sounds trivial or self-evident, consider subtraction as an example. In a decimal number
system with two digits in the mantissa, the computation 1.0−9.4 ·10−1 = 1.0−0.94 = 0.06 = 0.6 ·10−2.
Note that in an intermediate step the mantissa .094 appears, which has one more digit than the two we
declared for our number system. The extra digit is called a guard digit .

Without a guard digit, this operation would have proceeded as 1.0− 9.4 · 10−1, where 9.4 · 10−1 would be
rounded to 0.9, giving a final result of 0.1, which is almost double the correct result.

Exercise 3.7. Consider the computation 1.0 − 9.5 · 10−1, and assume again that numbers are
rounded to fit the 2-digit mantissa. Why is this computation in a way a lot worse than
the example?

One guard digit is not enough to guarantee correct rounding. An analysis that we will not reproduce here
shows that three extra bits are needed [54].

3.3.2 Addition

Addition of two floating point numbers is done in a couple of steps. First the exponents are aligned: the
smaller of the two numbers is written to have the same exponent as the larger number. Then the mantissas
are added. Finally, the result is adjusted so that it again is a normalized number.

As an example, consider 1.00 + 2.00 × 10−2. Aligning the exponents, this becomes 1.00 + 0.02 = 1.02,
and this result requires no final adjustment. We note that this computation was exact, but the sum 1.00 +
2.55 × 10−2 has the same result, and here the computation is clearly not exact: the exact result is 1.0255,
which is not representable with three digits to the mantissa.

In the example 6.15 × 101 + 3.98 × 101 = 1.013 × 102 → 1.01 × 102 we see that after addition of the
mantissas an adjustment of the exponent is needed. The error again comes from truncating or rounding the
first digit of the result that does not fit in the mantissa: if x is the true sum and x̃ the computed sum, then
x̃ = x(1 + ε) where, with a 3-digit mantissa |ε| < 10−3.

Formally, let us consider the computation of s = x1+x2, and we assume that the numbers xi are represented

Victor Eijkhout 127



3. Computer Arithmetic

as x̃i = xi(1 + εi). Then the sum s is represented as

s̃ = (x̃1 + x̃2)(1 + ε3)

= x1(1 + ε1)(1 + ε3) + x2(1 + ε2)(1 + ε3)

≈ x1(1 + ε1 + ε3) + x2(1 + ε1 + ε3)

≈ s(1 + 2ε)

under the assumptions that all εi are small and of roughly equal size, and that both xi > 0. We see that the
relative errors are added under addition.

3.3.3 Multiplication

Floating point multiplication, like addition, involves several steps. In order to multiply two numbers m1 ×
βe1 and m2 × βe2 , the following steps are needed.

• The exponents are added: e← e1 + e2.
• The mantissas are multiplied: m← m1 ×m2.
• The mantissa is normalized, and the exponent adjusted accordingly.

For example: 1.23 · 100 × 5.67 · 101 = 0.69741 · 101 → 6.9741 · 100 → 6.97 · 100.

Exercise 3.8. Analyze the relative error of multiplication.

3.3.4 Subtraction

Subtraction behaves very differently from addition. Whereas in addition errors are added, giving only a
gradual increase of overall roundoff error, subtraction has the potential for greatly increased error in a
single operation.

For example, consider subtraction with 3 digits to the mantissa: 1.24−1.23 = .001→ 1.00·10−2. While the
result is exact, it has only one significant digit6. To see this, consider the case where the first operand 1.24
is actually the rounded result of a computation that should have resulted in 1.235. In that case, the result of
the subtraction should have been 5.00 · 10−3, that is, there is a 100% error, even though the relative error
of the inputs was as small as could be expected. Clearly, subsequent operations involving the result of this
subtraction will also be inaccurate. We conclude that subtracting almost equal numbers is a likely cause of
numerical roundoff.

There are some subtleties about this example. Subtraction of almost equal numbers is exact, and we have
the correct rounding behaviour of IEEE arithmetic. Still, the correctness of a single operation does not
imply that a sequence of operations containing it will be accurate. While the addition example showed only
modest decrease of numerical accuracy, the cancellation in this example can have disastrous effects.

6. Normally, a number with 3 digits to the mantissa suggests an error corresponding to rounding or truncating the fourth
digit. We say that such a number has 3 significant digits . In this case, the last two digits have no meaning, resulting from the
normalization process.
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3.3.5 Examples

From the above, the reader may got the impression that roundoff errors only lead to serious problems in
exceptional circumstances. In this section we will discuss some very practical examples where the inex-
actness of computer arithmetic becomes visible in the result of a computation. These will be fairly simple
examples; more complicated examples exist that are outside the scope of this book, such as the instability
of matrix inversion. The interested reader is referred to [136, 70].

3.3.5.1 The ‘abc-formula’

As a practical example, consider the quadratic equation ax2 + bx + c = 0 which has solutions x =
−b±
√
b2−4ac

2a . Suppose b > 0 and b2 � 4ac then
√
b2 − 4ac ≈ b and the ‘+’ solution will be inaccurate. In

this case it is better to compute x− = −b−
√
b2−4ac

2a and use x+ · x− = −c/a.

Exercise 3.9. Program a simulator for decimal d-digit arithmetic and experiment with the ac-
curacy of the two ways of computing the solution of a quadratic equation. Simulating
d-digit decimal arithmetic can be done as follows. Let x be a floating point number,
then:
• Normalize x by finding an integer e such that x′ := |x| · 10e ∈ [.1, 1).
• Now truncate this number to d digits by multiplying x′ by 10d, truncating the

result to an integer, and multiplying that result again by 10−d.
• Multiply this truncated number by 10−e to revert the normalization.

3.3.5.2 Summing series

The previous example was about preventing a large roundoff error in a single operation. This example
shows that even gradual buildup of roundoff error can be handled in different ways.

Consider the sum
∑10000

n=1
1
n2 = 1.644834 and assume we are working with single precision, which on

most computers means a machine precision of 10−7. The problem with this example is that both the ratio
between terms, and the ratio of terms to partial sums, is ever increasing. In section 3.2.5 we observed that
a too large ratio can lead to one operand of an addition in effect being ignored.

If we sum the series in the sequence it is given, we observe that the first term is 1, so all partial sums
(
∑N

n=1 where N < 10000) are at least 1. This means that any term where 1/n2 < 10−7 gets ignored since
it is less than the machine precision. Specifically, the last 7000 terms are ignored, and the computed sum
is 1.644725. The first 4 digits are correct.

However, if we evaluate the sum in reverse order we obtain the exact result in single precision. We are still
adding small quantities to larger ones, but now the ratio will never be as bad as one-to-ε, so the smaller
number is never ignored. To see this, consider the ratio of two terms subsequent terms:

n2

(n− 1)2
=

n2

n2 − 2n+ 1
=

1

1− 2/n+ 1/n2
≈ 1 +

2

n

Since we only sum 105 terms and the machine precision is 10−7, in the addition 1/n2 + 1/(n − 1)2 the
second term will not be wholly ignored as it is when we sum from large to small.

Victor Eijkhout 129



3. Computer Arithmetic

Exercise 3.10. There is still a step missing in our reasoning. We have shown that in adding two
subsequent terms, the smaller one is not ignored. However, during the calculation we
add partial sums to the next term in the sequence. Show that this does not worsen the
situation.

The lesson here is that series that are monotone (or close to monotone) should be summed from small to
large, since the error is minimized if the quantities to be added are closer in magnitude. Note that this is the
opposite strategy from the case of subtraction, where operations involving similar quantities lead to larger
errors. This implies that if an application asks for adding and subtracting series of numbers, and we know
a priori which terms are positive and negative, it may pay off to rearrange the algorithm accordingly.

3.3.5.3 Unstable algorithms

We will now consider an example where we can give a direct argument that the algorithm can not cope with
problems due to inexactly represented real numbers.

Consider the recurrence yn =
∫ 1

0
xn

x−5dx = 1
n − 5yn−1.This is easily seen to be monotonically decreasing;

the first term can be computed as y0 = ln 6− ln 5.

Performing the computation in 3 decimal digits we get:

computation correct result
y0 = ln 6− ln 5 = .182|322× 101 . . . 1.82
y1 = .900× 10−1 .884
y2 = .500× 10−1 .0580
y3 = .830× 10−1 going up? .0431
y4 = −.165 negative? .0343

We see that the computed results are quickly not just inaccurate, but actually nonsensical. We can analyze
why this is the case.

If we define the error εn in the n-th step as

ỹn − yn = εn,

then

ỹn = 1/n− 5ỹn−1 = 1/n+ 5nn−1 + 5εn−1 = yn + 5εn−1

so εn ≥ 5εn−1. The error made by this computation shows exponential growth.

3.3.5.4 Linear system solving

Sometimes we can make statements about the numerical precision of a problem even without specifying
what algorithm we use. Suppose we want to solve a linear system, that is, we have an n× n matrix A and
a vector b of size n, and we want to compute the vector x such that Ax = b. (We will actually considering
algorithms for this in chapter 5.) Since the vector b will the result of some computation or measurement,
we are actually dealing with a vector b̃, which is some perturbation of the ideal b:

b̃ = b+ ∆b.

130 Introduction to High Performance Scientific Computing



3.3. Round-off error analysis

The perturbation vector ∆b can be of the order of the machine precision if it only arises from representation
error, or it can be larger, depending on the calculations that produced b̃.

We now ask what the relation is between the exact value of x, which we would have obtained from doing an
exact calculation with A and b, which is clearly impossible, and the computed value x̃, which we get from
computing withA and b̃. (In this discussion we will assume thatA itself is exact, but this is a simplification.)

Writing x̃ = x+ ∆x, the result of our computation is now

Ax̃ = b̃

or

A(x+ ∆x) = b+ ∆b.

Since Ax = b, we get A∆x = ∆b. From this, we get (see appendix A.1 for details){
∆x = A−1∆b
Ax = b

}
⇒
{
‖A‖‖x‖ ≥ ‖b‖
‖∆x‖ ≤ ‖A−1‖‖∆b‖ ⇒

‖∆x‖
‖x‖ ≤ ‖A‖‖A

−1‖‖∆b‖‖b‖ (3.2)

The quantity ‖A‖‖A−1‖ is called the condition number of a matrix. The bound (3.2) then says that any
perturbation in the right hand side can lead to a perturbation in the solution that is at most larger by the
condition number of the matrix A. Note that it does not say that the perturbation in x needs to be anywhere
close to that size, but we can not rule it out, and in some cases it indeed happens that this bound is attained.

Suppose that b is exact up to machine precision, and the condition number of A is 104. The bound (3.2) is
often interpreted as saying that the last 4 digits of x are unreliable, or that the computation ‘loses 4 digits
of accuracy’.

Equation (3.2) can also be interpreted as follows: when we solve a linear system Ax = b we get an
approximate solution x+ ∆x which is the exact solution of a perturbed system A(x+ ∆x) = b+ ∆b. The
fact that the perturbation in the solution can be related to the perturbation in the system, is expressed by
saying that the algorithm exhibits backwards stability.

The analysis of the accuracy of linear algebra algorithms is a field of study in itself; see for instance the
book by Higham [70].

3.3.6 Roundoff error in parallel computations

From the above example of summing a series we saw that addition in computer arithmetic is not associative.
A similar fact holds for multiplication. This has an interesting consequence for parallel computations: the
way a computation is spread over parallel processors influences the result. For instance, consider computing
the sum of a large number N of terms. With P processors at our disposition, we can let each compute N/P
terms, and combine the partial results. We immediately see that for no two values of P will the results be
identical. This means that reproducibility of results in a parallel context is elusive.
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3.4 More about floating point arithmetic

3.4.1 Programming languages

Different languages have different approaches to declaring integers and floating point numbers.

Fortran In Fortran there are various ways of specifying the storage format for integer and real vari-
ables. For instance, it is possible to declare the number of bytes that it takes to store a variable:
INTEGER*2, REAL*8. One advantage of this approach is the easy interoperability with other
languages, or the MPI library.
Often it is possible to write a code using only INTEGER, REAL, and use compiler flags to
indicate the size of an integer and real number in bytes.
More sophisticated, modern versions of Fortran can indicate the number of digits of precision a
floating point number needs to have:

integer, parameter :: k9 = selected_real_kind(9)
real(kind=k9) :: r
r = 2._k9; print *, sqrt(r) ! prints 1.4142135623730

The ‘kind’ values will usually be 4,8,16 but this is compiler dependent.
C In C, the type identifiers have no standard length. For integers there is short int, int,
long int, and for floating point float, double. The sizeof() operator gives the num-
ber of bytes used to store a datatype.

C99, Fortran2003 Recent standards of the C and Fortran languages incorporate the C/Fortran interoper-
ability standard, which can be used to declare a type in one language so that it is compatible with
a certain type in the other language.

3.4.2 Other computer arithmetic systems

Other systems have been proposed to dealing with the problems of inexact arithmetic on computers. One
solution is extended precision arithmetic, where numbers are stored in more bits than usual. A common
use of this is in the calculation of inner products of vectors: the accumulation is internally performed in
extended precision, but returned as a regular floating point number. Alternatively, there are libraries such as
GMPlib [52] that allow for any calculation to be performed in higher precision.

Another solution to the imprecisions of computer arithmetic is ‘interval arithmetic’ [74], where for each
calculation interval bounds are maintained. While this has been researched for considerable time, it is not
practically used other than through specialized libraries [12].

3.4.3 Fixed-point arithmetic

A fixed-point number (for a more thorough discussion than found here, see [138]) can be represented as
〈N,F 〉 where N ≥ β0 is the integer part and F < 1 is the fractional part. Another way of looking at this,
is that a fixed-point number is an integer stored in N + F digits, with an implied decimal point after the
first N digits.

Fixed-point calculations can overflow, with no possibility to adjust an exponent. Consider the multiplication
〈N1, F1〉 × 〈N2, F2〉, where N1 ≥ βn1 and N2 ≥ βn2 . This overflows if n1 + n2 is more than the number
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of positions available for the integer part. (Informally, the number of digits of the product is the sum of
the digits of the operands.) This means that, in a program that uses fixed-point, numbers will need to have
a number of zero digits, if you are ever going to multiply them, which lowers the numerical accuracy. It
also means that the programmer has to think harder about calculations, arranging them in such a way that
overflow will not occur, and that numerical accuracy is still preserved to a reasonable extent.

So why would people use fixed-point numbers? One important application is in embedded low-power de-
vices, think a battery-powered digital thermometer. Since fixed-point calculations are essentially identical
to integer calculations, they do not require a floating-point unit, thereby lowering chip size and lessening
power demands. Also, many early video game systems had a processor that either had no floating-point unit,
or where the integer unit was considerably faster than the floating-point unit. In both cases, implementing
non-integer calculations as fixed-point, using the integer unit, was the key to high throughput.

Another area where fixed point arithmetic is still used is in signal processing. In modern CPUs, integer and
floating point operations are of essentially the same speed, but converting between them is relatively slow.
Now, if the sine function is implemented through table lookup, this means that in sin(sinx) the output of
a function is used to index the next function application. Obviously, outputting the sine function in fixed
point obviates the need for conversion between real and integer quantities, which simplifies the chip logic
needed, and speeds up calculations.

3.4.4 Complex numbers

Some programming languages have complex numbers as a native data type, others not, and others are in
between. For instance, in Fortran you can declare

COMPLEX z1,z2, z(32)
COMPLEX*16 zz1, zz2, zz(36)

A complex number is a pair of real numbers, the real and imaginary part, allocated adjacent in memory.
The first declaration then uses 8 bytes to store to REAL*4 numbers, the second one has REAL*8s for the
real and imaginary part. (Alternatively, use DOUBLE COMPLEX or in Fortran90 COMPLEX(KIND=2) for
the second line.)

By contrast, the C language does not natively have complex numbers, but both C99 and C++ have a
complex.h header file7. This defines as complex number as in Fortran, as two real numbers.

Storing a complex number like this is easy, but sometimes it is computationally not the best solution. This
becomes apparent when we look at arrays of complex numbers. If a computation often relies on access to the
real (or imaginary) parts of complex numbers exclusively, striding through an array of complex numbers,
has a stride two, which is disadvantageous (see section 1.3.4.5). In this case, it is better to allocate one array
for the real parts, and another for the imaginary parts.

Exercise 3.11. Suppose arrays of complex numbers are stored the Fortran way. Analyze the
memory access pattern of pairwise multiplying the arrays, that is, ∀i : ci ← ai · bi,
where a(), b(), c() are arrays of complex numbers.

7. These two header files are not identical, and in fact not compatible. Beware, if you compile C code with a C++ compiler [36].
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Exercise 3.12. Show that an n × n linear system Ax = b over the complex numbers can be
written as a 2n×2n system over the real numbers. Hint: split the matrix and the vectors
in their real and imaginary parts. Argue for the efficiency of storing arrays of complex
numbers as separate arrays for the real and imaginary parts.

3.5 Conclusions

Computations done on a computer are invariably beset with numerical error. In a way, the reason for the
error is the imperfection of computer arithmetic: if we could calculate with actual real numbers there would
be no problem. (There would still be the matter of measurement error in data, and approximations made
in numerical methods; see the next chapter.) However, if we accept roundoff as a fact of life, then various
observations hold:

• Mathematically equivalent operations need not behave identically from a point of stability; see
the ‘abc-formula’ example.
• Even rearrangements of the same computations do not behave identically; see the summing ex-

ample.

Thus it becomes imperative to analyze computer algorithms with regard to their roundoff behaviour: does
roundoff increase as a slowly growing function of problem parameters, such as the number of terms eval-
uted, or is worse behaviour possible? We will not address such questions in further detail in this book.
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Chapter 4

Numerical treatment of differential equations

In this chapter we will look at the numerical solution of Ordinary Diffential Equations (ODEs) and Partial
Diffential Equations (PDEs). These equations are commonly used in physics to describe phenomena such
as the flow of air around an aircraft, or the bending of a bridge under various stresses. While these equations
are often fairly simple, getting specific numbers out of them (‘how much does this bridge sag if there are a
hundred cars on it’) is more complicated, often taking large computers to produce the desired results. Here
we will describe the techniques that turn ODEs and PDEs into computable problems.

First of all, we will look at Initial Value Problems (IVPs), which describes processes that develop in time.
Here we only consider ODEs: scalar functions that are only depend on time. The name derives from the
fact that typically the function is specified at an initial time point.

Next, we will look at Boundary Value Problems (BVPs), describing processes in space. In realistic situa-
tions, this will concern multiple space variables, so we have a PDE. The name BVP is explained by the fact
that the solution is specified on the boundary of the domain of definition.

Finally, we will consider the ‘heat equation’, an Initial Boundary Value Problem (IBVP) which has aspects
of both IVPs and BVPs: it describes heat spreading through a physical object such as a rod. The initial
value describes the initial temperature, and the boundary values give prescribed temperatures at the ends of
the rod.

Our aim in this chapter is to show the origins of an important class of computational problems. Therefore we
will not go into theoretical matters of existence, uniqueness, or conditioning of solutions. For this, see [66]
or any book that is specifically dedicated to ODEs or PDEs. For ease of analysis we will also assume that all
functions involved have sufficiently many higher derivatives, and that each derivative is sufficiently smooth.

4.1 Initial value problems

Many physical phenomena change over time, and typically the laws of physics give a description of the
change, rather than of the quantity of interest itself. For instance, Newton’s second law

F = ma
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is a statement about the change in position of a point mass: expressed as

a =
d2

dt2
x = F/m

it states that acceleration depends linearly on the force exerted on the mass. A closed form description
x(t) = . . . for the location of the mass can sometimes be derived analytically, but in many cases some form
of approximation or numerical computation is needed.

Newton’s equation is an ODE since it describes a function of one variable, time. It is an IVP since it
describes the development in time, starting with some initial conditions. As an ODE, it is ‘of second order’
since it involves a second derivative, We can reduce this to first order, involving only first derivatives, if we
allow vector quantities. Defining u(t) = (x(t), x′(t))t1, we find for u:

u′ = Au+B, A =

(
0 1
0 0

)
, B =

(
0
F/a

)

For simplicity, in this course we will only consider scalar equations; our reference equation is then

u′(t) = f(t, u(t)), u(0) = u0, t > 0, (4.1)

and in this section we will consider numerical methods for its solution.

Typically, the initial value in some starting point (often chosen as t = 0) is given: u(0) = u0 for some
value u0, and we are interested in the behaviour of u as t → ∞. As an example, f(x) = x gives the
equation u′(t) = u(t). This is a simple model for population growth: the equation states that the rate of
growth is equal to the size of the population. The equation (4.1) can be solved analytically for some choices
of f , but we will not consider this. Instead, we only consider the numerical solution and the accuracy of
this process.

In a numerical method, we consider discrete size time steps to approximate the solution of the continuous
time-dependent process. Since this introduces a certain amount of error, we will analyze the error introduced
in each time step, and how this adds up to a global error. In some cases, the need to limit the global error
will impose restrictions on the numerical scheme.

4.1.1 Error and stability

Since numerical computation will always involve the inaccuracies stemming from the use of machine arith-
metic, we want to avoid the situation where a small perturbation in the initial value leads to large pertur-
bations in the solution. Therefore, we will call a differential equation ‘stable’ if solutions corresponding to
different initial values u0 converge to one another as t→∞.

Let us limit ourselves to the so-called ‘autonomous’ ODE

u′(t) = f(u(t)) (4.2)

1. We use the prime symbol to indicate differentiation in case of functions of a single variable.
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in which the right hand side does not explicitly depend on t2. A sufficient criterium for stability is:

∂

∂u
f(u) =


> 0 unstable
= 0 neutrally stable
< 0 stable

Proof. If u∗ is a zero of f , meaning f(u∗) = 0, then the constant function u(t) ≡ u∗ is a solution of
u′ = f(u), a so-called ‘equilibrium’ solution. We will now consider how small perturbations from the
equilibrium behave. Let u be a solution of the PDE, and write u(t) = u∗ + η(t), then we have

η′ = u′ = f(u) = f(u∗ + η) = f(u∗) + ηf ′(u∗) +O(η2)
= ηf ′(u∗) +O(η2)

Ignoring the second order terms, this has the solution

η(t) = ef
′(x∗)t

which means that the perturbation will damp out if f ′(x∗) < 0.

We will often refer to the simple example f(u) = −λu, with solution u(t) = u0e
−λt. This problem is

stable if λ > 0.

4.1.2 Finite difference approximation: Euler explicit method

In order to solve the problem numerically, we turn the continuous problem into a discrete one by looking at
finite time/space steps. Assuming all functions are sufficiently smooth, a straightforward Taylor expansion3

gives:

u(t+ ∆t) = u(t) + u′(t)∆t+ u′′(t)
∆t2

2!
+ u′′′(t)

∆t3

3!
+ · · ·

This gives for u′:

u′(t) = u(t+∆t)−u(t)
∆t + 1

∆t

(
u′′(t)∆t2

2! + u′′′(t)∆t3

3! + · · ·
)

= u(t+∆t)−u(t)
∆t + 1

∆tO(∆t2)

= u(t+∆t)−u(t)
∆t +O(∆t)

(4.3)

We can approximate the infinite sum of higher derivatives by a single O(∆t2) if all derivates are bounded;
alternatively, appendix A.4 shows that this sum is equal to ∆t2u′′(t+ α∆t) with 0 < α < 1.

We see that we can approximate a differential operator by a finite difference , with an error that is known in
its order of magnitude as a function of the time step.

2. Non-autonomous ODEs can be transformed to autonomous ones, so this is no limitation. If u = u(t) is a scalar function
and f = f(t, u), we define u2(t) = t and consider the equivalent autonomous system

(
u′

u′
2

)
=

(
f(u2,u)

1

)
3. See appendix A.4 if you are unfamiliar with this.
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Substituting this in u′ = f(t, u) gives4

u(t+ ∆t)− u(t)

∆t
= f(t, u(t)) +O(∆t)

or

u(t+ ∆t) = u(t) + ∆t f(t, u(t)) +O(∆t2)

We use this equation to derive a numerical scheme: with t0 = 0, tk+1 = tk + ∆t = · · · = (k + 1)∆t, we
get a difference equation

uk+1 = uk + ∆t f(tk, uk)

for uk quantities, and we hope that uk will be a good approximation to u(tk). This is known as the ‘Explicit
Euler’ or ‘Euler forward’ method.

The process of going from a differential equation to a difference equation is often referred to as discretiza-
tion , since we compute function values only in a discrete set of points. The values computed themselves
are still real valued. Another way of phrasing this: the numerical solution is found in the finite dimensional
space Rk if we compute k time steps. The solution to the original problem is found in the space of functions
R→ R.

In (4.3) we approximated one operator by another, and in doing so made a truncation error of order O(∆t)
as ∆t ↓ 0 (see appendix A.2 for a more formal introduction to this notation for orders of magnitude.).
This does not immediately imply that the difference equation computes a solution that is close to the true
solution. For that some more analysis is needed.

We start by analyzing the ‘local error’: if we assume the computed solution is exact at step k, that is,
uk = u(tk), how wrong will we be at step k + 1? We have

u(tk+1) = u(tk) + u′(tk)∆t+ u′′(tk)
∆t2

2! + · · ·
= u(tk) + f(tk, u(tk))∆t+ u′′(tk)

∆t2

2! + · · ·
and

uk+1 = uk + f(tkuk)∆t

So

Lk+1 = uk+1 − u(tk+1) = uk − u(tk) + f(tk, uk)− f(tk, u(tk))− u′′(tk)∆t2

2! + · · ·
= −u′′(tk)∆t2

2! + · · ·
This shows that in each step we make an error of O(∆t2). If we assume that these errors can be added, we
find a global error of

Ek ≈ ΣkLk = k∆t
∆t2

2!
= O(∆t)

Since the global error is of first order in ∆t, we call this a ‘first order method’. Note that this error, which
measures the distance between the true and computed solutions, is of the same orderO(∆t) as the truncation
error, which is the error in approximating the operator.

4. The following equation is a mathematical equality, and should not be interpreted as a way of computing u′ for a given
function u. Recalling the discussion in section 3.3.4 you can see that this formula would quickly lead to cancellation for small ∆t.
For a discussion of numerical differentiation, see a numerical analysis textbook.
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4.1.2.1 Stability of the Euler explicit method

Consider the IVP u′ = f(t, u) for t ≥ 0, where f(t, u) = −λu and an initial value u(0) = u0 is given. This
has an exact solution of u(t) = u0e

−λt. From the above discussion, we conclude that this problem is stable,
meaning that small perturbations in the solution ultimately damp out, if λ > 0. We will now investigate
the question of whether the numerical solution behaves the same way as the exact solution, that is, whether
numerical solutions also converge to zero.

The Euler forward, or explicit Euler, scheme for this problem is

uk+1 = uk −∆tλuk = (1− λ∆t)uk ⇒ uk = (1− λ∆t)ku0.

For stability, we require that uk → 0 as k →∞. This is equivalent to

uk ↓ 0 ⇔ |1− λ∆t| < 1

⇔ −1 < 1− λ∆t < 1

⇔ −2 < −λ∆t < 0

⇔ 0 < λ∆t < 2

⇔ ∆t < 2/λ

We see that the stability of the numerical solution scheme depends on the value of ∆t: the scheme is only
stable if ∆t is small enough. For this reason, we call the explicit Euler method conditionally stable . Note
that the stability of the differential equation and the stability of the numerical scheme are two different
questions. The continuous problem is stable if λ > 0; the numerical problem has an additional condition
that depends on the discretization scheme used.

Note that the stability analysis we just performed was specific to the differential equation u′ = −λu. If
you are dealing with a different IVP you have to perform a separate analysis. However, you will find that
explicit methods typically give conditional stability.

4.1.2.2 The Euler implicit method

The explicit method you just saw was easy to compute, but the conditional stability is a potential problem.
For instance, it could imply that the number of time steps would be a limiting factor. There is an alternative
to the explicit method that does not suffer from the same objection.

Instead of expanding u(t+ ∆t), consider the following expansion of u(t−∆t):

u(t−∆t) = u(t)− u′(t)∆t+ u′′(t)
∆t2

2!
+ · · ·

which implies

u′(t) =
u(t)− u(t−∆t)

∆t
+ u′′(t)∆t/2 + · · ·

As before, we take the equation u′(t) = f(t, u(t)) and approximate u′(t) by a difference formula:

u(t)− u(t−∆t)

∆t
= f(t, u(t)) +O(∆t)⇒ u(t) = u(t−∆t) + ∆tf(t, u(t)) +O(∆t2)
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Again we define fixed points tk = kt, and we define a numerical scheme:

uk+1 = uk + ∆tf(tk+1, uk+1)

where uk is an approximation of u(tk).

An important difference with the explicit scheme is that uk+1 now also appears on the right hand side of
the equation. That is, computation of uk+1 is now implicit. For example, let f(t, u) = −u3, then uk+1 =
uk−∆tu3

k+1. In other words, uk+1Z is the solution for x of the equation ∆tx3 +x = uk. This is a nonlinear
equation, which typically can be solved using the Newton method.

4.1.2.3 Stability of the implicit Euler method

Let us take another look at the example f(t, u) = −λu. Formulating the implicit method gives

uk+1 = uk − λ∆tuk+1 ⇔ (1 + λ∆t)uk+1 = uk

so

uk+1 =

(
1

1 + λ∆t

)
uk ⇒ uk =

(
1

1 + λ∆t

)k
u0.

If λ > 0, which is the condition for a stable equation, we find that uk → 0 for all values of λ and ∆t.
This method is called unconditionally stable . One advantage of an implicit method over an explicit one is
clearly the stability: it is possible to take larger time steps without worrying about unphysical behaviour. Of
course, large time steps can make convergence to the steady state (see Appendix A.3.4) slower, but at least
there will be no divergence.

On the other hand, implicit methods are more complicated. As you saw above, they can involve nonlinear
systems to be solved in every time step. In cases where u is vector-valued, such as in the heat equation,
discussed below, you will see that the implicit method requires the solution of a system of equations.

Exercise 4.1. Analyse the accuracy and computational aspects of the following scheme for the
IVP u′(x) = f(x):

ui+1 = ui + h(f(xi) + f(xi+1))/2

which corresponds to adding the Euler explicit and implicit schemes together. You do
not have to analyze the stability of this scheme.

Exercise 4.2. Consider the initial value problem y′(t) = y(t)(1 − y(t)). Observe that y ≡ 0
and y ≡ 1 are solutions. These are called ‘equilibrium solutions’.

1. A solution is stable, if perturbations ‘converge back to the solution’, meaning
that for ε small enough,

if y(t) = ε for some t, then limt→∞ y(t) = 0

and

if y(t) = 1 + ε for some t, then limt→∞ y(t) = 1
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This requires for instance that

y(t) = ε⇒ y′(t) < 0.

Investigate this behaviour. Is zero a stable solution? Is one?
2. Consider the explicit method

yk+1 = yk + ∆tyk(1− yk)
for computing a numerical solution to the differential equation. Show that

yk ∈ (0, 1)⇒ yk+1 > yk, yk > 1⇒ yk+1 < yk

3. Write a small program to investigate the behaviour of the numerical solution
under various choices for ∆t. Include program listing and a couple of runs in
your homework submission.

4. You see from running your program that the numerical solution can oscillate. De-
rive a condition on ∆t that makes the numerical solution monotone. It is enough
to show that yk < 1⇒ yk+1 < 1, and yk > 1⇒ yk+1 > 1.

5. Now consider the implicit method

yk+1 −∆tyk+1(1− yk+1) = yk

and show that yk+1 is easily computed from yk. Write a program, and investigate
the behaviour of the numerical solution under various choices for ∆t.

6. Show that the numerical solution of the implicit scheme is monotone for all
choices of ∆t.

4.2 Boundary value problems
In the previous section you saw initial value problems, which model phenomena that evolve over time. We
will now move on to‘boundary value problems’, which are in general stationary in time, but which describe
a phenomenon that is location dependent. Examples would be the shape of a bridge under a load, or the
heat distribution in a window pane, as the temperature outside differs from the one inside.

The general form of a (second order, one-dimensional) BVP is5

u′′(x) = f(x, u, u′) for x ∈ [a, b] where u(a) = ua, u(b) = ub

but here we will only consider the simple form

−u′′(x) = f(x) for x ∈ [0, 1] with u(0) = u0, u(1) = u1. (4.4)

in one space dimension, or

−uxx(x̄)− uyy(x̄) = f(x̄) for x̄ ∈ Ω = [0, 1]2 with u(x̄) = u0 on δΩ. (4.5)

in two space dimensions. Here, δΩ is the boundary of the domain Ω. Since we prescribe the value of u on
the boundary, such a problem is called a Boundary Value Problem (BVP).

5. Actually, the boundary conditions are can be more general, involving derivatives on the interval end points. Here we only
look at Dirichlet boundary conditions which prescribe function values on the boundary of the domain.
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4.2.1 General PDE theory

There are several types of PDE, each with distinct mathematical properties. The most important property
is that of region of influence: if we tinker with the problem so that the solution changes in one point, what
other points will be affected.

• Elliptic PDEs have the form

Auxx +Buyy + lower order terms = 0

where A,B > 0. They are characterized by the fact that all points influence each other. These
equations often describe phenomena in structural mechanics, such as a beam or a membrane.
It is intuitively clear that pressing down on any point of a membrane will change the elevation
of every other point, no matter how little. The Poisson equation (section 4.2.2) is the standard
example of this type.
• Hyperbolic PDEs are of the form

Auxx +Buyy + lower order terms = 0

with A,B of opposite sign. Such equations describe wave phenomena. Intuitively, changing the
solution at any point will only change certain future points, since waves have a propagation speed
that makes it impossible for a point to influence points in the near future that are too far away in
space. This type of PDE will not be discussed in this book.
• Parabolic PDEs are of the form

Aux +Buyy + no higher order terms in x = 0

and they describe diffusion-like phenomena. The best way to characterize them is to consider
that the solution in each point in space and time is influenced by a certain finite region at each
previous point in space6. The heat equation (section 4.3) is the standard example of this type.

4.2.2 The Poisson equation

We call the operator ∆, defined by

∆u = uxx + uyy,

a second order differential operator , and equation (4.5) a second-order PDE. Specifically, the problem

−∆u = −uxx(x̄)− uyy(x̄) = f(x̄) for x̄ ∈ Ω = [0, 1]2 with u(x̄) = u0 on δΩ. (4.6)

is called the Poisson equation , in this case defined on the unit square. Second order PDEs are quite common,
describing many phenomena in fluid and heat flow and structural mechanics.

6. This leads to a condition limiting the time step in IBVP, known as the Courant-Friedrichs-Lewy condition http://
en.wikipedia.org/wiki/CourantFriedrichsLewy_condition. It describes the notion that in the exact problem
u(x, t) depends on a range of u(x′, t−∆t) values; the time step of the numerical method has to be small enough that the numerical
solution takes all these points into account.
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4.2.2.1 One-dimensional case

At first, for simplicity, we consider the one-dimensional Poisson equation

−uxx = f(x).

In order to find a numerical scheme we use Taylor series as before, expressing u(x + h) and u(x − h) in
terms of u and its derivatives at x. Let h > 0, then

u(x+ h) = u(x) + u′(x)h+ u′′(x)
h2

2!
+ u′′′(x)

h3

3!
+ u(4)(x)

h4

4!
+ u(5)(x)

h5

5!
+ · · ·

and

u(x− h) = u(x)− u′(x)h+ u′′(x)
h2

2!
− u′′′(x)

h3

3!
+ u(4)(x)

h4

4!
− u(5)(x)

h5

5!
+ · · ·

Our aim is now to approximate u′′(x). We see that the u′ terms in these equations would cancel out under
addition, leaving 2u(x):

u(x+ h) + u(x− h) = 2u(x) + u′′(x)h2 + u(4)(x)
h4

12
+ · · ·

so

−u′′(x) =
2u(x)− u(x+ h)− u(x− h)

h2
+ u(4)(x)

h2

12
+ · · · (4.7)

The basis for a numerical scheme for (4.4) is then the observation

2u(x)− u(x+ h)− u(x− h)

h2
= f(x, u(x), u′(x)) +O(h2),

which shows that we can approximate the differential operator by a difference operator, with an O(h2)
truncation error as h ↓ 0.

To derive a numerical method, we divide the interval [0, 1] into equally spaced points: xk = kh where
h = 1/(n + 1) and k = 0 . . . n + 1. With these, the Finite Difference (FD) formula (4.7) leads to a
numerical scheme that forms a system of equations:

−uk+1 + 2uk − uk−1 = h2f(xk) for k = 1, . . . , n (4.8)

This process of using the FD formula (4.7) for the approximate solution of a PDE is known as the Finite
Difference Method (FDM).

For most values of k this equation relates uk unknown to the unknowns uk−1 and uk+1. The exceptions are
k = 1 and k = n. In that case we recall that u0 and un+1 are known boundary conditions, and we write the
equations with unknowns on the left and known quantities on the right as{

2u1 − u2 = h2f(x1) + u0

2un − un−1 = h2f(xn) + un+1.
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We can now summarize these equations for uk, k = 1 . . . n− 1 as a matrix equation: 2 −1
−1 2 −1

. . . . . . . . .


u1

u2
...

 =

h
2f1 + u0

h2f2
...

 (4.9)

This has the formAu = f withA a fully known matrix, f a fully known vector, and u a vector of unknowns.
Note that the right hand side vector has the boundary values of the problem in the first and last locations.
This means that, if you want to solve the same differential equation with different boundary conditions,
only the vector f changes.

Exercise 4.3. A condition of the type u(0) = u0 is called a Dirichlet boundary condition .
Physically, this corresponds to knowing the temperature at the end point of a rod. Other
boundary conditions exist. Specifying a value for the derivative, u′(0) = u′0, rather
than for the function value,would be appropriate if we are modeling fluid flow and the
outflow rate at x = 0 is known. This is known as a Neumann boundary condition .
A Neumann boundary condition u′(0) = u′0 can be modeled by stating

u0 − u1

h
= u′0.

Show that, unlike in the case of the Direchlet boundary condition, this affects the
matrix of the linear system.
Show that having a Neumann boundary condition at both ends gives a singular matrix,
and therefore no unique solution to the linear system. (Hint: guess the vector that has
eigenvalue zero.)
Physically this makes sense. For instance, in an elasticity problem, Dirichlet bound-
ary conditions state that the rod is clamped at a certain height; a Neumann boundary
condition only states its angle at the end points, which leaves its height undetermined.

Let us list some properties of A that you will see later are relevant for solving such systems of equations:

• The matrix is very sparse: the percentage of elements that is nonzero is low. The nonzero ele-
ments are not randomly distributed but located in a band around the main diagonal. We call this
a banded matrix in general, and a tridiagonal matrix in this specific case.
• The matrix is symmetric. This property does not hold for all matrices that come from discretizing

BVPs, but it is true if there are no odd order (meaning first, third, fifth,. . . ) derivatives, such as
ux, uxxx, uxy.
• Matrix elements are constant in each diagonal, that is, in each set of points {(i, j) : i−j = c} for

some c. This is only true for very simple problems. It is no longer true if the differential equation
has location dependent terms such as d

dx(a(x) d
dxu(x)). It is also no longer true if we make h

variable through the interval, for instance because we want to model behaviour around the left
end point in more detail.
• Matrix elements conform to the following sign pattern: the diagonal elements are positive, and

the off-diagonal elements are nonpositive. This property depends on the numerical scheme used,
but it is often true. Together with the following property of definiteness, this is called an M-
matrix. There is a whole mathematical theory of these matrices [7].
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• The matrix is positive definite: xtAx > 0 for all nonzero vectors x. This property is inherited
from the original continuous problem, if the numerical scheme is carefully chosen. While the
use of this may not seem clear at the moment, later you will see methods for solving the linear
system that depend on it.

Strictly speaking the solution of equation (4.9) is simple: u = A−1f . However, computing A−1 is not
the best way of finding u. As observed just now, the matrix A has only 3N nonzero elements to store.
Its inverse, on the other hand, does not have a single nonzero. Although we will not prove it, this sort of
statement holds for most sparse matrices. Therefore, we want to solve Au = f in a way that does not
require O(n2) storage.

4.2.2.2 Two-dimensional BVPs

The one-dimensional BVP above was atypical in a number of ways, especially related to the resulting linear
algebra problem. In this section we will see a two-dimensional problem, which displays some new aspects.

The one-dimensional problem above had a function u = u(x), which now becomes u = u(x, y) in two
dimensions. The two-dimensional problem we are interested is then

−uxx − uyy = f, (x, y) ∈ [0, 1]2, (4.10)

where the values on the boundaries are given. We get our discrete equation by applying equation (4.7) in x
and y directions:

−uxx(x, y) = 2u(x,y)−u(x+h,y)−u(x−h,y)
h2

+ u(4)(x, y)h
2

12 + · · ·
−uyy(x, y) = 2u(x,y)−u(x,y+h)−u(x,y−h)

h2
+ u(4)(x, y)h

2

12 + · · ·

or, taken together:

4u(x, y)− u(x+ h, y)− u(x− h, y)− u(x, y+ h)− u(x, y− h) = 1/h2 f(x, y) +O(h2) (4.11)

Let again h = 1/(n + 1) and define xi = ih and yj = jh; let uij be the approximation to u(xi, yj), then
our discrete equation becomes

4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = h−2fij . (4.12)

We now have n × n unknowns uij . To render this in a linear system as before we need to put them in a
linear ordering, which we do by defining I = Iij = i+ j × n. This gives us N = n2 equations

4uI − uI+1 − uI−1 − uI+n − uI−n = h−2fI , I = 1, . . . , N (4.13)
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Figure 4.1: A difference stencil applied to a two-dimensional square domain

and the linear system looks like

A =



4 −1 ∅ −1 ∅
−1 4 1 −1

. . . . . . . . . . . .
. . . . . . −1

. . .
∅ −1 4 ∅ −1

−1 ∅ 4 −1 −1
−1 −1 4 −1 −1

↑ . . . ↑ ↑ ↑ ↑
k − n k − 1 k k + 1 −1 k + n

−1 −1 4
. . . . . .



(4.14)

However, it can be more insightful to render these equations in a way that makes clear the two-dimensional
connections of the unknowns. For this, figure 4.1 pictures the variables in the domain, and how equa-
tion (4.12) relates them. From now on, when making such a picture of the domain, we will just use the
indices of the variables, and omit the ‘u’ identifier.

The matrix of equation 4.14 is banded as in the one-dimensional case, but unlike in the one-dimensional
case, there are zeros inside the band. (This has some important consequences when we try to solve the linear
system; see section 5.4.3.) Because the matrix has five nonzero diagonals, it is said to be of penta-diagonal
structure.

You can also put a block structure on the matrix, by grouping the unknowns together that are in one row of
the domain. This is called a block matrix , and, on the block level, it has a tridiagonal structure, so we call
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Figure 4.2: A triangular domain of definition for the Poisson equation

this a block tridiagonal matrix. Note that the diagonal blocks themselves are tridiagonal; the off-diagonal
blocks are minus the identity matrix.

This matrix, like the one-dimensional example above, has constant diagonals, but this is again due to the
simple nature of the problem. In practical problems it will not be true. That said, such ‘constant coefficient’
problems occur, and when they are on rectangular domains, there are very efficient methods for solving the
linear system with N logN time complexity.

Exercise 4.4. The block structure of the matrix, with all diagonal blocks having the same size,
is due to the fact that we defined our BVP on a square domain. Sketch the matrix
structure that arises from discretizing equation (4.10), again with central differences,
but this time defined on a triangular domain; see figure 4.2. Show that, again, there is
a block tridiagonal matrix structure, but that the blocks are now of varying sizes. Hint:
start by sketching a small example. For n = 4 you should get a 10× 10 matrix with a
4× 4 block structure.

For domains that are even more irregular, the matrix structure will also be irregular; see figure 4.3 for an
example.

The regular block structure is also caused by our decision to order the unknowns by rows and columns. This
known as the natural ordering or lexicographic ordering; various other orderings are possible. One common
way of ordering the unknowns is the red-black ordering or checkerboard ordering which has advantanges
for parallel computation. This will be discussed in section 6.6.

There is more to say about analytical aspects of the BVP (for instance, how smooth is the solution and how
does that depend on the boundary conditions?) but those questions are outside the scope of this course.
Here we only focus on the numerical aspects of the matrices. In the chapter on linear algebra, we will come
back to the BVP, since solving the linear system is mathematically interesting.
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Figure 4.3: A matrix from an irregular problem

4.2.2.3 Difference stencils

The discretization (4.11) is often phrased as applying the difference stencil

· −1 ·
−1 4 −1
· −1 ·

to the function u. Given a physical domain, we apply the stencil to each point in that domain to derive the
equation for that point. Figure 4.1 illustrates that for a square domain of n × n points. Connecting this
figure with equation (4.14), you see that the connections in the same line give rise to the main diagonal and
first upper and lower offdiagonal; the connections to the next and previous lines become the nonzeros in
the off-diagonal blocks.

This particular stencil is often referred to as the ‘5-point star’. There are other difference stencils; the
structure of some of them are depicted in figure 4.4. A stencil with only connections in horizontal or vertical

Figure 4.4: The structure of some difference stencils in two dimensions

148 Introduction to High Performance Scientific Computing



4.3. Initial boundary value problem

direction is called a ‘star stencil’, while one that has cross connections (such as the second in figure 4.4) is
called a ‘box stencil’.

Exercise 4.5. Consider the third stencil in figure 4.4, used for a BVP on a square domain.
What does the sparsity structure of the resulting matrix look like, if we again order the
variables by rows and columns?

Other stencils than the 5-point star can be used to attain higher accuracy, for instance giving a truncation
error of O(h4). They can also be used for other differential equations than the one discussed above. For
instance, it is not hard to show that for the equation uxxxx +uyyyy = f we need a stencil that contains both
x, y ± h and x, y ± 2h connections, such as the third stencil in the figure. Conversely, using the 5-point
stencil no values of the coefficients give a discretization of the fourth order problem with less than O(1)
truncation error.

While the discussion so far has been about two-dimensional problems, it is easily generalized to higher
dimensions for such equations as−uxx−uyy−uzz = f . The straightforward generalization of the 5-point
stencil, for instance, becomes a 7-point stencil in three dimensions.

4.2.2.4 Other discretization techniques

In the above, we used the FDM to find a numerical solution to a differential equation. There are various
other techniques, and in fact, in the case of boundary value problems, they are usually preferred over finite
differences. The most popular methods are the FEM and the finite volume method . Especially the finite
element method is attractive, since it can handle irregular shapes more easily, and it is more amenable to
approximation error analysis. However, on the simple problems discussed here it gives similar or even the
same linear systems as FD methods, so we limit the discussion to Finite Differences, since we are mostly
concerned with the computational aspects of the linear systems.

There will be a brief discussion of finite element matrices in section 6.5.2.

4.3 Initial boundary value problem

We will now go on to discuss an Initial Boundary Value Problem (IBVP), which, as you may deduce from
the name, combines aspects of IVPs and BVPs. Here we will limit ourselves to one space dimension.

The problem we are considering is that of heat conduction in a rod, where T (x, t) describes the temperature
in location x at time t, for x ∈ [a, b], t > 0. The so-called heat equation (see Appendix A.3 for a quick
introduction to PDEs in general and the heat equation in particular) is:

∂

∂t
T (x, t)− α ∂2

∂x2
T (x, t) = q(x, t)

where

• The initial condition T (x, 0) = T0(x) describes the initial temperature distribution.
• The boundary conditions T (a, t) = Ta(t), T (b, t) = Tb(t) describe the ends of the rod, which

can for instance be fixed to an object of a known temperature.
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• The material the rod is made of is modeled by a single parameter α > 0, the thermal diffusivity,
which describes how fast heat diffuses through the material.
• The forcing function q(x, t) describes externally applied heating, as a function of both time and

place.

There is a simple connection between the IBVP and the BVP: if the boundary functions Ta and Tb are
constant, and q does not depend on time, only on location, then intuitively T will converge to a steady state .
The equation for this is −αu′′(x) = q.

4.3.1 Discretization

We now discretize both space and time, by xj+1 = xj +∆x and tk+1 = tk+∆t, with boundary conditions
x0 = a, xn = b, and t0 = 0. We write T kj for the numerical solution at x = xj , t = tk; with a little luck,
this will approximate the exact solution T (xj , tk).

For the space discretization we use the central difference formula (4.8):

∂2

∂x2
T (x, tk)

∣∣∣∣
x=xj

⇒
T kj−1 − 2T kj + T kj+1

∆x2
.

For the time discretization we can use any of the schemes in section 4.1.2. We will investigate again the
explicit and implicit schemes, with similar conclusions about the resulting stability.

4.3.1.1 Explicit scheme

With explicit time stepping we approximate the time derivative as

∂

∂t
T (xj , t)

∣∣∣∣
t=tk

⇒
T k+1
j − T kj

∆t
. (4.15)

Taking this together with the central differences in space, we now have

T k+1
j − T kj

∆t
− α

T kj−1 − 2T kj + T kj+1

∆x2
= qkj

which we rewrite as

T k+1
j = T kj +

α∆t

∆x2
(T kj−1 − 2T kj + T kj+1) + ∆tqkj (4.16)

Pictorially, we render this as a difference stencil in figure 4.5. This expresses that the function value in each
point is determined by a combination of points on the previous time level.

It is convenient to summarize the set of equations (4.16) for a given k and all values of j in vector form as

T k+1 =

(
I − α∆t

∆x2
K

)
T k + ∆tqk (4.17)
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Figure 4.5: The difference stencil of the Euler forward method for the heat equation
.

where

K =

 2 −1
−1 2 −1

. . . . . . . . .

 , T k =

T k1
...
T kn

.

The important observation here is that the dominant computation for deriving the vector T k+1 from T k is
a simple matrix-vector multiplication:

T k+1 ← AT k + ∆tqk

where A = I − α∆t
∆x2

K. This is a first indication that the sparse matrix-vector product is an important oper-
ation; see sections 5.4 and 6.4. Actual computer programs using an explicit method often do not form the
matrix, but evaluate the equation (4.16). However, the linear algebra formulation (4.17) is more insightful
for purposes of analysis.

4.3.1.2 Implicit scheme

In equation (4.15) we let T k+1 be defined from T k. We can turn this around by defining T k from T k−1, as
we did for the IVP in section 4.1.2.2. For the time discretization this gives

∂

∂t
T (x, t)

∣∣∣∣
t=tk

⇒
T kj − T k−1

j

∆t
or

∂

∂t
T (x, t)

∣∣∣∣
t=tk+1

⇒
T k+1
j − T kj

∆t
. (4.18)

The implicit time step discretization of the whole heat equation, evaluated in tk+1, now becomes:

T k+1
j − T kj

∆t
− α

T k+1
j−1 − 2T k+1

j + T k+1
j+1

∆x2
= qk+1

j

or

T k+1
j − α∆t

∆x2
(T k+1
j−1 − 2T k+1

j + T k+1
j+1 ) = T kj + ∆tqk+1

j (4.19)
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Figure 4.6: The difference stencil of the Euler backward method for the heat equation
.

Figure 4.6 renders this as a stencil; this expresses that each point on the current time level influences a
combination of points on the next level. Again we write this in vector form:(

I +
α∆t

∆x2
K

)
T k+1 = T k + ∆tqk+1 (4.20)

As opposed to the explicit method, where a matrix-vector multiplication sufficed, the derivation of the
vector T k+1 from T k now involves solving a linear system

T k+1 ← A−1(T k + ∆tqk+1)

where A = I + α∆t
∆x2

K, a harder operation than the matrix-vector multiplication. In this case, it is not
possible, as above, to evaluate the equation (4.19) directly. Codes using an implicit method actually form
the coefficient matrix, and solve the system (4.20) as such. Solving linear systems will be the focus of much
of chapters 5 and 6.
Exercise 4.6. Show that the flop count for a time step of the implicit method is of the same

order as of a time step of the explicit method. (This only holds for a problem with one
space dimension.) Give at least one argument why we consider the implicit method as
computationally ‘harder’.

The numerical scheme that we used here is of first order in time and second order in space: the truncation
error (section 4.1.2) is O(∆t+ ∆x2). It would be possible to use a scheme that is second order in time by
using central differences in time too. Alternatively, see exercise 4.7.

4.3.2 Stability analysis

We now analyse the stability of the explicit and implicit schemes in a simple case. Let q ≡ 0, and assume
T kj = βkei`xj for some `7. This assumption is intuitively defensible: since the differential equation does
not ‘mix’ the x and t coordinates, we surmise that the solution will be a product T (x, t) = v(x) · w(t) of
the separate solutions of{

vxx = c1v, v(0) = 0, v(1) = 0

wt = c2w w(0) = 1

7. Actually, β is also dependent on `, but we will save ourselves a bunch of subscripts, since different β values never appear
together in one formula.
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The only meaningful solution occurs with c1, c2 < 0, in which case we find:

vxx = −c2v ⇒ v(x) = e−icx = e−i`πx

where we substitute c = `π to take boundary conditions into account, and

w(t) = e−ct = e−ck∆t = βk, β = e−ck.

If the assumption on this form of the solution holds up, we need |β| < 1 for stability.

Substituting the surmised form for T kj into the explicit scheme gives

T k+1
j = T kj +

α∆t

∆x2
(T kj−1 − 2T kj + T kj+1)

⇒ βk+1ei`xj = βkei`xj +
α∆t

∆x2
(βkei`xj−1 − 2βkei`xj + βkei`xj+1)

= βkei`xj
[
1 +

α∆t

∆x2

[
e−i`∆x − 2 + ei`∆x

]]
⇒ β = 1 + 2

α∆t

∆x2
[
1

2
(ei`∆x + e−`∆x)− 1]

= 1 + 2
α∆t

∆x2
(cos(`∆x)− 1)

For stability we need |β| < 1:
• β < 1⇔ 2α∆t

∆x2
(cos(`∆x)− 1) < 0: this is true for any ` and any choice of ∆x,∆t.

• β > −1⇔ 2α∆t
∆x2

(cos(`∆x)− 1) > −2: this is true for all ` only if 2α∆t
∆x2

< 1, that is

∆t <
∆x2

2α
The latter condition poses a big restriction on the allowable size of the time steps: time steps have to be
small enough for the method to be stable. This is similar to the stability analysis of the explicit method
for the IVP; however, now the time step is also related to the space discretization. This implies that, if we
decide we need more accuracy in space and we halve the space discretization ∆x, the number of time steps
will be multiplied by four.

Let us now consider the stability of the implicit scheme. Substituting the form of the solution T kj = βkei`xj

into the numerical scheme gives

T k+1
j − T kj =

α∆t

∆x2
(T k+1
j1
− 2T k+1

j + T k+1
j+1 )

⇒ βk+1ei`∆x − βkei`xj =
α∆t

∆x2
(βk+1ei`xj−1 − 2βk+1ei`xj + βk+1ei`xj+1)

Dividing out ei`xjβk+1 gives

1 = β−1 + 2α
∆t

∆x2
(cos `∆x− 1)

β =
1

1 + 2α ∆t
∆x2

(1− cos `∆x)
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Since 1 − cos `∆x ∈ (0, 2), the denominator is strictly > 1. Therefore the condition |β| < 1 is always
satisfied, regardless the value of ` and the choices of ∆x and ∆t: the method is always stable.

Exercise 4.7. The schemes we considered here are of first order in time and second order in
space: their discretization order are O(∆t) + O(∆x2). Derive the Crank-Nicolson
method that is obtained by averaging the explicit and implicit schemes, show that it is
unconditionally stable, and of second order in time.
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Chapter 5

Numerical linear algebra

In chapter 4 you saw how the numerical solution of partial differential equations can lead to linear algebra
problems. Sometimes this is a simple problem – a matrix-vector multiplication in the case of the Euler
forward method – but sometimes it is more complicated, such as the solution of a system of linear equations
in the case of Euler backward methods. Solving linear systems will be the focus of this chapter; in other
applications, which we will not discuss here, eigenvalue problems need to be solved.

You may have learned a simple algorithm for solving system of linear equations: elimination of unknowns,
also called Gaussian elimination. This method can still be used, but we need some careful discussion of
its efficiency. There are also other algorithms, the so-called iterative solution methods, which proceed by
gradually approximating the solution of the linear system. They warrant some discussion of their own.

Because of the PDE background, we only consider linear systems that are square and nonsingular. Rect-
angular, in particular overdetermined, systems have important applications too in a corner of numerical
analysis known as optimization theory. However, we will not cover that in this book.

The standard work on numerical linear algebra is Golub and Van Loan’s Matrix Computations [57]. It
covers algorithms, error analysis, and computational details. Heath’s Scientific Computing covers the most
common types of computations that arise in scientific computing; this book has many excellent exercises
and practical projects.

5.1 Elimination of unknowns

In this section we are going to take a closer look at Gaussian elimination, or elimination of unknowns.
You may have seen this method before (and if not, it will be explained below), but we will be a bit more
systematic here so that we can analyze various aspects of it.

One general thread of this chapter will be the discussion of the efficiency of the various algorithms. When
you learned how to solve a system of unknowns by gradually eliminating unknowns, you most likely never
applied that method to a matrix larger than 4 × 4. The linear systems that occur in PDE solving can be
thousands of times larger, and counting how many operations, as well as how much memory, they require
becomes important.
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Let us consider an example of the importance of efficiency in choosing the right algorithm. The solution
of a linear system can be written with a fairly simple explicit formula, using determinants. This is called
‘Cramer’s rule’. It is mathematically elegant, but completely impractical for our purposes.

If a matrix A and a vector b are given, and a vector x satisfying Ax = b is wanted, then, writing |A| for the
determinant,

xi =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1i−1 b1 a1i+1 . . . a1n

a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣∣ /|A|
For any matrix M the determinant is defined recursively as

|M | =
∑
i

(−1)im1i|M [1,i]|

where M [1,i] denotes the matrix obtained by deleting row 1 and column i from M . This means that com-
puting the determinant of a matrix of dimension n means n times computing a size n − 1 determinant.
Each of these requires n− 1 determinants of size n− 2, so you see that the number of operations required
to compute the determinant is factorial in the matrix size. This quickly becomes prohibitive, even ignoring
any issues of numerical stability. Later in this chapter you will see complexity estimates for other methods
of solving systems of linear equations that are considerably more reasonable.

Let us now look at a simple example of solving linear equations with elimination of unknowns. Consider
the system

6x1 −2x2 +2x3 = 16
12x1 −8x2 +6x3 = 26
3x1 −13x2 +3x3 = −19

(5.1)

We eliminate x1 from the second and third equation by

• multiplying the first equation ×2 and subtracting the result from the second equation, and
• multiplying the first equation ×1/2 and subtracting the result from the third equation.

The linear system then becomes

6x1 −2x2 +2x3 = 16
0x1 −4x2 +2x3 = −6
0x1 −12x2 +2x3 = −27

Finally, we eliminate x2 from the third equation by multiplying the second equation by 3, and subtracting
the result from the third equation:

6x1 −2x2 +2x3 = 16
0x1 −4x2 +2x3 = −6
0x1 +0x2 −4x3 = −9

156 Introduction to High Performance Scientific Computing



5.1. Elimination of unknowns

We can now solve x3 = 9/4 from the last equation. Substituting that in the second equation, we get
−4x2 = −6 − 2x2 = −21/2 so x2 = 21/8. Finally, from the first equation 6x1 = 16 + 2x2 − 2x3 =
16 + 21/4− 9/2 = 76/4 so x1 = 19/6.

We can write this more compactly by omiting the xi coefficients. Write 6 −2 2
12 −8 6
3 −13 3

x1

x2

x3

 =

 16
26
−19


as  6 −2 2 | 16

12 −8 6 | 26
3 −13 3 | −19

 (5.2)

then the elimination process is 6 −2 2 | 16
12 −8 6 | 26
3 −13 3 | −19

 −→
6 −2 2 | 16

0 −4 2 | −6
0 −12 2 | −27

 −→
6 −2 2 | 16

0 −4 2 | −6
0 0 −4 | −9

 .
In the above example, the matrix coefficients could have been any real (or, for that matter, complex) coeffi-
cients, and you could follow the elimination procedure mechanically. There is the following exception. At
some point in the computation, we divided by the numbers 6,−4,−4 which are found on the diagonal of
the matrix in the last elimination step. These quantities are called the pivots , and clearly they are required
to be nonzero.
Exercise 5.1. The system

6x1 −2x2 +2x3 = 16
12x1 −4x2 +6x3 = 26
3x1 −13x2 +3x3 = −19

is the same as the one we just investigated in equation (5.1), except for the (2, 2)
element. Confirm that you get a zero pivot in the second step.

The first pivot is an element of the original matrix; as you saw in the preceding exercise, the other pivots can
not easily be found without doing the actual elimination. In particular, there is no easy way of predicting
zero pivots from looking at the system of equations.

If a pivot turns out to be zero, all is not lost for the computation: we can always exchange two matrix
rows; this is known as pivoting . It is not hard to show1 that with a nonsingular matrix there is always a row
exchange possible that puts a nonzero element in the pivot location.
Exercise 5.2. Suppose you want to exchange matrix rows 2 and 3 of the system of equations in

equation (5.2). What other adjustments would you have to make to make sure you still
compute the correct solution? Continue the system solution of the previous exercse by
exchanging rows 2 and 3, and check that you get the correct answer.

1. And you can find this in any elementary linear algebra textbook.
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Exercise 5.3. Take another look at exercise 5.1. Instead of exchanging rows 2 and 3, exchange
columns 2 and 3. What does this mean in terms of the linear system? Continue the
process of solving the system; check that you get the same solution as before.

In general, with floating point numbers and round-off, it is very unlikely that a matrix element will become
exactly zero during a computation. Also, in a PDE context, the diagonal is usually nonzero. Does that mean
that pivoting is in practice almost never necessary? The answer is no: pivoting is desirable from a point of
view of numerical stability. In the next section you will see an example that illustrates this fact.

5.2 Linear algebra in computer arithmetic

In most of this chapter, we will act as if all operations can be done in exact arithmetic. However, it is good
to become aware of some of the potential problems due to our finite precision computer arithmetic. This
allows us to design algorithms that minimize the effect of roundoff. A more rigorous approach to the topic
of numerical linear algebra includes a full-fledged error analysis of the algorithms we discuss; however,
that is beyond the scope of this course. Error analysis of computations in computer arithmetic is the focus
of Wilkinson’s classic Rounding errors in Algebraic Processes [136] and Higham’s more recent Accuracy
and Stability of Numerical Algorithms [70].

Here, we will only note a few paradigmatic examples of the sort of problems that can come up in computer
arithmetic: we will show why pivoting during LU factorization is more than a theoretical device, and we will
give two examples of problems in eigenvalue calculations due to the finite precision of computer arithmetic.

5.2.1 Roundoff control during elimination

Above, you saw that row interchanging (‘pivoting’) is necessary if a zero element appears on the diagonal
during elimination of that row and column. Let us now look at what happens if the pivot element is not
zero, but close to zero.

Consider the linear system(
ε 1
1 1

)
x =

(
1 + ε

2

)
which has the solution solution x = (1, 1)t. Using the (1, 1) element to clear the remainder of the first
column gives:(

ε 1
0 1− 1

ε

)
x =

(
1 + ε

2− 1+ε
ε

)
.

We can now solve x2 and from it x1.

If ε is small, say ε < εmach, the 1 + ε term in the right hand side will be simply 1: our linear system will be(
ε 1
1 1

)
x =

(
1
2

)
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but the solution (1, 1)t will still satisfy the system in machine arithmetic.

Next, 1/ε will be very large, so the second component of the right hand side after elimination will be
2− 1

ε = −1/ε. Also, the (2, 2) element of the matrix is then −1/ε instead of 1− 1/ε:(
ε 1
0 −1/ε

)
x =

(
1
−1/ε

)
We get the correct value x2 = 1, but

εx1 + x2 = 1⇒ εx1 = 0⇒ x1 = 0,

which is 100% wrong.

What would have happened if we had pivoted as described above? We exchange the matrix rows, giving(
1 1
ε 1

)
x =

(
2

1 + ε

)
⇒
(

1 1
0 1− ε

)
x =

(
2

1− ε

)
Now we get, regardless the size of epsilon:

x1 =
1− ε
1− ε = 1, x2 = 2− x1 = 1

In this example we used a very small value of ε; a much more refined analysis shows that even with ε
greater than the machine precision pivoting still makes sense. The general rule of thumb is: Always do row
exchanges to get the largest remaining element in the current column into the pivot position. In chapter 4
you sawmatrices that arise in certain practical applications; it can be shown that for them pivoting is never
necessary; see exercise 5.13.

The pivoting that was discussed above is also known as partial pivoting , since it is based on row exchanges
only. Another option would be full pivoting , where row and column exchanges are combined to find the
largest element in the remaining subblock, to be used as pivot. Finally, diagonal pivoting applies the same
exchange to rows and columns. (This is equivalent to renumbering the unknowns of the problem, a strategy
which we will consider in section 6.7 for increasing the parallelism of the problem.) This means that pivots
are only searched on the diagonal. From now on we will only consider partial pivoting.

5.2.2 Influence of roundoff on eigenvalue computations

Consider the matrix

A =

(
1 ε
ε 1

)
where εmach < |ε| < √εmach, which has eigenvalues 1 + ε and 1 − ε. If we calculate its characteristic
polynomial in computer arithmetic∣∣∣∣1− λ ε

ε 1− λ

∣∣∣∣ = λ2 − 2λ+ (1− ε2) = λ2 − 2λ+ 1.
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we find a double eigenvalue 1. Note that the exact eigenvalues are expressible in working precision; it is the
algorithm that causes the error. Clearly, using the characteristic polynomial is not the right way to compute
eigenvalues, even in well-behaved, symmetric positive definite, matrices.

An unsymmetric example: let A be the matrix of size 20

A =


20 20 ∅

19 20
. . . . . .

2 20
∅ 1

 .

Since this is a triangular matrix, its eigenvalues are the diagonal elements. If we perturb this matrix by
setting A20,1 = 10−6 we find a perturbation in the eigenvalues that is much larger than in the elements:

λ = 20.6± 1.9i, 20.0± 3.8i, 21.2, 16.6± 5.4i, . . .

Also, several of the computed eigenvalues have an imaginary component, which the exact eigenvalues do
not have.

5.3 LU factorization

So far, we have looked at eliminating unknowns in the context of solving a single system of linear equations.
Suppose you need to solve more than one system with the same matrix, but with different right hand sides.
This happens for instance if you take multiple time steps in an implicit method. Can you use any of the
work you did in the first system to make solving subsequent ones easier?

The answer is yes. You can split the solution process in a part that only concerns the matrix, and a part that
is specific to the right hand side. If you have a series of systems to solve, you have to do the first part only
once, and, luckily, that even turns out to be the larger part of the work.

Let us take a look at the same example of section 5.1 again.

A =

 6 −2 2
12 −8 6
3 −13 3


In the elimination process, we took the 2nd row minus 2× the first and the 3rd row minus 1/2× the first.
Convince yourself that this combining of rows can be done by multiplying A from the left by

L1 =

 1 0 0
−2 1 0
−1/2 0 1

 ,

which is the identity with the elimination coefficients in the first column, below the diagonal. The first step
in elimination of variables is equivalent to transforming the system Ax = b to L1Ax = L1b.
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In the next step, you subtracted 3× the second row from the third. Convince yourself that this corresponds
to left-multiplying the current matrix L1A by

L2 =

1 0 0
0 1 0
0 −3 1


We have now transformed our system Ax = b into L2L1Ax = L2L1b, and L2L1A is of ‘upper triangular’
form. If we define U = L2L1A, then A = L−1

1 L−1
2 U . How hard is it to compute matrices such as L−1

2 ?
Remarkably easy, it turns out to be.

We make the following observations:

L1 =

 1 0 0
−2 1 0
−1/2 0 1

 L−1
1 =

 1 0 0
2 1 0

1/2 0 1


and likewise

L2 =

1 0 0
0 1 0
0 −3 1

 L−1
2 =

1 0 0
0 1 0
0 3 1


and even more remarkable:

L−1
1 L−1

2 =

 1 0 0
2 1 0

1/2 3 1

 ,

that is, L−1
1 L−1

2 contains the off-diagonal elements of L−1
1 , L−1

2 unchanged, and they in turn contain the
elimination coefficients.

Exercise 5.4. Show that a similar statement holds, even if there are elements above the diago-
nal.

If we define L = L−1
1 L−1

2 , we now have A = LU ; this is called an LU factorization . We see that the
coefficients ofL below the diagonal are the negative of the coefficients used during elimination. Even better,
the first column of L can be written while the first column of A is being eliminated, so the computation of
L and U can be done without extra storage, at least if we can afford to lose A.

5.3.1 The algorithm

Let us write out the LU factorization algorithm in more or less formal code.

〈LU factorization〉:
for k = 1, n− 1:
〈eliminate values in column k〉

〈eliminate values in column k〉:
for i = k + 1 to n:
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〈compute multiplier for row i〉
〈update row i〉

〈compute multiplier for row i〉
aik ← aik/akk

〈update row i〉:
for j = k + 1 to n:
aij ← aij − aik ∗ akj

Or, putting everything together:

〈LU factorization〉:
for k = 1, n− 1:

for i = k + 1 to n:
aik ← aik/akk
for j = k + 1 to n:
aij ← aij − aik ∗ akj

(5.3)

This is the most common way of presenting the LU factorization. However, other ways of computing the
same result exist. Algorithms such as the LU factorization can be coded in several ways that are mathemat-
ically equivalent, but that have different computational behaviour. This issue, in the context of dense matri-
ces, is the focus of van de Geijn and Quintana’s The Science of Programming Matrix Computations [129].

5.3.2 The Cholesky factorization

The LU factorization of a symmetric matrix does not give an L and U that are each other’s transpose: L has
ones on the diagonal and U has the pivots. However it is possible to make a factorization of a symmetric
matrix A of the form A = LLt. This has the advantage that the factorization takes the same amount of
space as the original matrix, namely n(n + 1)/2 elements. We a little luck we can, just as in the LU case,
overwrite the matrix with the factorization.

We derive this algorithm by reasoning inductively. Let us write A = LLt on block form:

A =

(
A11 At21

A21 A22

)
= LLt =

(
`11 0
`21 L22

)(
`11 `t21

0 Lt22

)
then `211 = a11, from which we get `11. We also find `11(Lt)1j = `j1 = a1j , so we can compute the whole
first column of L. Finally, A22 = L22L

t
22 + `12`

t
12, so

L22L
t
22 = A22 − `12`

t
12,

which shows that L22 is the Cholesky factor of the updated A22 block. Recursively, the algorithm is now
defined.

5.3.3 Uniqueness

It is always a good idea, when discussing numerical algorithms, to wonder if different ways of computing
lead to the same result. This is referred to as the ‘uniqueness’ of the result, and it is of practical use: if
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the computed result is unique, swapping one software library for another will not change anything in the
computation.

Let us consider the uniqueness of LU factorization. The definition of an LU factorization algorithm (with-
out pivoting) is that, given a nonsingular matrix A, it will give a lower triangular matrix L and upper
triangular matrix U such that A = LU . The above algorithm for computing an LU factorization is deter-
ministic (it does not contain instructions ‘take any row that satisfies. . . ’), so given the same input, it will
always compute the same output. However, other algorithms are possible, so we need worry whether they
give the same result.

Let us then assume that A = L1U1 = L2U2 where L1, L2 are lower triangular and U1, U2 are upper
triangular. Then, L−1

2 L1 = U2U
−1
1 . In that equation, the left hand side is the product of lower triangular

matrices, while the right hand side contains only upper triangular matrices.

Exercise 5.5. Prove that the product of lower triangular matrices is lower triangular, and the
product of upper triangular matrices upper triangular. Is a similar statement true for
inverses of nonsingular triangular matrices?

The product L−1
2 L1 is apparently both lower triangular and upper triangular, so it must be diagonal. Let us

call it D, then L1 = L2D and U2 = DU1. The conclusion is that LU factorization is not unique, but it is
unique ‘up to diagonal scaling’.

Exercise 5.6. The algorithm in section 5.3.1 resulted in a lower triangular factor L that had
ones on the diagonal. Show that this extra condition makes the factorization unique.

Exercise 5.7. Show that an alternative condition of having ones on the diagonal of U is also
sufficient for the uniqueness of the factorization.

Since we can demand a unit diagonal in L or in U , you may wonder if it is possible to have both. (Give a
simple argument why this is not strictly possible.) We can do the following: suppose that A = LU where
L and U are nonsingular lower and upper triangular, but not normalized in any way. Write

L = (I + L′)DL, U = DU (I + U ′), D = DLDU .

After some renaming we now have a factorization

A = (I + L)D(I + U) (5.4)

where D is a diagonal matrix containing the pivots.

Exercise 5.8. Show that you can also normalize the factorization on the form

A = (D + L)D−1(D + U).

How does this D relate to the previous?

Exercise 5.9. Consider the factorization of a tridiagonal matrix this way. How do L and U
relate to the triangular parts of A? Derive a relation between D and DA and show that
this is the equation that generates the pivots.
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5.3.4 Pivoting

Above, you saw examples where pivoting, that is, exchanging rows, was necessary during the factorization
process, either to guarantee the existence of a nonzero pivot, or for numerical stability. We will now integrate
pivoting into the LU factorization.

Let us first observe that row exchanges can be described by a matrix multiplication. Let

P (i,j) =

i j

i

j



1 0

0
. . . . . .

0 1
I

1 0
I

. . .


then P (i,j)A is the matrix A with rows i and j exchanged. Since we may have to pivot in every iteration of
the factorization process, we introduce a sequence p(·) where p(i) is the j values of the row that row i is
switched with. We write P (i) ≡ P (i,p(i)) for short.

Exercise 5.10. Show that P (i) is its own inverse.

The process of factoring with partial pivoting can now be described as:

• Let A(i) be the matrix with columns 1 . . . i− 1 eliminated, and partial pivoting applied to get the
desired element in the (i, i) location.
• Let `(i) be the vector of multipliers in the i-th elimination step. (That is, the elimination matrix
Li in this step is the identity plus `(i) in the i-th column.)
• Let P (i+1) (with j ≥ i + 1) be the matrix that does the partial pivoting for the next elimination

step as described above.
• Then A(i+1) = P (i+1)LiA

(i).

In this way we get a factorization of the form

Ln−1P
(n−2)Ln−2 · · ·L1P

(1)A = U.

Suddenly it has become impossible to write A = LU : instead we write

A = P (1)L−1
1 · · ·P (n−2)L−1

n−1U. (5.5)

Exercise 5.11. Recall from sections 1.6.8 and 1.6.9 that blocked algorithms are often desir-
able from a performance point of view. Why is the ‘LU factorization with interleaved
pivoting matrices’ in equation (5.5) bad news for performance?
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Fortunately, equation (5.5) can be simplified: the P and L matrices ‘almost commute’. We show this by
looking at an example: P (2)L1 = L̃1P

(2) where L̃1 is very close to L1.


1

0 1
I

1 0
I




1 ∅
... 1

`(1) . . .
... 1

 =



1 ∅
... 0 1

˜̀(1)

... 1 0

... I


=


1 ∅
... 1

˜̀(1) . . .
... 1




1
0 1

I
1 0

I



where ˜̀(1) is the same as `(1), except that elements i and p(i) have been swapped. You can now easily
convince yourself that similarly P (2) et cetera can be ‘pulled through’ L1.

As a result we get

P (n−2) · · ·P (1)A = L̃−1
1 · · ·L−1

n−1U = L̃U. (5.6)

This means that we can again form a matrix L just as before, except that every time we pivot, we need to
update the columns of L that have already been computed.

Exercise 5.12. If we write equation (5.6) as PA = LU , we get A = P−1LU . Can you come
up with a simple formula for P−1 in terms of just P ? Hint: each P (i) is symmetric and
its own inverse; see the exercise above.

Exercise 5.13. Earlier, you saw that 2D BVP (section 4.2.2.2) give rise to a certain kind of
matrix. We stated, without proof, that for these matrices pivoting is not needed. We
can now formally prove this, focusing on the crucial property of diagonal dominance:

∀iaii ≥
∑
j 6=i
|aij |.

Assume that a matrix A satisfies ∀j 6=i : aij ≤ 0. Show that the matrix is diagonally
dominant iff there are vectors u, v ≥ 0 (meaning that each component is nonnegative)
such that Au = v.
Show that, after eliminating a variable, for the remaining matrix Ã there are again
vectors ũ, ṽ ≥ 0 such that Ãũ = ṽ.
Now finish the argument that (partial) pivoting is not necessary if A is symmetric
and diagonally dominant. (One can actually prove that pivoting is not necessary for
any symmetric positive definite (SPD) matrix, and diagonal dominance is a stronger
condition than SPD-ness.)

5.3.5 Solving the system

Now that we have a factorization A = LU , we can use this to solve the linear system Ax = LUx = b. If
we introduce a temporary vector y = Ux, then we see this takes two steps:

Ly = b, Ux = z.
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The first part, Ly = b is called the ‘lower triangular solve’, since it involves the lower triangular matrix L.
1 ∅
`21 1
`31 `32 1
...

. . .
`n1 `n2 · · · 1




y1

y2

...
yn

 =


b1
b2

...
bn


In the first row, you see that y1 = b1. Then, in the second row `21y1 + y2 = b2, so y2 = b2 − `21y1. You
can imagine how this continues: in every i-th row you can compute yi from the previous y-values:

yi = bi −
∑
j<i

`ijyj .

Since we compute yi in increasing order, this is also known as the forward substitution, forward solve, or
forward sweep.

The second half of the solution process, the upper triangular solve, backward substituion, or backward
sweep, computes x from Ux = y:

u11 u12 . . . u1n

u22 . . . u2n

. . .
...

∅ unn



x1

x2
...
xn

 =


y1

y2
...
yn


Now we look at the last line, which immediately tells us that xn = u−1

nnyn. From this, the line before the
last states un−1n−1xn−1 + un−1nxn = yn−1, which gives xn−1 = u−1

n−1n−1(yn−1− un−1nxn). In general,
we can compute

xi = u−1
ii (yi −

∑
j>i

uijyj)

for decreasing values of i.
Exercise 5.14. In the backward sweep you had to divide by the numbers uii. That is not possible

if any of them are zero. Relate this problem back to the above discussion.

5.3.6 Complexity

In the beginning of this chapter, we indicated that not every method for solving a linear system takes the
same number of operations. Let us therefore take a closer look at the complexity2, that is, the number of
operations as function of the problem size, of the use of an LU factorization in solving the linear system.

The complexity of solving the linear system, given the LU factorization, is easy to compute. Looking at
the lower and upper triangular part together, you see that you perform a multiplication with all off-diagonal
elements (that is, elements `ij or uij with i 6= j). Furthermore, the upper triangular solve involves divisions
by the uii elements. Now, division operations are in general much more expensive than multiplications, so
in this case you would compute the values 1/uii, and store them instead.

2. See appendix A.2 for an explanation of complexity.
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Exercise 5.15. Take a look at the factorization algorithm, and argue that storing the reciprocals
of the pivots does not add to the computational complexity.

Summing up, you see that, on a system of size n×n, you perform n2 multiplications and roughly the same
number of additions. This is the same complexity as of a simple matrix-vector multiplication, that is, of
computing Ax given A and x.

The complexity of computing theLU factorization is a bit more involved to compute. Refer to the algorithm
in section 5.3.1. You see that in the k-th step two things happen: the computation of the multipliers, and the
updating of the rows. There are n − k multipliers to be computed, each of which involve a division. After
that, the update takes (n − k)2 additions and multiplications. If we ignore the divisions for now, because
there are fewer of them, we find that the LU factorization takes

∑n−1
k=1 2(n− k)2 operations. If we number

the terms in this sum in the reverse order, we find

#ops =

n−1∑
k=1

2k2.

Since we can approximate a sum by an integral, we find that this is 2/3n3 plus some lower order terms.
This is of a higher order than solving the linear system: as the system size grows, the cost of constructing
the LU factorization completely dominates.

5.3.7 Block algorithms

Often, matrices have a natural block structure, such as in the case of two-dimensional BVPs; section 4.2.2.2.
Many linear algebra operations can be formulated in terms of these blocks. This can have several advantages
over the traditional scalar view of matrices. For instance, it improves cache blocking (section 1.6.7); it also
facilitates scheduling linear algebra algorithms on multicore architectures (section 6.10).

For block algorithms we write a matrix as

A =

A11 . . . A1N
...

...
AM1 . . . AMN


where M,N are the block dimensions, that is, the dimension expressed in terms of the subblocks. Usually,
we choose the blocks such that M = N and the diagonal blocks are square.

As a simple example, consider the matrix-vector product y = Ax, expressed in block terms. Y1
...
YM

 =

A11 . . . A1M
...

...
AM1 . . . AMM


X1

...
XM


To see that the block algorithm computes the same result as the old scalar algorithm, we look at a component
Yik , that is the k-th scalar component of the i-th block. First,

Yi =
∑
j

AijXj
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so

Yik =
(∑
j

AijXj

)
k

=
∑
j

(AijXj)k =
∑
j

∑
`

Aijk`Xj`

which is the product of the k-th row of the i-th blockrow of A with the whole of X .

A more interesting algorithm is the block version of the LU factorization. The algorithm (5.3) then becomes

〈LU factorization〉:
for k = 1, n− 1:

for i = k + 1 to n:
Aik ← AikA

−1
kk

for j = k + 1 to n:
Aij ← Aij −Aik ·Akj

(5.7)

which mostly differs from the earlier algorithm in that the division by akk has been replaced by a multipli-
cation by A−1

kk . Also, the U factor will now have pivot blocks, rather than pivot elements, on the diagonal,
so U is only ‘block upper triangular’, and not strictly upper triangular.

Exercise 5.16. We would like to show that the block algorithm here again computes the same
result as the scalar one. Doing so by looking explicitly at the computed elements is
cumbersome, so we take another approach. First, recall from section 5.3.3 that LU
factorizations are unique: if A = L1U1 = L2U2 and L1, L2 have unit diagonal, then
L1 = L2, U1 = U2.
Next, consider the computation of A−1

kk . Show that this can be done easily by first
computing an LU factorization of Akk. Now use this to show that the block LU fac-
torization can give L and U factors that are strictly triangular. The uniqueness of LU
factorizations then proves that the block algorithm computes the scalar result.

5.4 Sparse matrices

In section 4.2.2.2 you saw that the discretization of BVPs (and IBVPs) may give rise to sparse matrices.
Since such a matrix has N2 elements but only O(N) nonzeros, it would be a big waste of space to store
this as a two-dimensional array. Additionally, we want to avoid operating on zero elements.

In this section we will explore efficient storage schemes for sparse matrices, and the form that familiar
linear algebra operations take when using sparse storage.

5.4.1 Storage of sparse matrices

It is pointless to look for an exact definition of sparse matrix , but an operational definition is that a matrix is
called ‘sparse’ if there are enough zeros to make specialized storage feasible. We will discuss here briefly
the most popular storage schemes for sparse matrices. Since a matrix is no longer stored as a simple 2-
dimensional array, algorithms using such storage schemes need to be rewritten too.
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5.4.1.1 Diagonal storage

In section 4.2.2.1 you have seen examples of sparse matrices that were banded. In fact, their nonzero
elements are located precisely on a number of subdiagonals. For such a matrix, a specialized storage scheme
is possible.

Let us take as an example the matrix of the one-dimensional BVP (section 4.2.2.1). Its elements are located
on three subdiagonals: the main diagonal and the first super and subdiagonal. The idea of storage by diag-
onals or diagonal storage is to store the diagonals consecutively in memory. The most economical storage
scheme for such a matrix would store the 2n− 2 elements consecutively. However, for various reasons it is
more convenient to waste a few storage locations, as shown in figure 5.1.

Figure 5.1: Diagonal storage of a banded matrix

Thus, for a matrix with size n×n and a bandwidth p, we need a rectangular array of size n× p to store the
matrix. The matrix of equation (4.9) would then be stored as

? 2 −1
−1 2 −1

...
...

...
−1 2 ?

(5.8)

where the stars indicate array elements that do not correspond to matrix elements: they are the triangles in
the top left and bottom right in figure 5.1.

Of course, now we have to wonder about the conversion between array elements A(i,j) and matrix
elements Aij . This is easiest done in the Fortran language. If we allocate the array with

dimension A(n,-1:1)

then the main diagonalAii is stored in A(*,0). For instance, A(1, 0) ∼ A11. The next location in the same
row of the matrix A, A(1, 1) ∼ A12. It is easy to see that together we have the conversion

A(i, j) ∼ Ai,i+j . (5.9)
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Exercise 5.17. What is the reverse conversion, that is, what array location A(?,?) does the
matrix element Aij correspond to?

Exercise 5.18. If you are a C programmer, derive the conversion between matrix elements Aij
and array elements A[i][j].

If we apply this scheme to the matrix of the two-dimensional BVP (section 4.2.2.2), it becomes wasteful,
since we would be storing many zeros that exist inside the band. Therefore, we refine this scheme by storing
only the nonzero diagonals: if the matrix has p nonzero diagonals, we need an n × p array. For the matrix
of equation (4.14) this means:

? ? 4 −1 −1
...

... 4 −1 −1
... −1 4 −1 −1
−1 −1 4 −1 −1

...
...

...
...

...
−1 −1 4 ? ?

Of course, we need an additional integer array telling us the locations of these nonzero diagonals.

In the preceding examples, the matrices had an equal number of nonzero diagonals above and below the
main diagonal. In general this need not be true. For this we introduce the concepts of

• left halfbandwidth : if A has a left halfbandwidth of p then Aij = 0 for i > j + p, and
• right halfbandwidth : if A has a right halfbandwidth of p then Aij = 0 for j > i+ p.

5.4.1.2 Operations on diagonal storage

The most important operation on sparse matrices is the matrix-vector product. With a matrix stored by
diagonals, as described above, it is still possible to perform the ordinary rowwise or columnwise product
using the conversion formula (5.9)3. However, with a small bandwidth, this gives short vector lengths and
relatively high loop overhead, so it will not be efficient. It is possible do to much better than that.

If we look at how the matrix elements are used in the matrix-vector product, we see that the main diagonal
is used as

yi ← yi +Aiixi,

the first superdiagonal is used as

yi ← yi +Aii+1xi+1 for i < n,

and the first subdiagonal as

yi ← yi +Aii−1xi−1 for i > 1.

In other words, the whole matrix-vector product can be executed in just three vector operations of length n
(or n− 1), instead of n inner products of length 3 (or 2).

3. In fact, this is how Lapack banded routines work.
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for diag = -diag_left, diag_right
for loc = max(1,1-diag), min(n,n-diag)

y(loc) = y(loc) + val(loc,diag) * x(loc+diag)
end

end

Exercise 5.19. Write a routine that computes y ← Atx by diagonals. Implement it in your
favourite language and test it on a random matrix.

Exercise 5.20. The above code fragment is efficient if the matrix is dense inside the band.
This is not the case for, for instance, the matrix of two-dimensional BVPs; see sec-
tion 4.2.2.2 and in particular equation (4.14). Write code for the matrix-vector product
by diagonals that only uses the nonzero diagonals.

Exercise 5.21. Multiplying matrices is harder than multiplying a matrix times a vector. If ma-
trix A has left and halfbandwidth pA, qQ, and matrix B has pB, qB , what are the left
and right halfbandwidth of C = AB? Assuming that an array of sufficient size has
been allocated for C, write a routine that computes C ← AB.

5.4.1.3 Compressed row storage

If we have a sparse matrix that does not have a simple band structure, or where the number of nonzero
diagonals becomes impractically large, we use the more general Compressed Row Storage (CRS) scheme.
As the name indicates, this scheme is based on compressing all rows, eliminating the zeros; see figure 5.2.
Since this loses the information what columns the nonzeros originally came from, we have to store this

Figure 5.2: Compressing a row of a sparse matrix in the CRS format
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explicitly. Consider an example of a sparse matrix:

A =



10 0 0 0 −2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 −1

 . (5.10)

After compressing all rows, we store all nonzeros in a single real array. The column indices are similarly
stored in an integer array, and we store pointers to where the columns start. Using 0-based indexing this
gives:

val 10 -2 3 9 3 7 8 7 3 · · · 9 13 4 2 -1
col ind 0 4 0 1 5 1 2 3 0 · · · 4 5 1 4 5

row ptr 0 2 5 8 12 16 19 .
A simple variant of CRS is Compressed Column Storage (CCS) where the elements in columns are stored
contiguously. This is also known as the Harwell-Boeing matrix format [37]. Another storage scheme you
may come across is coordinate storage , where the matrix is stored as a list of triplets 〈i, j, aij〉.The popular
Matrix Market website [103] uses a variant of this scheme.

5.4.1.4 Algorithms on compressed row storage

In this section we will look at the form some algorithms take in CRS.

The most common operation is the matrix-vector product:
for (row=0; row<nrows; row++) {

s = 0;
for (icol=ptr[row]; icol<ptr[row+1]; icol++) {

int col = ind[icol];
s += a[icol] * x[col];

}
y[row] = s;

}

You recognize the standard matrix-vector product algorithm for y = Ax, where the inner product is taken
of each row Ai∗ and the input vector x.

Now, how about if you wanted to compute the product y = Atx? In that case you need rows of At, or,
equivalently, columns of A. Finding arbitrary columns of A is hard, requiring lots of searching, so you may
think that this algorithm is correspondingly hard to compute. Fortunately, that is not true.

If we exchange the i and j loop in the standard algorithm for y = Ax, we get

y ← 0
for i:

for j:
yi ← yi + aijxj

⇒
y ← 0
for j:

for i:
yi ← yi + ajixj
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We see that in the second variant, columns of A are accessed, rather than rows. This means that we can use
the second algorithm for computing the Atx product by rows.
Exercise 5.22. Write out the code for the transpose product y = Atx where A is stored in CRS

format. Write a simple test program and confirm that your code computes the right
thing.

Exercise 5.23. What if you need access to both rows and columns at the same time? Implement
an algorithm that tests whether a matrix stored in CRS format is symmetric. Hint: keep
an array of pointers, one for each row, that keeps track of how far you have progressed
in that row.

Exercise 5.24. The operations described so far are fairly simple, in that they never make changes
to the sparsity structure of the matrix. The CRS format, as described above, does not
allow you to add new nonzeros to the matrix, but it is not hard to make an extension
that does allow it.
Let numbers pi, i = 1 . . . n, describing the number of nonzeros in the i-th row, be
given. Design an extension to CRS that gives each row space for q extra elements.
Implement this scheme and test it: construct a matrix with pi nonzeros in the i-th row,
and check the correctness of the matrix-vector product before and after adding new
elements, up to q elements per row.
Now assume that the matrix will never have more than a total of qn nonzeros. Alter
your code so that it can deal with starting with an empty matrix, and gradually adding
nonzeros in random places. Again, check the correctness.

We will revisit the transpose product algorithm in section 6.4.3 in the context of shared memory parallelism.

5.4.2 Sparse matrices and graph theory

Many arguments regarding sparse matrices can be formulated in terms of graph theory. To see why this can
be done, consider a matrix A of size n and observe that we can define a graph 〈E, V 〉 by V = {1, . . . , n},
E = {(i, j) : aij 6= 0}. This is called the adjacency graph of the matrix. For simplicity, we assume that A
has a nonzero diagonal. If necessary, we can attach weights to this graph, defined by wij = aij . The graph
is then denoted 〈E, V,W 〉. (If you are not familiar with the basics of graph theory, see appendix A.5.)

Graph properties now correspond to matrix properties; for instance, the degree of the graph is the maximum
number of nonzeros per row, not counting the diagonal element. As another example, if the graph of the
matrix is an undirected graph , this means that aij 6= 0 ⇔ aji 6= 0. We call such a matrix structurally
symmetric: it is not truly symmetric in the sense that ∀ij : aij = aij , but every nonzero in the upper triangle
corresponds to one in the lower triangle and vice versa.

One advantage of considering the graph of a matrix is that graph properties do not depend on how we order
the nodes, that is, they are invariant under permutation of the matrix.
Exercise 5.25. Let us take a look at what happens with a matrix A when the nodes of its graph

G = 〈V,E,W 〉 are renumbered. As a simple example, we number the nodes back-
wards; that is, with n the number of nodes, we map node i to n+1−i. Correspondingly,
we find a new graph G′ = 〈V,E′,W ′〉 where

(i, j) ∈ E′ ⇔ (n+ 1− i, n+ 1− j) ∈ E, w′ij = wn+1−i,n+1−j .
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What does this renumbering imply for the matrix A′ that corresponds to G′? If you
exchange the labels i, j on two nodes, what is the effect on the matrix A?

Some graph properties can be hard to see from the sparsity pattern of a matrix, but are easier deduced from
the graph.
Exercise 5.26. LetA be the tridiagonal matrix of the one-dimensional BVP (see section 4.2.2.1)

of size n with n odd. What does the graph of A look like? Consider the permuta-
tion that results from putting the nodes in the following sequence: 1, 3, 5, . . . , n, 2, 4,
6, . . . , n− 1. What does the sparsity pattern of the permuted matrix look like?

Exercise 5.27. Take again the matrix from the previous exercise, and zero the offdiagonal ele-
ments closest to the ‘middle’ of the matrix: let a(n+1)/2,(n+1)/2+1 = a(n+1)/2+1,(n+1)/2 =
0. Describe what that does to the graph of A. Such a graph is called reducible . Now
apply the permuation of the previous exercise and sketch the resulting sparsity pattern.
Note that the reducibility of the graph is now harder to read from the sparsity pattern.

5.4.3 LU factorizations of sparse matrices

In section 4.2.2.1 the one-dimensional BVP led to a linear system with a tridiagonal coefficient matrix. If
we do one step of Gaussian elimination, the only element that needs to be eliminated is in the second row:

2 −1 0 . . .
−1 2 −1
0 −1 2 −1

. . . . . . . . . . . .

 ⇒


2 −1 0 . . .

0 2− 1
2 −1

0 −1 2 −1
. . . . . . . . . . . .


There are two important observations to be made: one is that this elimination step does not change any zero
elements to nonzero. The other observation is that the part of the matrix that is left to be eliminated is again
tridiagonal. Inductively, during the elimination no zero elements change to nonzero: the sparsity pattern of
L+ U is the same as of A, and so the factorization takes the same amount of space to store as the matrix.

The case of tridiagonal matrices is unfortunately not typical, as we will shortly see in the case of two-
dimensional problems. But first we will extend the discussion on graph theory of section 5.4.2 to factoriza-
tions.

5.4.3.1 Graph theory of sparse LU factorization

Graph theory is often useful when discussion the factorization of a sparse matrix. Let us investigate what
eliminating the first unknown (or sweeping the first column) means in graph theoretic terms. We are assum-
ing a structurally symmetric matrix.

We consider eliminating an unknown as a process that takes a graph G = 〈V,E〉 and turns it into a graph
G′ = 〈V ′, E′〉. The relation between these graphs is first that a vertex, say k, has been removed from the
vertices: k 6∈ V ′, V ′ ∪ {k} = V .

The relationship between E and E′ is more complicated. In the Gaussian elimination algorithm the result
of eliminating variable k is that the statement

aij ← aij − aika−1
kk akj

174 Introduction to High Performance Scientific Computing



5.4. Sparse matrices

is executed for all i, j 6= k. If aij 6= 0 originally, then its value is merely altered. In case aij = 0 in the
original matrix, there will be a nonzero element, termed a fill-in element, after the k unknown is eliminated:

Figure 5.3: Eliminating a vertex introduces a new edge in the quotient graph

in E there was no edge (i, j), and this edge is present in E′. This is illustrated in figure 5.3.

Summarizing, eliminating an unknown gives a graph that has one vertex less, and that has edges for all i, j
such that there were edges between i or j and the eliminated variable k.
Exercise 5.28. Go back to exercise 5.26. Use a graph argument to determine the sparsity pattern

after the odd variables have been eliminated.
Exercise 5.29. Prove the generalization of the above argument about eliminating a single ver-

tex. Let I ⊂ V be any set of vertices, and let J be the vertices connected to I:

J ∩ I = ∅, ∀i∈I∃j∈J : (i, j) ∈ E.

Now show that eliminating the variables in I leads to a graph 〈V ′, E′〉 where all nodes
in J are connected in the remaining graph, if there was a path between them through I:

∀j1,j2∈J : there is a path ji → j2 through I in E ⇒ (j1, j2) ∈ E′.

5.4.3.2 Fill-in

We now return to the factorization of the matrix from two-dimensional problems. We write such matrices
of size N ×N as block matrices with block dimension n, each block being of size n. (Refresher question:
where do these blocks come from?) Now, in the first elimination step we need to zero two elements, a21

and an+1,1.


4 −1 0 . . . −1
−1 4 −1 0 . . . 0 −1

. . . . . . . . . . . .
−1 0 . . . 4 −1
0 −1 0 . . . −1 4 −1

 ⇒


4 −1 0 . . . −1

4− 1
4 −1 0 . . . −1/4 −1

. . . . . . . . . . . . . . .
−1/4 4− 1

4 −1
−1 0 −1 4 −1



You see that eliminating a21 and an+1,1 causes two fill elements to appear: in the original matrix a2,n+1 and
an+1,2 are zero, but in the modified matrix these locations are nonzero. We define fill locations as locations
(i, j) where aij = 0, but (L+ U)ij 6= 0.
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Figure 5.4: Creation of fill-in connection in the matrix graph

Clearly the matrix fills in during factorization. With a little imagination you can also see that every element
in the band outside the first diagonal block will fill in. However, using the graph approach of section 5.4.3.1
it becomes easy to visualize the fill-in connections that are created.

In figure 5.4 this is illustrated for the graph of the 2d BVP example. (The edges corresponding to diagonal
elements have not been pictured here.) Each variable in the first row that is eliminated creates connections
between the next variable and the second row, and between variables in the second row. Inductively you see
that after the first row is eliminated the second row is fully connected. (Connect this to exercise 5.29!.)

Exercise 5.30. Finish the argument. What does the fact that variables in the second row are
fully connected imply for the matrix structure? Sketch in a figure what happens after
the first variable in the second row is eliminated.

Exercise 5.31. The LAPACK software for dense linear algebra has an LU factorization routine
that overwrites the input matrix with the factors. Above you saw that is possible since
the columns of L are generated precisely as the columns of A are eliminated. Why is
such an algorithm not possible if the matrix is stored in sparse format?

5.4.3.3 Fill-in estimates

In the above example you saw that the factorization of a sparse matrix can take much more space than the
matrix itself, but still less than storing an entire square array of size the matrix dimension. We will now give
some bounds for the space complexity of the factorization, that is, amount of space needed to execute the
factorization algorihm.

Exercise 5.32. Prove the following statements.
1. Assume that the matrix A has a halfbandwidth p, that is, aij = 0 if |i− j| > p.

Show that, after a factorization without pivoting, L + U has the same halfband-
width.

2. Show that, after a factorization with partial pivoting, L has a left halfbandwidth
of p, whereas U has a right halfbandwidth of 2p.
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3. Assuming no pivoting, show that the fill-in can be characterized as follows:
Consider row i. Let jmin be the leftmost nonzero in row i, that is
aij = 0 for j < jmin. Then there will be no fill-in in row i to the left
of column jmin. Likewise, if imin is the topmost nonzero in column j,
there will be no fill-in in column j above row imin.

As a result, L andU have a ‘skyline’ profile. Given a sparse matrix, it is now easy
to allocate enough storage to fit a factorization without pivoting: this is knows as
skyline storage .

This exercise shows that we can allocate enough storage for the factorization of a banded matrix:

• for the factorization without pivoting of a matrix with bandwidth p, an array of size N × p
suffices;
• the factorization with partial pivoting of a matrix left halfbandwidth p and right halfbandwidth q

can be stored in N × (p+ 2q + 1).
• A skyline profile, sufficient for storing the factorization, can be constructed based on the specific

matrix.

We can apply this estimate to the matrix from the two-dimensional BVP, section 4.2.2.2.

Exercise 5.33. Show that in equation (4.14) the original matrix has O(N) = O(n2) nonzero
elements, O(N2) = O(n4) elements in total, and the factorization has O(nN) =
O(n3) = O(N3/2) nonzeros.

These estimates show that the storage required for an LU factorization can be more than what is required
for A, and the difference is not a constant factor, but related to the matrix size. Without proof we state that
the inverses of the kind of sparse matrices you have seen so far are fully dense, so storing them takes even
more. This is an important reason that solving linear systems Ax = y is not done in practice by computing
A−1 and multiplying x = A−1y. (Numerical stability is another reason that this is not done.) The fact that
even a factorization can take a lot of space is one reason for considering iterative methods, as we will do in
section 5.5.

Above, you saw that the factorization of a dense matrix of size n × n takes O(n3) operations. How is this
for a sparse matrix? Let us consider the case of a matrix with halfbandwidth p, and assume that the original
matrix is dense in that band. The pivot element a11 is used to zero p elements in the first column, and for
each the first row is added to that row, involving p multiplications and additions. In sum, we find that the
number of operations is roughly

n∑
i=1

p2 = p2 · n

plus or minus lower order terms.

Exercise 5.34. The assumption of a band that is initially dense is not true for the matrix of a
two-dimensional BVP. Why does the above estimate still hold, up to some lower order
terms?

In exercise 5.32 above you derived an estimate for the amount of fill-in that is easy to apply. However, it
can be a considerable overestimate. It is desirable to compute or estimate the amount of fill-in with less
work than doing the actual factorization. We will now sketch an algorithm for finding the exact number of
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nonzeros in L+ U , with a cost that is linear in this number. We will do this in the (structurally) symmetric
case. The crucial observation is the following. Suppose column i has more than one nonzero below the
diagonal: 

. . .
aii aij aik

. . .
aji ajj

. . .
aki ?akj? akk


Eliminating aki in the i-th step causes an update of akj , or a fill-in element if originally akj = 0. However,
we can infer the existence of this nonzero value: eliminating aji causes a fill-in element in location (j, k),
and we know that structural symmetry is preserved. In other words, if we are only counting nonzeros, it is
enough to look at the effects of elimating the (j, i) location, or in general the first nonzero below the pivot.
Following this argument through, we only need to record the nonzeros in one row per pivot, and the entire
process has a complexity linear in the number of nonzeros in the factorization.

5.4.3.4 Fill-in reduction

Graph properties of a matrix, such as degree and diameter, are invariant under renumbering the variables.
Other properties, such as fill-in during a factorization, are affected by renumbering. In fact, it is worthwhile
investigating whether it is possible to reduce the amount of fill-in by renumbering the nodes of the matrix
graph, or equivalently, by applying a permutation to the linear system.
Exercise 5.35. Consider the ‘arrow’ matrix with nonzeroes only in the first row and column

and on the diagonal:
∗ ∗ · · · ∗
∗ ∗ ∅
...

. . .
∗ ∅ ∗


What is the number of nonzeros in the matrix, and in the factorization, assuming that
no addition ever results in zero? Can you find a symmetric permutation of the variables
of the problem such that the new matrix has no fill-in?

The above estimates can sometimes be improved upon by clever permuting of the matrix (see for instance
section 6.7.1), but in general the statement holds that an LU factorization of a sparse matrix takes consid-
erably more space than the matrix itself. This is one of the motivating factors for the iterative methods in
the next section.

5.5 Iterative methods
Gaussian elimination, the use of an LU factorization, is a simple way to find the solution of a linear system,
but as we saw above, in the sort of problems that come from discretized PDEs, it can create a lot of fill-in.
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In this section we will look at a completely different approach, where the solution of the system is found
by a sequence of approximations.

The computational scheme looks, very roughly, like:
Choose any starting vector x0 and repeat for i ≥ 0:
xi+1 = Bxi + c

until some stoppping test is satisfied.

The important feature here is that no systems are solved with the original coefficient matrix; instead, every
iteration involves a matrix-vector multiplication or a solution of a much simpler system. Thus we have
replaced a complicated operation, constructing an LU factorization and solving a system with it, by a
repeated simpler and cheaper operation. This makes iterative methods easier to code, and potentially more
efficient.

Let us consider a simple example to motivate the precise definition of the iterative methods. Suppose we
want to solve the system 10 0 1

1/2 7 1
1 0 6

x1

x2

x3

 =

21
9
8


which has the solution (2, 1, 1). Suppose you know (for example, from physical considerations) that so-
lution components are roughly the same size. Observe the dominant size of the diagonal, then, to decide
that 10

7
6

x1

x2

x3

 =

21
9
8


might be a good approximation. This has the solution (2.1, 9/7, 8/6). Clearly, solving a system that only
involves the diagonal of the original system is both easy to do, and, at least in this case, fairly accurate.

Another approximation to the original system would be to use the lower triangle. The system 10
1/2 7
1 0 6

x1

x2

x3

 =

21
9
8


has the solution (2.1, 7.95/7, 5.9/6). Solving triangular systems is a bit more work than diagonal systems,
but still a lot easier than computing an LU factorization. Also, we have not generated any fill-in in the
process of finding this approximate solution.

Thus we see that there are easy to compute ways of getting reasonably close to the solution. Can we
somehow repeat this trick?

Formulated a bit more abstractly, what we did was instead of solving Ax = b we solved Lx̃ = b. Now
define ∆x as the distance from the true solution: x̃ = x+ ∆x. This gives A∆x = Ax̃− b ≡ r, where r is
the residual . Next we solve again L∆̃x = r and update ˜̃x = x̃− ∆̃x.
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iteration 1 2 3
x1 2.1000 2.0017 2.000028
x2 1.1357 1.0023 1.000038
x3 0.9833 0.9997 0.999995

In this case we get two decimals per iteration, which is not typical.

It is now clear why iterative methods can be attractive. Solving a system by Gaussian elimination takes
O(n3) operations, as shown above. A single iteration in a scheme as the above takes O(n2) operations if
the matrix is dense, and possibly as low as O(n) for a sparse matrix. If the number of iterations is low, this
makes iterative methods competitive.
Exercise 5.36. When comparing iterative and direct methods, the flop count is not the only

relevant measure. Outline some issues relating to the efficiency of the code in both
cases. Also compare the cases of solving a single linear system and solving multiple.

5.5.1 Abstract presentation

It is time to do a formal presentation of the iterative scheme of the above example. Suppose we want to
solve Ax = b, and a direct solution is too expensive, but multiplying by A is feasible. Suppose furthermore
that we have a matrix K ≈ A such that solving Kx = b can be done cheaply.

Instead of solving Ax = b we solve Kx = b, and define x0 as the solution: Kx0 = b. This leaves us
with an error e0 = x0 − x, for which we have the equation A(x0 − e0) = b or Ae0 = Ax0 − b. We call
r0 ≡ Ax0 − b the residual ; the error then satisfies Ae0 = r0.

If we could solve the error from the equation Ae0 = r0, we would be done: the true solution is then found
as x = x0 − e0. However, since solving with A was too expensive the last time, we can not do so this time
either, so we determine the error correction approximately. We solve Kẽ0 = r0 and set x1 := x0 − ẽ0; the
story can now continue with e1 = x1 − x, r1 = Ax1 − b, Kẽ1 = r1, x2 = x1 − ẽ1, et cetera.

The iteration scheme is then:
Let x0 be given
For i ≥ 0:

let ri = Axi − b
compute ei from Kei = ri
update xi+1 = xi − ei

The scheme we have given here is called stationary iteration , where every update is performed the same
way, without any dependence on the iteration number. It has a simple analysis, but unfortunately limited
applicability.

There are several questions we need to answer about iterative schemes:
• Does this scheme alway take us to the solution?
• If the scheme converges, how quickly?
• When do we stop iterating?
• How do we choose K?

We will now devote some attention to these matters, though a full discussion is beyond the scope of this
book.
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5.5.2 Convergence and error analysis

We start with the question of whether the iterative scheme converges, and how quickly. Consider one itera-
tion step:

r1 = Ax1 − b = A(x0 − ẽ0)− b
= r0 −AK−1r0

= (I −AK−1)r0

(5.11)

Inductively we find rn = (I −AK−1)nr0, so rn ↓ 0 if all eigenvalues satisfy |λ(I −AK−1)| < 1.

This last statement gives us both a condition for convergence, by relating K to A, and a geometric conver-
gence rate, if K is close enough.

Exercise 5.37. Derive a similar inductive relation for en.

It is hard to determine if the condition |λ(I−AK−1)| < 1 is satisfied by computing the actual eigenvalues.
However, sometimes the Gershgorin theorem (appendix A.1.5) gives us enough information.

Exercise 5.38. Consider the matrix A of equation (4.14) that we obtained from discretization
of a two-dimensional BVP. Let K be matrix containing the diagonal of A, that is
kii = aii and kij = 0 for i 6= j. Use the Gershgorin theorem to show that |λ(I −
AK−1)| < 1.

The argument in this exercise is hard to generalize for more complicated choices of K, such as you will see
below. Here we only remark that for certain matricesA, these choices ofK will always lead to convergence,
with a speed that decreases as the matrix size increases. We will not go into the details beyond stating that
for M -matrices (see section 4.2.2.1) these iterative methods converge. For more details on the convergence
theory of stationary iterative methods, see [131]

5.5.3 Computational form

Above, in section 5.5.1, we derived stationary iteration as a process that involves multiplying by A and
solving with K. However, in some cases a simpler implementation is possible. Consider the case where
A = K −N , and we know both K and N . Then we write

Ax = b⇒ Kx = Nx+ b

and we observe that x is a fixed point of the iteration

Kxi+1 = Nxi + b.

It is easy to see that this is a stationary iteration:

Kxi+1 = Nxi + b
= Kxi −Axi + b
= Kxi − ri

⇒ xi+1 = xi −K−1ri.

The congence criterium |λ(I −AK−1)| < 1 (see above) now simplifies to |λ(NK−1)| < 1.
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Let us consider some cases. First of all, let K = DA, that is, the matrix containing the diagonal part of A:
kii = aii and kij = 0 for all i 6= j. This is known as the Jacobi method method. The iteration scheme
becomes

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

// aiix
(k+1)
i =

∑
j 6=i aijx

(k)
j + bi becomes:

x
(k+1)
i = a−1

ii (
∑

j 6=i aijx
(k)
j + bi)

(Bearing in mind that divisions are relatively costly, section 1.2, we would actually store the a−1
ii quantities

explicitly, and replace the division by a multiplication.)

This requires us to have one vector x for the current iterate x(k), and one temporary t for the next vec-
tor x(k+1). The easiest way to write this is probably:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

ti = a−1
ii (−∑j 6=i aijxj + bi)

copy x← t

For the simple case of a one-dimensional problem this is illustrated in figure 5.5: in each xi point the values

Figure 5.5: Data movement pattern in the Jacobi iteration on a one-dimensional problem

of the two neighbours are combined with the current value to generate a new value. Since the computations
in all the xi points are independent, this can be done in parallel on a parallel computer.

But, you might think, in the sum
∑

j 6=i aijxj why not use the x(k+1) values for as far as already computed?
In terms of the vectors x(k) this means

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

x
(k+1)
i = a−1

ii (−∑j<i aijx
(k+1)
j −∑j>i aijx

(k)
j + bi)

Surprisingly, the implementation is simpler than of the Jacobi method:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

xi = a−1
ii (−∑j 6=i aijxj + bi)

If you write this out as a matrix equation, you see that the newly computed elements elements x(k+1)
i are
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multiplied with elements of DA + LA, and the old elements x(k)
j by UA, giving

(DA + LA)x(k+1) = −UAx(k) + b

which is called the Gauss-Seidel method.

For the one-dimensional case, the Gauss-Seidel method is illustrated in figure 5.6; every xi point still

Figure 5.6: Data movement pattern in the Gauss-Seidel iteration on a one-dimensional problem

combines its neighbours’ values, but now the left value is actually from the next outer iteration. Since the
computations in the xi points are now dependent, this type of iteration is not simple to implement on a
parallel computer. Some strategies for dealing with this are discussed in section 6.6.

Finally, we can insert a damping parameter into the Gauss-Seidel scheme, giving the Successive Over-
Relaxation (SOR) method:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

x
(k+1)
i = ωa−1

ii (−∑j<i aijx
(k+1
j )−∑j>i aijx

(k)
j + bi) + (1− ω)x(k)

Surprisingly for something that looks like an interpolation, the method actually works with value for ω in
the range ω ∈ (0, 2), the optimal value being larger than 1 [64]. Computing the optimal ω is not simple.

5.5.4 Convergence of the method

We are interested in two questions: firstly whether the iterative method converges at all, and if so, with what
speed. The theory behind these questions goes far beyond this book. Above we remarked that convergence
can often be guaranteed for M -matrices; with regard to the convergence speed a full analysis is usually
only possible in model cases. For the matrices from BVPs, as described in section 4.2.2.2, we state without
proof that the smallest eigenvalue of the coefficient matrix is O(h2). The geometric convergence ratio
|λ(I −AK−1)| derived above can then be shown to be as follows:

• For the Jacobi method, the ratio is 1−O(h2);
• For the Gauss-Seidel iteration it also is 1−O(h2), but the method converges twice as fast;
• For the SOR method, the optimal omega can improve the convergence factor to 1−O(h).

5.5.5 Choice of K

The convergence and error analysis above showed that the closer K is to A, the faster the convergence will
be. In the initial examples we already saw the diagonal and lower triangular choice for K. We can describe
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these formally by lettingA = DA+LA+UA be a splitting into diagonal, lower triangular, upper triangular
part of A. Here are some methods with their traditional names:

• Richardson iteration: K = αI .
• Jacobi method: K = DA (diagonal part),
• Gauss-Seidel method: K = DA + LA (lower triangle, including diagonal)
• The SOR method: K = ω−1DA + LA
• Symmetric SOR (SSOR) method: K = (DA + LA)D−1

A (DA + UA).
• Iterative refinement: K = LU where LU is a true factorization of A. In exact arithmetic, solving

a system LUx = y gives you the exact solution, so using K = LU in an iterative method would
give convergence after one step. In practice, roundoff error will make the solution be inexact, so
people will sometimes iterate a few steps to get higher accuracy.

Exercise 5.39. What is the extra cost of a few steps of iterative refinement over a single system
solution, assuming a dense system?

Exercise 5.40. The Jacobi iteration for the linear system Ax = b is defined as

xi+1 = xi −K−1(Axi − b)

where K is the diagonal of A. Show that you can transform the linear system (that
is, find a different coefficient matrix and right hand side vector that will still have the
same solution) so that you can compute the same xi vectors but with K = I , the
identity matrix.
What are the implications of this strategy, in terms of storage and operation counts?
Are there special implications if A is a sparse matrix?
Suppose A is symmetric. Give a simple example to show that K−1A does not have
to be symmetric. Can you come up with a different transformation of the system so
that symmetry of the coefficient matrix is preserved and that has the same advantages
as the transformation above? You can assume that the matrix has positive diagonal
elements.

Exercise 5.41. Show that the transformation of the previous exercise can also be done for the
Gauss-Seidel method. Give several reasons why this is not a good idea.

There are many different ways of choosing the preconditioner matrix K. Some of them are defined alge-
braically, such as the incomplete factorization discussed below. Other choices are inspired by the differential
equation. For instance, if the operator is

δ

δx
(a(x, y)

δ

δx
u(x, y)) +

δ

δy
(b(x, y)

δ

δy
u(x, y)) = f(x, y)

then the matrix K could be derived from the operator

δ

δx
(ã(x)

δ

δx
u(x, y)) +

δ

δy
(b̃(y)

δ

δy
u(x, y)) = f(x, y)

for some choices of ã, b̃. The second set of equations is called a separable problem , and there are fast
solvers for them, meaning that they have O(N logN) time complexity; see [134].
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5.5.5.1 Constructing K as an incomplete LU factorization

We briefly mention one other choice of K, which is inspired by Gaussian elimination. As in Gaussian
elimination, we let K = LU , but now we use an Incomplete LU (ILU) factorization. Remember that a
regular LU factorization is expensive because of the fill-in phenomenon. In an incomplete factorization, we
limit the fill-in artificially.

If we write Gauss elimination as

for k,i,j:
a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]

we define an incomplete variant by

for k,i,j:
if a[i,j] not zero:

a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]

• The resulting factorization is no longer exact: LU ≈ A, so it is called an Incomplete LU (ILU)
factorization.
• An ILU factorization takes much less space than a full factorization: the sparsity of L+U is the

same as of A.

The algorithm above is called ‘ILU(0)’, where the zero refers to the fact that absolutely no fill-in is allowed
during the incomplete factorization. Other schemes that allow a limited amount of fill-in exist. Much more
can be said about this method; we will only remark that for M -matrices this scheme typically gives a
converging method [97].

Exercise 5.42. How do operation counts of the matrix-vector product and solving a system with
an ILU factorization compare?

You have seen that a full factorization of sparse matrix can need a higher order storage (N3/2 for the
factorization versusN for the matrix), but that an incomplete factorization takesO(N), just like the matrix.
It may therefore come as a surprise that the error matrix R = A− LU is not dense, but itself sparse.

Exercise 5.43. Let A be the matrix of the Poisson equation, LU an incomplete factorization,
and R = A− LU . Show that R is a bi-diagonal matrix:
• Consider that R consists of those elements that are discarded during the factor-

ization. Where are they located in the matrix?
• Alternatively, write out the sparsity pattern of the product LU and compare that

to the sparsity pattern of A.

5.5.5.2 Cost of constructing a preconditioner

In the example of the heat equation (section 4.3) you saw that each time step involves solving a linear
system. As an important practical consequence, any setup cost for solving the linear system, such as con-
structing the preconditioner, will be amortized over the sequence of systems that is to be solved. A similar
argument holds in the context of nonlinear equations, a topic that we will not discuss as such. Nonlinear
equations are solved by an iterative process such as the Newton method , which in its multidimensional
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form leads to a sequence of linear systems. Although these have different coefficient matrices, it is again
possible to amortize setup costs by reusing the preconditioner for a number of Newton steps.

5.5.6 Stopping tests

The next question we need to tackle is when to stop iterating. Above we saw that the error decreases
geometrically, so clearly we will never reach the solution exactly, even if that were possible in computer
arithmetic. Since we only have this relative convergence behaviour, how do we know when we are close
enough?

We would like the error ei = x− xi to be small, but measuring this is impossible. Above we observed that
Aei = ri, so

‖ei‖ ≤ ‖A−1‖‖ri‖ ≤ λmax(A−1)‖ri‖

If we know anything about the eigenvalues of A, this gives us a bound on the error. (The norm of A is only
the largest eigenvalue for symmetric A. In general, we need singular values here.)

Another possibility is to monitor changes in the computed solution. If these are small:

‖xn+1 − xn‖/‖xn‖ < ε

we can also conclude that we are close to the solution.
Exercise 5.44. Prove an analytic relationship between the distance between iterates and the dis-

tance to the true solution. If your equation contains constants, can they be determined
theoretically or in practice?

Exercise 5.45. Write a simple program to experiment with linear system solving. Take the ma-
trix from the 1D BVP (use an efficient storage scheme) and program an iterative
method using the choice K = DA. Experiment with stopping tests on the residual
and the distance between iterates. How does the number of iterations depend on the
size of the matrix?
Change the matrix construction so that a certain quantity is added the diagonal, that
is, add αI to the original matrix. What happens when α > 0? What happens when
α < 0? Can you find the value where the behaviour changes? Does that value depend
on the matrix size?

5.5.7 Theory of general iterative methods

Above, you saw iterative methods of the form xi+1 = xi −K−1ri, and we will now see iterative methods
of the more general form

xi+1 = xi +
∑
j≤i

K−1rjαji, (5.12)

that is, using all previous residuals to update the iterate. One might ask, ‘why not introduce an extra param-
eter and write xi+1 = αixi + · · · ?’ Here we give a short argument that the former scheme describes a large
class of methods. Indeed, the current author is not aware of methods that fall outside this scheme.
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We defined the residual, given an approximate solution x̃, as r̃ = Ax̃ − b. For this general discussion we
precondition the system asK−1Ax = K−1b. (See section 5.5.5 where we discussed transforming the linear
system.) The corresponding residual for the initial guess x̃ is

r̃ = K−1Ax̃−K−1b.

We now find that

x = A−1b = x̃−A−1Kr̃ = x̃− (K−1A)−1r̃.

Now, the Cayley-Hamilton theorem states that for everyA there exists a polynomial φ(x) (the characteristic
polynomial ) such that

φ(A) = 0.

We observe that we can write this polynomial φ as

φ(x) = 1 + xπ(x)

where π is another polynomial. Applying this to K−1A, we have

0 = φ(K−1A) = I +K−1Aπ(K−1A)⇒ (K−1A)−1 = −π(K−1A)

so that x = x̃+ π(K−1A)r̃. Now, if we let x0 = x̃, then r̃ = K−1r0, giving the equation

x = x0 + π(K−1A)K−1r0.

This equation suggests an iterative scheme: if we can find a series of polynomials π(i) of degree i to
approximate π, it will give us a sequence of iterates

xi+1 = x0 + π(i)(K−1A)K−1r0 = x0 +K−1π(i)(AK−1)r0 (5.13)

that ultimately reaches the true solution. Multiplying this equation by A and subtracting b on both sides
gives

ri+1 = r0 + π̃(i)(AK−1)r0

where π̃(i)(x) = xπ(i)(x). This immediately gives us

ri = π̂(i)(AK−1)r0 (5.14)

where π̂(i) is a polynomial of degree i with π̂(i)(0) = 1. This statement can be used as the basis of a
convergence theory of iterative methods. However, this goes beyond the scope of this book.

Let us look at a couple of instances of equation (5.14). For i = 1 we have

r1 = (α1AK
−1 + α2I)r0 ⇒ AK−1r0 = β1r1 + β0r0
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for some values αi, βi. For i = 2

r2 = (α2(AK−1)2 + α1AK
−1 + α0)r0

for different values αi. But we had already established that AK−1
0 is a combination of r1, r0, so now we

have that

(AK−1)2r0 ∈ [[r2, r1, r0]],

and it is clear how to show inductively that

(AK−1)ir0 ∈ [[ri, . . . , r0]]. (5.15)

Substituting this in (5.13) we finally get

xi+1 = x0 +
∑
j≤i

K−1rjαji. (5.16)

It is easy to see that the scheme (5.12) is of the form (5.16) and that the reverse implication also holds.

Summarizing, the basis of iterative methods is a scheme where iterates get updated by all residuals com-
puted so far:

xi+1 = xi +
∑
j≤i

K−1rjαji. (5.17)

Compare that to the stationary iteration (section 5.5.1) where the iterates get updated from just the last
residual, and with a coefficient that stays constant.

We can say more about the αij coefficients. If we multiply equation (5.17) by A, and subtract b from both
sides, we find

ri+1 = ri +
∑
j≤i

AK−1rjαji. (5.18)

Let us consider this equation for a moment. If we have a starting residual r0, the next residual is computed
as

r1 = r0 +AK−1r0α00.

From this we get that AK−1r0 = α−1
00 (r1 − r0), so for the next residual,

r2 = r1 +AK−1r1α11 +AK−1r0α01

= r1 +AK−1r1α11 + α−1
00 α01(r1 − r0)

⇒ AK−1r1 = α−1
11 (r2 − (1 + α−1

00 α01)r1 + α−1
00 α01r0)

We see that we can express AK−1r1 as a sum r2β2 + r1β1 + r0β0, and that
∑

i βi = 0.
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Generalizing this, we find (with different αij than above)

ri+1 = ri +AK−1riδi +
∑

j≤i+1 rjαji
ri+1(1− αi+1,i) = AK−1riδi + ri(1 + αii) +

∑
j<i rjαji

ri+1αi+1,i = AK−1riδi +
∑

j≤i rjαji substituting
αii := 1 + αii
αi+1,i := 1− αi+1,i

note that αi+1,i =
∑

j≤i αji
ri+1αi+1,iδ

−1
i = AK−1ri +

∑
j≤i rjαjiδ

−1
i

ri+1αi+1,iδ
−1
i = AK−1ri +

∑
j≤i rjαjiδ

−1
i

ri+1γi+1,i AK−1ri +
∑

j≤i rjγji substituting γij = αijδ
−1
j

and we have that γi+1,i =
∑

j≤i γji.

We can take this last equation and write it as AK−1R = RH where

H =


−γ11 −γ12 . . .
γ21 −γ22 −γ23 . . .
0 γ32 −γ33 −γ34

∅ . . . . . . . . . . . .


In this, H is a so-called Hessenberg matrix: it is upper triangular plus a single lower subdiagonal. Also we
note that the elements of H in each column sum to zero.

Because of the identity γi+1,i =
∑

j≤i γji we can subtract b from both sides of the equation for ri+1 and
‘divide out A’, giving

xi+1γi+1,i = K−1ri +
∑
j≤i

xjγji.

This gives us the general form for iterative methods:
ri = Axi − b
xi+1γi+1,i = K−1ri +

∑
j≤i xjγji

ri+1γi+1,i = AK−1ri +
∑

j≤i rjγji

where γi+1,i =
∑

j≤i γji. (5.19)

This form holds for many iterative methods, including the stationary iterative methods you have seen above.
In the next sections you will see how the γij coefficients follow from orthogonality conditions on the
residuals.

5.5.8 Iterating by orthogonalization

The stationary methods described above (section 5.5.1) have been around in some form or another for a long
time: Gauss described some variant in a letter to a student. They were perfected in the thesis of Young [139]
in 1950; the final reference is probably the book by Varga [131]. These methods are little used these days,
except in the specialized context of multigrid smoothers , a topic not discussed in this course.
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At almost the same time, the field of methods based on orthogonalization was kicked off by two papers [85,
69], though it took a few decades for them to find wide applicability. (For further history, see [56].)

The basic idea is as follows:

If you can make all your residuals orthogonal to each other, and the matrix is of di-
mension n, then after n iterations you have to have converged: it is not possible to
have an n + 1-st residual that is orthogonal to all previous and nonzero. Since a zero
residual means that the corresponding iterate is the solution, we conclude that after n
iterations we have the true solution in hand.

With the size of matrices that contemporary applications generate this reasoning is no longer relevant: it
is not computationally realistic to iterate for n iterations. Moreover, roundoff will probably destroy any
accuracy of the solution. However, it was later realized [115] that such methods are a realistic option in the
case of symmetric positive definite (SPD) matrices. The reasoning is then:

The sequence of residuals spans a series of subspaces of increasing dimension, and by
orthogonalizing, the new residuals are projected on these spaces. This means that they
will have decreasing sizes.

Figure 5.7: The optimal update um make the new residual orthogonal to the AKm subspace

This is illustrated in figure 5.7.

In this section you will see the basic idea of iterating by orthogonalization. The method presented here
is only of theoretical interest; next you will see the Conjugate Gradients (CG) and Generalized Minimum
Residual (GMRES) methods that are the basis of many real-life applications.

Let us now take the basic scheme (5.19) and orthogonalize the residuals. Instead of the normal inner product
we use the K−1-inner product:

(x, y)K−1 = xtK−1y

and we will force residuals to be K−1-orthogonal:

∀i 6=j : ri ⊥K−1 rj ⇔ ∀i 6=j : riK
−1rj = 0

This is known as the Full Orthogonalization Method (FOM) scheme:

Let r0 be given
For i ≥ 0:

let s← K−1ri
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let t← AK−1ri
for j ≤ i:

let γj be the coefficient so that t− γjrj ⊥ rj
for j ≤ i:

form s← s− γjxj
and t← t− γjrj

let xi+1 = (
∑

j γj)
−1s, ri+1 = (

∑
j γj)

−1t.

You may recognize the Gram-Schmidt orthogonalization in this (see appendix A.1.2 for an explanation):
in each iteration ri+1 is initially set to AK−1ri, and orthogonalized against rj with j ≤ i.
We can use modified Gram-Schmidt by rewriting the algorithm as:

Let r0 be given
For i ≥ 0:

let s← K−1ri
let t← AK−1ri
for j ≤ i:

let γj be the coefficient so that t− γjrj ⊥ rj
form s← s− γjxj
and t← t− γjrj

let xi+1 = (
∑

j γj)
−1s, ri+1 = (

∑
j γj)

−1t.

These two version of the FOM algorithm are equivalent in exact arithmetic, but differ in practical circum-
stances in two ways:

• The modified Gramm-Schmidt method is more numerically stable;
• The unmodified method allows you to compute all inner products simultaneously. We discuss

this below in section 6.5.

Even though the FOM algorithm is not used in practice, these computational considerations carry over to
the GMRES method below.

5.5.9 Coupled recurrences form of iterative methods

Above, you saw the general equation (5.19) for generating iterates and search directions. This equation is
often split as

• An update of the xi iterate from a single search direction:

xi+1 = xi − δipi,

and
• A construction of the search direction from the residuals known so far:

pi = K−1ri +
∑
j<i

βijK
−1rj .
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It is not hard to see inductively that we can also define

pi = K−1ri +
∑
j<i

γjipj ,

and this last form is the one that is used in practice.

The iteration dependent coefficients are typically chosen to let the residuals satisfy various orthogonality
conditions. For instance, one can choose to let the method be defined by letting the residuals be orthogonal
(rtirj = 0 if i 6= j), or A-orthogonal (rtiArj = 0 if i 6= j). Many more schemes exist. Such methods can
converge much faster than stationary iteration, or converge for a wider range of matrix and preconditioner
types. Below we will see two such methods; their analysis, however, is beyond the scope of this course.

5.5.10 The method of Conjugate Gradients

In this section, we will derive the Conjugate Gradients (CG) method, which is a specific implementation of
the FOM algorithm. In particular, it has pleasant computational properties in the case of an SPD matrix A.

The CG method takes as its basic form the coupled recurrences formulation described above, and the
coefficients are defined by demanding that the sequence of residuals r0, r1, r2, . . . satisfy

rtiK
−1rj = 0 if i 6= j.

We start by deriving the CG method for nonsymmetric systems, and then show how it simplifies in the
symmetric case. (The approach here is taken from [39]).

The basic equations are
xi+1 = xi − δipi
ri+1 = ri − δiApi
pi+1 = K−1ri+1 +

∑
j≤i γji+1pj ,

(5.20)

where the first and third equation were introduced above, and the second can be found by multiplying the
first by A (check this!).

We will now derive the coefficients in this method by induction. In essence, we assume that we have current
residual rcur, a residuals to be computed rnew, and a collection of known residuals Rold. Rather than using
subscripts ‘old, cur, new’, we use the following convention:

• x1, r1, p1 are the current iterate, residual, and search direction. Note that the subscript 1 does not
denote the iteration number here.
• x2, r2, p2 are the iterate, residual, and search direction that we are about to compute. Again, the

subscript does not equal the iteration number.
• X0, R0, P0 are all previous iterates, residuals, and search directions bundled together in a block

of vectors.
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In terms of these quantities, the update equations are then
x2 = x1 − δ1p1

r2 = r1 − δiAp1

p2 = K−1r2 + υ12p1 + P0u02

(5.21)

where δ1, υ12 are scalars, and u02 is a vector with length the number of iterations before the current. We
now derive δ1, υ12, u02 from the orthogonality of the residuals. To be specific, the residuals have to be
orthogonal under the K−1 inner product: we want to have

rt2K
−1r1 = 0, rt2K

−1R0 = 0.

Combining these relations gives us, for instance,

rt1K
−1r2 = 0

r2 = r1 − δiAK−1p1

}
⇒ δ1 =

rt1r1

rt1AK
−1p1

.

Finding υ12, u02 is a little harder. For this, we start by summarizing the relations for the residuals and search
directions in equation (5.20) in block form as

(R0, r1, r2)


1
−1 1

. . . . . .
−1 1

−1 1

 = A(P0, p1, p2) diag(D0, d1, d2)

(P0, p1, p2)

I − U00 −u01 −u02

1 −υ12

1

 = K−1(R0, r1, r2)

or abbreviatedRJ = APD, P (I−U) = R where J is the matrix with identity diagonal and minus identity
subdiagonal. We then observe that

• RtK−1R is diagonal, expressing the orthogonality of the residuals.
• Combining thatRtK−1R is diagonal and P (I−U) = R gives thatRtP = RtK−1R(I−U)−1.

We now reason that (I − U)−1 is upper diagonal, so RtP is upper triangular. This tells us
quantities such as rt2p1 are zero.
• Combining the relations for R and P , we get first that

RtK−tAP = RtK−tRJD−1

which tells us that RtK−tAP is lower bidiagonal. Expanding R in this equation gives

P tAP = (I − U)−tRtRJD−1.

Here D and RtK−1R are diagonal, and (I −U)−t and J are lower triangular, so P tAP is lower
triangular.
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Compute r(0) = b−Ax(0) for some initial guess x(0)

for i = 1, 2, . . .

solve Mz(i−1) = r(i−1)

ρi−1 = r(i−1)T z(i−1)

if i = 1

p(1) = z(0)

else
βi−1 = ρi−1/ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

endif
q(i) = Ap(i)

αi = ρi−1/p
(i)T q(i)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq(i)

check convergence; continue if necessary
end

Figure 5.8: The Preconditioned Conjugate Gradient Method

• This tells us that P t0Ap2 = 0 and pt1Ap2 = 0.
• Taking the product of P t0A, pt1A with the definition of p2 in equation (5.21) gives

u02 = −(P t0AP0)−1P t0AK
−1r2, υ12 = −(pt1Ap1)−1pt1AK

−1r2.

• If A is symmetric, P tAP is lower triangular (see above) and symmetric, so it is in fact diagonal.
Also, RtK−tAP is lower bidiagonal, so, using A = At, P tAK−1R is upper bidiagonal. Since
P tAK−1R = P tAP (I − U), we conclude that I − U is upper bidiagonal, so, only in the
symmetric case, u02 = 0.

Some observations about this derivation.

• Strictly speaking we are only proving necessary relations here. It can be shown that these are
sufficient too.
• There are different formulas that wind up computing the same vectors, in exact arithmetic. For in-

stance, it is easy to derive that pt1r1 = rt1r1, so this can be substituted in the formulas just derived.
The implementation of the CG method as it is typically implemented, is given in figure 5.8.
• In the k-th iteration, computing P t0Ar2 (which is needed for u02) takes k inner products. First of

all, inner products are disadvantageous in a parallel context. Secondly, this requires us to store all
search directions indefinitely. This second point implies that both work and storage go up with
the number of iterations. Contrast this with the stationary iteration scheme, where storage was
limited to the matrix and a few vectors, and work in each iteration was the same.
• The objections just raised disappear in the symmetric case. Since u02 is zero, the dependence on
P0 disappears, and only the dependence on p1 remains. Thus, storage is constant, and the amount
of work per iteration is constant. The number of inner products per iteration can be shown to be
just two.
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Exercise 5.46. Do a flop count of the various operations in one iteration of the CG method.
Assume that A is the matrix of a five-point stencil and that the preconditioner M is an
incomplete factorization of A (section 5.5.5.1). Let N be the matrix size.

5.5.11 Derivation from minimization

The above derivation of the CG method is not often found in the literature. The typical derivation starts
with a minimization problem with a symmetric positive definite (SPD) matrix A:

For which vector x with ‖x‖ = 1 is f(x) = 1/2xtAx− btx minimal? (5.22)

If we accept the fact that the function f has a minimum, which follows from the positive definiteness, we
find the minimum by computing the derivative

f ′(x) = Ax− b.
and asking where f ′(x) = 0. And, presto, there we have the original linear system.
Exercise 5.47. Derive the derivative formula above. (Hint: write out the definition of derivative

as limh↓0 . . ..) Note that this requires A to be symmetric.
For the derivation of the iterative method, we state that the iterate xi is updated with a certain stepsize δi
along a search direction pi:

xi+1 = xi + piδi

The optimal stepsize

δi =
rtipi
pt1Api

is then derived as the one that minimizes the function f along the line xi + δδpi:

δi = argmin
δ
‖f(xi + piδ)‖

The construction of the search direction from the residuals follows by induction proof from the requirement
that the residuals be orthogonal. For a typical proof, see [2].

5.5.12 GMRES

In the discussion of the CG method above, it was pointed out that orthogonality of the residuals requires
storage of all residuals, and k inner products in the k’th iteration. Unfortunately, it can be proved that the
work savings of the CG method can, for all practical purposes, not be found outside of SPD matrices [41].

The GMRES method is a popular implementation of such full orthogonalization schemes. In order to keep
the computational costs within bounds, it is usually implemented as a restarted method. That is, only a
certain number (say k = 5 or 20) of residuals is retained, and every k iterations the method is restarted.
The code can be found in figure 5.9.

Other methods exist that do not have the storage demands of GMRES, for instance QMR [48] and BiCGstab [130].
Even though by the remark above these can not orthogonalize the residuals, they are still attractive in prac-
tice.
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x(0) is an initial guess
for j = 1, 2, ....

Solve r from Mr = b−Ax(0)

v(1) = r/‖r‖2
s := ‖r‖2e1

for i = 1, 2, ...,m

Solve w from Mw = Av(i)

for k = 1, ..., i

hk,i = (w, v(k))

w = w − hk,iv(k)

end
hi+1,i = ‖w‖2
v(i+1) = w/hi+1,i

apply J1, ..., Ji−1 on (h1,i, ..., hi+1,i)
construct Ji, acting on ith and (i+ 1)st component
of h.,i, such that (i+ 1)st component of Jih.,i is 0
s := Jis
if s(i+ 1) is small enough then (UPDATE(x̃, i) and quit)

end
UPDATE(x̃,m)

end

In this scheme UPDATE(x̃, i)
replaces the following computations:

Compute y as the solution of Hy = s̃, in which
the upper i× i triangular part of H has hi,j as
its elements (in least squares sense if H is singular),
s̃ represents the first i components of s
x̃ = x(0) + y1v

(1) + y2v
(2) + ...+ yiv

(i)

s(i+1) = ‖b−Ax̃‖2
if x̃ is an accurate enough approximation then quit
else x(0) = x̃

Figure 5.9: The Preconditioned GMRES(m) Method
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5.5.13 Complexity

The efficiency of Gaussian elimination was fairly easy to assess: factoring and solving a system takes,
deterministically, 1

3n
3 operations. For an iterative method, the operation count is the product of the number

of operations per iteration times the number of iterations. While each individual iteration is easy to analyze,
there is no good theory to predict the number of iterations. (In fact, an iterative method may not even
converge to begin with.) Added to this is the fact that Gaussian elimination can be coded in such a way
that there is considerable cache reuse, making the algorithm run at a fair percentage of the computer’s peak
speed. Iterative methods, on the other hand, are much slower on a flops per second basis.

All these considerations make the application of iterative methods to linear system solving somewhere in
between a craft and a black art. In practice, people do considerable experimentation to decide whether an
iterative method will pay off, and if so, which method is preferable.

5.6 Further Reading

Iterative methods is a very deep field. As a practical introduction to the issues involved, you can read the
‘Templates book’ [4], online at http://netlib.org/templates/. For a deeper treatment of the
theory, see the book by Saad [116] of which the first edition can be downloaded at http://www-users.
cs.umn.edu/˜saad/books.html.
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Chapter 6

High performance linear algebra

In this section we will discuss a number of issues pertaining to linear algebra on parallel computers. We
will take a realistic view of this topic, assuming that the number of processors is finite, and that the problem
data is always large, relative to the number of processors. We will also pay attention to the physical aspects
of the communication network between the processors.

We will analyze various linear algebra operations, including iterative methods, and their behaviour in the
presence of a network with finite bandwidth and finite connectivity. This chapter will conclude with various
short remarks regarding complications in algorithms that arise due to parallel execution.

6.1 Parallel dense matrix-vector product

In designing a parallel version of an algorithm, one often proceeds by making a data decomposition of
the objects involved. In the case of a matrix-vector operations such as the product y = Ax, we have the
choice of starting with a vector decomposition, and exploring its ramifications on how the matrix can be
decomposed, or rather to start with the matrix, and deriving the vector decomposition from it. In this case,
it seems natural to start with decomposing the matrix rather than the vector, since it will be most likely of
larger computational significance. We now have two choices:

1. We make a one-dimensional decomposition of the matrix, splitting it in block rows or block
columns, and assigning each of these – or groups of them – to a processor.

2. Alternatively, we can make a two-dimensional decomposition, assigning to each processor one
or more general submatrices.

We start by considering the decomposition in block rows. Consider a processor p and the set Ip of indices
of rows that it owns1, and let i ∈ Ip be a row that is assigned to this processor. The elements in row i are
used in the operation

yi =
∑
j

aijxj

We now reason:

1. For ease of exposition we will let Ip be a contiguous range of indices, but any general subset is allowed.
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6.1. Parallel dense matrix-vector product

• If processor p has all xj values, the matrix-vector product can trivially be executed, and upon
completion, the processor has the correct values yj for j ∈ Ip.
• This means that every processor needs to have a copy of x, which is wasteful. Also it raises the

question of data integrity: you need to make sure that each processor has the correct value of x.
• In certain practical applications (for instance iterative methods, as you have seen before), the

output of the matrix-vector product is, directly or indirectly, the input for a next matrix-vector
operation. This is certainly the case for the power method which computes x,Ax,A2x, . . .. Since
our operation started with each processor having the whole of x, but ended with it owning only
the local part of Ax, we have a mismatch.
• Maybe it is better to assume that each processor, at the start of the operation, has only the local

part of x, that is, those xi where i ∈ Ip, so that the start state and end state of the algorithm
are the same. This means we have to change the algorithm to include some communication that
allows each processor to obtain those values xi where i 6∈ Ip.

Exercise 6.1. Go through a similar reasoning for the case where the matrix is decomposed in
block columns. Describe the parallel algorithm in detail, like above, but without giving
pseudo code.

Let us now look at the communication in detail: we will consider a fixed processor p and consider the oper-
ations it performs and the communication that necessitates. According to the above analysis, in executing
the statement yi =

∑
j aijxj we have to be aware what processor the j values ‘belong to’. To acknowledge

this, we write

yi =
∑
j∈Ip

aijxj +
∑
j 6∈Ip

aijxj (6.1)

If j ∈ Ip, the instruction yi ← yi + aaijxj involves only quantities that are already local to the processor.
Let us therefore concentrate on the case j 6∈ Ip. It would be nice if we could just write the statement

y(i) = y(i) + a(i,j)*x(j)

and some lower layer would automatically transfer x(j) from whatever processor it is stored on to a local
register. (The PGAS languages (section 2.5.6) aim to do this, but their efficiency is far from guaranteed.)
An implementation, based on this optimistic view of parallelism, is given in figure 6.1.

The immediate problem with such a ‘local’ approach is that too much communication will take place.

• If the matrix A is dense, the element xj is necessary once for each row i ∈ Ip, and it will thus be
fetched once for every row i ∈ Ip.
• For each processor q 6= p, there will be (large) number of elements xj with j ∈ Iq that need to be

transferred from processor q to p. Doing this in separate messages, rather than one bulk transfer,
is very wasteful.

With shared memory these issues are not much of a problem, but in the context of distributed memory it is
better to take a buffering approach.

Instead of communicating individual elements of x, we use a local buffer Bpq for each processor q 6= p
where we collect the elements from q that are needed to perform the product on p. (See figure 6.2 for an
illustration.) The parallel algorithm is given in figure 6.3.
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Input: Processor number p; the elements xi with i ∈ Ip; matrix elements Aij with i ∈ Ip.
Output: The elements yi with i ∈ Ip
for i ∈ Ip do

s← 0;

for j ∈ Ip do
s← s+ aijxj

for j 6∈ Ip do
send xj from the processor that owns it to the current one, then;

s← s+ aijxj

yi ← s

Procedure Naive Parallel MVP(A, xlocal, ylocal, p)

Figure 6.1: A naı̈vely coded parallel matrix-vector product

Figure 6.2: The parallel matrix-vector product with a blockrow distribution.

Input: Processor number p; the elements xi with i ∈ Ip; matrix elements Aij with i ∈ Ip.
Output: The elements yi with i ∈ Ip
for q 6= p do

Send elements of x from processor q to p, receive in buffer Bpq.

ylocal ← Axlocal
for q 6= p do

ylocal ← ylocal +ApqBq
Procedure Parallel MVP(A, xlocal, ylocal, p)

Figure 6.3: A buffered implementation of the parallel matrix-vector product
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In addition to preventing an element from being fetched more than once, this also combines many small
messages into one large message, which is usually more efficient; recall our discussion of bandwidth and
latency in section 2.6.7.

Exercise 6.2. Give pseudocode for the matrix-vector product using nonblocking operations
(section 2.5.3.6)

Above we said that having a copy of the whole of x on each processor was wasteful in space. The implicit
argument here is that, in general, we do not want local storage to be function of the number of processors:
ideally it should be only a function of the local data. (This is related to weak scaling; section 2.7.4.)

You see that, because of communication considerations, we have actually decided that it is unavoidable,
or at least preferable, for each processor to store the whole input vector. Such trade-offs between space
and time efficiency are fairly common in parallel programming. For the dense matrix-vector product we
can actually defend this overhead, since the vector storage is of lower order than the matrix storage, so our
over-allocation is small by ratio. Below (section 6.4), we will see that for the sparse matrix-vector product
the overhead can be much less.

It is easy to see that the parallel dense matrix-vector product, as described above, has perfect speedup if
we are allowed to ignore the time for communication. In the next section you will see that the block row
implementation above is not optimal if we take communication into account. For scalability we need a
two-dimensional decomposition.

6.2 Scalability of the dense matrix-vector product

In this section, we will give a full analysis of the parallel computation of y ← Ax, where x, y ∈ Rn and
A ∈ Rn×n. We will assume that p nodes will be used, but we make no assumptions on their connectivity.
We will see that the way the matrix is distributed makes a big difference for the scaling of the algorithm;
see section 2.7.4 for the defitions of the various forms of scaling.

An important part of this discussion is a thorough analysis of collective operations, so we start with this.

6.2.1 Collective operations

Collective operations play an important part in linear algebra operations. In fact, the scalability of the
operations can depend on the cost of these collectives. (See [16] for details.)

In computing the cost of a collective operation, three architectural constants are enough to give lower
bounds: α, the latency of sending a single message, β, the inverse of the bandwidth for sending data (see
section 1.3.2), and γ, the time for performing an arithmetic operation. Sending n data items then takes time
α+βn. We further assume that a processor can only send one message at a time. We make no assumptions
about the connectivity of the processors; thus, the lower bounds derived here will hold for a wide range of
architectures.

The main implication of the architectural model above is that the number of active processors can only
double in each step of an algorithm. For instance, to do a broadcast, first processor 0 sends to 1, then
0 and 1 can send to 2 and 3, then 0–3 send to 4–7, et cetera. This cascade of messages is called a minimum
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spanning tree of the processor network, and it follows that any collective algorithm has at least α log2 p
cost associated with the accumulated latencies.

6.2.1.1 Broadcast

In a broadcast operation, a single processor has n data elements that is needs to send to all others: the
other processors need a full copy of all n elements. By the above doubling argument, we conclude that
a broadcast to p processors takes time at least dlog2 pe steps with a total latency of dlog2 peα. Since n
elements are sent, this adds at least a time nβ for all elements to leave the sending processor, giving a total
cost lower bound of

dlog2 peα+ nβ.

We can illustrate the spanning tree method as follows:

t = 0 t = 1 t = 2 t = 3

p0 x0, x1, x2, x3 x0 ↓, x1 ↓, x2 ↓, x3 ↓ x0 ↓, x1 ↓, x2 ↓, x3 ↓ x0, x1, x2, x3

p1 x0 ↓, x1 ↓, x2 ↓, x3 ↓ x0, x1, x2, x3

p2 x0, x1, x2, x3

p3 x0, x1, x2, x3

On t = 1, p0 sends to p1; on t = 2 p0, p1 send to p2, p3.

6.2.1.2 Reduction

In a reduction operation, each processor has n data elements, and one processor needs to combine them
elementwise, for instance computing n sums or products.

By running the broadcast backwards in time, we see that a reduction operation has the same lower bound
on the communication of dlog2 peα + nβ. A reduction operation also involves computation, which would
take a total time of (p − 1)γn sequentially: each of n items gets reduced over p processors. Since these
operations can potentially be parallelized, the lower bound on the computation is p−1

p γn, giving a total of

dlog2 peα+ nβ +
p− 1

p
γn.

We illustrate this again, using the notation x(j)
i for the data item i that was originally on processor j, and

x
(j:k)
i for the sum of the items i of processors j . . . k.

t = 1 t = 2 t = 3

p0 x
(0)
0 , x

(0)
1 , x

(0)
2 , x

(0)
3 x

(0:1)
0 , x

(0:1)
1 , x

(0:1)
2 , x

(0:1)
3 x

(0:3)
0 , x

(0:3)
1 , x

(0:3)
2 , x

(0:3)
3

p1 x
(1)
0 ↑, x(1)

1 ↑, x(1)
2 ↑, x(1)

3 ↑
p2 x

(2)
0 , x

(2)
1 , x

(2)
2 , x

(2)
3 x

(2:3)
0 ↑, x(2:3)

1 ↑, x(2:3)
2 ↑, x(2:3)

3 ↑
p3 x

(3)
0 ↑, x(3)

1 ↑, x(3)
2 ↑, x(3)

3 ↑

On time t = 1 processors p0, p2 receive from p1, p3, and on t = 2 p0 receives from p2.
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6.2.1.3 Allreduce

An allreduce operation computes the same elementwise reduction of n elements on each processor, but
leaves the result on each processor, rather than just on the root of the spanning tree. This could be imple-
mented as a reduction followed by a broadcast, but more clever algorithms exist.

The lower bound on the cost of an allreduce is, somewhat remarkably, almost the same as of a simple
reduction: since in a reduction not all processors are active at the same time, we assume that the extra work
can be spread out perfectly. This means that the lower bound on the latency and computation stays the
same. For the bandwidth we reason as follows: in order for the communication to be perfectly parallelized,
p−1
p n items have to arrive at, and leave each processor. Thus we have a total time of

dlog2 peα+ 2
p− 1

p
nβ +

p− 1

p
nγ.

6.2.1.4 Allgather

In a gather operation on n elements, each processor has n/p elements, and one processor collects them all,
without combining them as in a reduction. The allgather computes the same gather, but leaves the result on
all processors.

Again we assume that gathers with multiple targets are active simultaneously. Since every processor origi-
nates a minimum spanning tree, we have log2 pα latency; since each processor receives n/p elements from
p−1 processors, there is p−1

p β bandwidth cost. The total cost for constructing a length n vector by allgather
is then

dlog2 peα+
p− 1

p
nβ.

t = 1 t = 2 t = 3

p0 x0 ↓ x0x1 ↓ x0x1x2x3

p1 x1 ↑ x0x1 ↓ x0x1x2x3

p2 x2 ↓ x2x3 ↑ x0x1x2x3

p3 x3 ↑ x2x3 ↑ x0x1x2x3

At time t = 1, there is an exchange between neighbours p0, p1 and likewise p2, p3; at t = 2 there is an
exchange over distance two between p0, p2 and likewise p1, p3.

6.2.1.5 Reduce-scatter

In a reduce-scatter operation, each processor has n elements, and an n-way reduction is done on them.
Unlike in the reduce or allreduce, the result is then broken up, and distributed as in a scatter operation.

Formally, processor i has an item x
(i)
i , and it needs

∑
j x

(j)
i . We could implement this by doing a size p

reduction, collecting the vector (
∑

i x
(i)
0 ,
∑

i x
(i)
1 , . . .) on one processor, and scattering the results. However

it is possible to combine these operations in a so-called bidirectional exchange algorithm:
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t = 1 t = 2 t = 3

p0 x
(0)
0 , x

(0)
1 , x

(0)
2 ↓, x(0)

3 ↓ x
(0:2:2)
0 , x

(0:2:2)
1 ↓ x

(0:3)
0

p1 x
(1)
0 , x

(1)
1 , x

(1)
2 ↓, x(1)

3 ↓ x
(1:3:2)
0 ↑, x(1:3:2)

1 x
(0:3)
1

p2 x
(2)
0 ↑, x(2)

1 ↑, x(2)
2 , x

(2)
3 x

(0:2:2)
2 , x

(0:2:2)
3 ↓ x

(0:3)
2

p3 x
(3)
0 ↑, x(3)

1 ↑, x(3)
2 , x

(3)
3 x

(1:3:2)
0 ↑, x(1:3:2)

1 x
(0:3)
3

The reduce-scatter can be considered as a allgather run in reverse, with arithmetic added, so the cost is

dlog2 peα+
p− 1

p
n(β + γ).

6.2.2 Matrix-vector product, partitioning by rows

Partition

A→


A0

A1
...

Ap−1

 x→


x0

x1
...

xp−1

 , and y →


y0

y1
...

yp−1

 ,

where Ai ∈ Rmi×n and xi, yi ∈ Rmi with
∑p−1

i=0 mi = n and mi ≈ n/p. We will start by assuming that
Ai, xi, and yi are originally assigned to Pi.
The computation is characterized by the fact that each processor needs the whole vector x, but owns only
an n/p fraction of it. Thus, we execute an allgather of x. After this, the processor can execute the local
product yi ← Aix; no further communication is needed after that.

An algorithm with cost computation for y = Ax in parallel is then given by

Step Cost (lower bound)
Allgather xi so that x is available on all nodes dlog2(p)eα+ p−1

p nβ

≈ log2(p)α+ nβ

Locally compute yi = Aix ≈ 2n
2

p γ

Cost analysis The total cost of the algorithm is given by, approximately,

Tp(n) = T1D-row
p (n) = 2

n2

p
γ + log2(p)α+ nβ.︸ ︷︷ ︸

Overhead
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Since the sequential cost is T1(n) = 2n2γ, the speedup is given by

S1D-row
p (n) =

T1(n)

T1D-row
p (n)

=
2n2γ

2n
2

p γ + log2(p)α+ nβ
=

p

1 + p log2(p)
2n2

α
γ + p

2n
β
γ

and the parallel efficiency by

E1D-row
p (n) =

S1D-row
p (n)

p
=

1

1 + p log2(p)
2n2

α
γ + p

2n
β
γ

.

An optimist’s view Now, if one fixes p and lets n get large,

lim
n→∞

Ep(n) = lim
n→∞

 1

1 + p log2(p)
2n2

α
γ + p

2n
β
γ

 = 1.

Thus, if one can make the problem large enough, eventually the parallel efficiency is nearly perfect. How-
ever, this assumes unlimited memory, so this analysis is not practical.

A pessimist’s view In a strong scalability analysis, one fixes n and lets p get large, to get

lim
p→∞

Ep(n) = lim
p→∞

 1

1 + p log2(p)
2n2

α
γ + p

2n
β
γ

 = 0.

Thus, eventually the parallel efficiency becomes nearly nonexistent.

A realist’s view In a more realistic view we increase the number of processors with the amount of data.
This is called weak scalability, and it makes the amount of memory that is available to store the problem
scale linearly with p.

Let M equal the number of floating point numbers that can be stored in a single node’s memory. Then the
aggregate memory is given by Mp. Let nmax(p) equal the largest problem size that can be stored in the
aggregate memory of p nodes. Then, if all memory can be used for the matrix,

(nmax(p))2 = Mp or nmax(p) =
√
Mp.

The question now becomes what the parallel efficiency for the largest problem that can be stored on p
nodes:

E1D-row
p (nmax(p)) = 1

1+
p log2(p)

2(nmax(p))2
α
γ

+ p
2nmax(p)

β
γ

= 1

1+
log2(p)

2M
α
γ

+
√
p

2
√
M

β
γ

.
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Now, if one analyzes what happens when the number of nodes becomes large, one finds that

lim
p→∞

Ep(nmax(p)) = lim
p→∞

 1

1 + log2(p)
2M

α
γ +

√
p

2
√
M

β
γ

 = 0.

Thus, this parallel algorithm for matrix-vector multiplication does not scale. If you take a close look at this
expression for efficiency, you’ll see that the main problem is the latency of the communication.

Alternatively, a realist realizes that there is a limited amount of time, Tmax, to get a computation done.
Under the best of circumstances, that is, with zero communication overhead, the largest problem that we
can solve in time Tmax is given by

Tp(nmax(p)) = 2
(nmax(p))2

p
γ = Tmax.

Thus

(nmax(p))2 =
Tmaxp

2γ
or nmax(p) =

√
Tmax

√
p√

2γ
.

Then the parallel efficiency that is attained by the algorithm for the largest problem that can be solved in
time Tmax is given by

Ep,nmax =
1

1 + log2 p
T α+

√
p
T
β
γ

and the parallel efficiency as the number of nodes becomes large approaches

lim
p→∞

Ep =

√
Tγ

pβ
.

Again, efficiency cannot be maintained as the number of processors increases and the execution time is
capped.

6.2.3 Matrix-vector product, partitioning by columns

Partition

A→ (A0, A1, . . . , Ap−1) x→


x0

x1
...

xp−1

 , and y →


y0

y1
...

yp−1

 ,

where Aj ∈ Rn×nj and xj , yj ∈ Rnj with
∑p−1

j=0 nj = n and nj ≈ n/p.
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We will start by assuming that Aj , xj , and yj are originally assigned to Pj (but now Ai is a block of
columns). In this algorithm by columns, processor i can compute the length n vector Aixi without prior
communication. These partial results then have to be added together

y ←
∑
i

Aixi

in a reduce-scatter operation: each processor i scatters a part (Aixi)j of its result to processor j. The
receiving processors then perform a reduction, adding all these fragments:

yj =
∑
i

(Aixi)j .

The algorithm with costs is then given by:

Step Cost (lower bound)
Locally compute y(j) = Ajxj ≈ 2n

2

p γ

Reduce-scatter the y(j)s so that yi =
∑p−1

j=0 y
(j)
i is on Pi dlog2(p)eα+ p−1

p nβ + p−1
p nγ

≈ log2(p)α+ n(β + γ)

Cost analysis The total cost of the algorithm is given by, approximately,

T1D-col
p (n) = 2

n2

p
γ + log2(p)α+ n(β + γ).︸ ︷︷ ︸

Overhead

Notice that this is identical to the cost T1D-row
p (n), except with β replaced by (β+ γ). It is not hard to see

that the conclusions about scalability are the same.

6.2.4 Two-dimensional partitioning

Next, partition

A→


A00 A01 . . . A0,p−1

A10 A11 . . . A1,p−1
...

...
. . .

...
Ap−1,0 Ap−1,0 . . . Ap−1,p−1

 x→


x0

x1
...

xp−1

 , and y →


y0

y1
...

yp−1

 ,

where Aij ∈ Rni×nj and xi, yi ∈ Rni with
∑p−1

i=0 ni = N and ni ≈ N/
√
P .

We will view the nodes as an r × c mesh, with P = rc, and index them as pij , with i = 0, . . . , r − 1 and
j = 0, . . . , c − 1. The following illustration for a 12 × 12 matrix on a 3 × 4 processor grid illustrates the
assignment of data to nodes, where the i, j “cell” shows the matrix and vector elements owned by pij :
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x0
a00 a01 a02 y0
a10 a11 a12
a20 a21 a22
a30 a31 a32

x3
a03 a04 a05
a13 a14 a15 y1
a23 a24 a25
a33 a34 a35

x6
a06 a07 a08
a16 a17 a18
a26 a27 a28 y2
a37 a37 a38

x9
a09 a0,10 a0,11
a19 a1,10 a1,11
a29 a2,10 a2,11
a39 a3,10 a3,11 y3

x1
a40 a41 a42 y4
a50 a51 a52
a60 a61 a62
a70 a71 a72

x4
a43 a44 a45
a53 a54 a55 y5
a63 a64 a65
a73 a74 a75

x7
a46 a47 a48
a56 a57 a58
a66 a67 a68 y6
a77 a77 a78

x10
a49 a4,10 a4,11
a59 a5,10 a5,11
a69 a6,10 a6,11
a79 a7,10 a7,11 y7

x2
a80 a81 a82 y8
a90 a91 a92
a10,0 a10,1 a10,2
a11,0 a11,1 a11,2

x5
a83 a84 a85
a93 a94 a95 y9
a10,3 a10,4 a10,5
a11,3 a11,4 a11,5

x8
a86 a87 a88
a96 a97 a98
a10,6 a10,7 a10,8 y10
a11,7 a11,7 a11,8

x11
a89 a8,10 a8,11
a99 a9,10 a9,11
a10,9 a10,10 a10,11
a11,9 a11,10 a11,11 y11

In other words, pij owns the matrix block Aij and parts of x and y. This makes possible the following
algorithm:

• Since xj is distributed over the jth column, the algorithm starts by collecting xj on each proces-
sor pij by an allgather inside the processor columns.
• Each processor pij then computes yij = Aijxj . This involves no further communication.
• The result yi is then collected by gathering together the pieces yij in each processor row to

form yi, and this is then distributed over the processor row. These two operations are in fact
combined to form a reduce-scatter .
• If r = c, we can transpose the y data over the processors, so that it can function as the input for a

subsequent matrix-vector product. If, on the other hand, we are computing AtAx, then y is now
correctly distributed for the At product.

Algorithm The algorithm with cost analysis is

Step Cost (lower bound)
Allgather xi’s within columns dlog2(r)eα+ r−1

p nβ

≈ log2(r)α+ n
c β

Perform local matrix-vector multiply ≈ 2n
2

p γ

Reduce-scatter yi’s within rows dlog2(c)eα+ c−1
p nβ + c−1

p nγ

≈ log2(c)α+ n
c β + n

c γ

Cost analysis The total cost of the algorithm is given by, approximately,

T r×cp (n) = T r×cp (n) = 2
n2

p
γ + log2(p)α+

(n
c

+
n

r

)
β +

n

r
γ.︸ ︷︷ ︸

Overhead
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We will now make the simplification that r = c =
√
p so that

T
√
p×√p

p (n) = T
√
p×√p

p (n) = 2
n2

p
γ + log2(p)α+

n√
p

(2β + γ)︸ ︷︷ ︸
Overhead

Since the sequential cost is T1(n) = 2n2γ, the speedup is given by

S
√
p×√p

p (n) =
T1(n)

T
√
p×√p

p (n)
=

2n2γ

2n
2

p γ + n√
p (2β + γ)

=
p

1 + p log2(p)
2n2

α
γ +

√
p

2n
(2β+γ)

γ

and the parallel efficiency by

E
√
p×√p

p (n) =
1

1 + p log2(p)
2n2

α
γ +

√
p

2n
(2β+γ)

γ

We again ask the question what the parallel efficiency for the largest problem that can be stored on p nodes
is.

E
√
p×√p

p (nmax(p)) =
1

1 + p log2(p)
2n2

α
γ +

√
p

2n
(2β+γ)

γ

=
1

1 + log2(p)
2M

α
γ + 1

2
√
M

(2β+γ)
γ

so that still

lim
p→∞

E
√
p×√p

p (nmax(p)) = lim
p→∞

1

1 + log2(p)
2M

α
γ + 1

2
√
M

(2β+γ)
γ

= 0.

However, log2 p grows very slowly with p and is therefore considered to act much like a constant. In this
case E

√
p×√p

p (nmax(p)) decreases very slowly and the algorithm is considered to be scalable for practical
purposes.

Note that when r = p the 2D algorithm becomes the ”partitioned by rows” algorithm and when c = p it
becomes the ”partitioned by columns” algorithm. It is not hard to show that the 2D algorithm is scalable in
the sense of the above analysis when r = c, as long as r/c is kept constant.

6.3 Scalability of LU factorization

A full analysis of the scalability of dense LU factorization is quite involved, so we will state without further
proof that again a two-dimensional distribution is needed. However, we can identify a further complication.
Since factorizations of any type2 progress through a matrix, processors will be inactive for part of the time.

2. Gaussian elimination can be performed in right-looking, left-looking and Crout variants; see [129].
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Exercise 6.3. Consider the regular right-looking Gaussian elimination
for k=1..n

p = 1/a(k,k)
for i=k+1,n

for j=k+1,n
a(i,j) = a(i,j)-a(i,k)*p*a(k,j)

Analyze the running time, speedup, and efficiency as a function of N , if we assume a
one-dimensional distribution, and enough processors to store one column per proces-
sor. Show that speedup is limited.
Also perform this analysis for a two-dimensional decomposition where each processor
stores one element.

For this reason, an overdecomposition is used, where the matrix is divided in more blocks than there are
processors, and each processor stores several, non-contiguous, sub-matrices. We illustrate this in figure 6.4

Figure 6.4: One-dimensional cyclic distribution: assignment of four matrix columns to two processors, and
the resulting mapping of storage to matrixcolumns

where we divide four block columns of a matrix to two processors: each processor stores in a contiguous
block of memory two non-contiguous matrix columns.

Next, we illustrate in figure 6.5 that a matrix-vector product with such a matrix can be performed without
knowing that the processors store non-contiguous parts of the matrix. All that is needed is that the input
vector is also cyclicly distributed.

Exercise 6.4. Now consider a 4 × 4 matrix and a 2 × 2 processor grid. Distribute the matrix
cyclicly both by rows and columns. Show how the matrix-vector product can again
be performed using the contiguous matrix storage, as long as the input is distributed
correctly. How is the output distributed? Show that more communication is needed
than the reduction of the one-dimensional example.

Specifically, with P < N processors, and assuming for simplicity N = cP , we let processor 0 store rows
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Figure 6.5: Matrix-vector multiplication with a cyclicly distributed matrix

0, c, 2c, 3c, . . .; processor 1 stores rows 1, c+ 1, 2c+ 1, . . ., et cetera. This scheme can be generalized two a
two-dimensional distribution, if N = c1P1 = c2P2 and P = P1P2. This is called a 2D cyclic distribution .
This scheme can be further extended by considering block rows and colums (with a small block size), and
assigning to processor 0 the block rows 0, c, 2c, . . ..

Exercise 6.5. Consider a square n × n matrix, and a square p × p processor grid, where p di-
vides n without remainder. Consider the overdecomposition outlined above, and make
a sketch of matrix element assignment for the specific case n = 6, p = 2. That is,
draw an n×n table where location (i, j) contains the processor number that stores the
corresponding matrix element. Also make a table for each of the processors describing
the local to global mapping, that is, giving the global (i, j) coordinates of the elements
in the local matrix. (You will find this task facilitated by using zero-based numbering.)
Now write functions P,Q, I, J of i, j that describe the global to local mapping, that is,
matrix element aij is stored in location (I(i, j), J(i, j)) on processor (P (i, j), Q(i, j)).

6.4 Parallel sparse matrix-vector product

In section 5.4 you saw a first discussion of sparse matrices, limited to use on a single processor. We will
now go into parallelism aspects.

The dense matrix-vector product, as you saw above, required each processor to communicate with every
other, and to have a local buffer of essentially the size of the global vector. In the sparse case, considerably
less buffer space, as well as less communication, is needed. Let us analyze this case. We will assume that
the matrix is distributed by block rows, where processor p owns the matrix rows with indices in some set Ip.

The line yi = yi+aijxj now has to take into account that aij can be zero. In particular, we need to consider
that, for some pairs i ∈ Ip, j 6∈ Ip no communication will be needed. Declaring for each i ∈ Ip a sparsity
pattern set

Sp;i = {j : j 6∈ Ip, aij 6= 0}

our multiplication instruction becomes

yi + = aijxj if j ∈ Sp;i.
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Figure 6.6: A difference stencil applied to a two-dimensional square domain, distributed over processors.
A cross-processor connection is indicated.

If we want to avoid, as above, a flood of small messages, we combine all communication into a single
message per processor. Defining

Sp = ∪i∈IpSp;i,

the algorithm now becomes:

• Collect all necessary off-processor elements xj with j ∈ Sp into one buffer;
• Perform the matrix-vector product, reading all elements of x from local storage.

This whole analysis of course also applies to dense matrices. This becomes different if we consider where
sparse matrices come from. Let us start with a simple case.

Recall figure 4.1, which illustrated a discretized boundary value problem on the simplest domain, a square,
and let us now parallelize it. We do this by partitioning the domain; each processor gets the matrix rows
corresponding to its subdomain. Figure 6.6 shows how this gives rise to connections between processors:
the elements aij with i ∈ Ip, j 6∈ Ip are now the ‘legs’ of the stencil that reach beyond a processor boundary.
The set of all such j, formally defined as

G = {j 6∈ Ip : ∃i∈Ip : aij 6= 0}

is known as the ghost region of a processor; see figure 6.7.

Exercise 6.6. Show that a one-dimensional partitioning of the domain leads to a partitioning of
the matrix into block rows, but a two-dimensional partitioning of the domain does not.
You can do this in the abstract, or you can illustrate it: take a 4 × 4 domain (giving
a matrix of size 16), and partition it over 4 processors. The one-dimensional domain
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Figure 6.7: The ghost region of a processor, induced by a stencil

partitioning corresponds to giving each processor one line out of the domain, while
the two-dimensional partitioning gives each processor a 2 × 2 subdomain. Draw the
matrices for these two cases.

Our crucial observation is now that, for each processor, the number of other processors it is involved with
is strictly limited. This has implications for the efficiency of the operation.

6.4.1 Parallel efficiency of the sparse matrix-vector product

In the case of the dense matrix-vector product (section 6.2), partitioning the matrix over the processors
by (block) rows did not lead to a scalable algorithm. Part of the reason was the increase in the number
of neighbours that each processors needs to communicate with. Figure 6.6 shows that, for the matrix of a
5-five point stencil, this number is limited to four.

Exercise 6.7. Take a square domain and a partitioning of the variables of the processors as in
figure 6.6. What is the maximum number of neighbours a processor needs to commu-
nication with for the box stencil in figure 4.4? In three space dimensions, what is the
number of neighbours if a 7-point central difference stencil is used?

The observation that each processor communicates with just a few neighbours stays intact if we go beyond
square domains to more complicated physical objects. If a processor receives a more or less contiguous
subdomain, the number of its neighbours will be limited. This implies that even in complicated problems
each processor will only communicate with a small number of other processors. Compare this to the dense
case where each processor had to receive data from every other processor. It is obvious that the sparse case
is far more friendly to the interconnection network. (The fact that it also more common for large systems
may influence the choice of network to install if you are about to buy a new parallel computer.)

For square domains, this argument can easily be made formal. Let the unit domain [0, 1]2 be partitioned
over P processors in a

√
P ×

√
P grid. From figure 6.6 we see that every processor communicates with at

most four neighbours. Let the amount of work per processor be w and the communication time with each
neighbour c. Then the time to perform the total work on a single processor is T1 = Pw, and the parallel
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time is TP = w + 4c, giving a speed up of

SP = Pw/(w + 4c) = P/(1 + 4c/w) ≈ P (1− 4c/w).

Exercise 6.8. Express c and w as functions of N and P , and show that the speedup is asymp-
totically optimal, under weak scaling of the problem.

Exercise 6.9. In this exercise you will analyze the parallel sparse matrix-vector product for a
hypothetical, but realistic, parallel machine. Let the machine parameters be character-
ized by (see section 1.3.2):
• Latency: α = 1µs = 10−6s.
• Bandwidth: 1Gb/s corresponds to β = 10−9.
• Computation rate: A per-core flops rate of 1Gflops means γ = 109. This number

may seem low, but note that the matrix-vector product has less reuse than the
matrix-matrix product, and that the sparse matrix-vector product is even more
bandwidth-bound.

We assume 104 processors, and a five-point stencil matrix of size N = 25 · 1010. This
means each processor stores 5·8·N/p = 109 bytes. If the matrix comes from a problem
on a square domain, this means the domain was size n× n where n =

√
N = 5 · 105.

Case 1. Rather than dividing the matrix, we divide the domain, and we do this first
by horizontal slabs of size n × (n/p). Argue that the communication complexity is
2(α + nβ) and computation complexity is 10 · n · (n/p). Show that the resulting
computation outweighs the communication by a factor 250.
Case 2. We divide the domain into patches of size (n/

√
p)×(n/

√
p). The memory and

computation time are the same as before. Derive the communication time and show
that it is better by a factor of 50.
Argue that the first case does not weakly scale: under the assumption that N/p is
constant the speedup will go down. The second case does scale weakly.

The argument that a processor will only connect with a few neighbours is based on the nature of the
scientific computations. It is true for FDM and FEM methods. In the case of the Boundary Element Method
(BEM), any subdomain needs to communicate with everything in a radius r around it. As the number of
processors goes up, the number of neighbours per processor will also go up.

Exercise 6.10. Give a formal analysis of the speedup and efficiency of the BEM algorithm.
Assume again a unit amount of work w per processor and a time of communication c
per neighbour. Since the notion of neighbour is now based on physical distance, not
on graph properties, the number of neighbours will go up. Give T1, Tp, Sp, Ep for this
case.

There are also cases where a sparse matrix needs to be handled similarly to a dense matrix. For instance,
Google’s Pagerank algorithm (see section 8.2.2) has at its heart the repeated operation x← Ax where A is
a sparse matrix with Aij 6= 0 if web page j links to page i; see section 8.2.2. This makes A a very sparse
matrix, with no obvious structure, so every processor will most likely communicate with almost every other.
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6.4.2 Memory behaviour of the sparse matrix-vector product

In section 1.6.8 you saw an analysis of the sparse matrix-vector product in the dense case, on a single
processor. Some of the analysis carries over immediately to the sparse case, such as the fact that each
matrix element is used only once and that the performance is bound by the bandwidth between processor
and memory.

Regarding reuse of the input and the output vector, if the matrix is stored by rows, such as in CRS format
(section 5.4.1.3), access to the output vector will be limited to one write per matrix row. On the other hand,
the loop unrolling trick for getting reuse of the input vector can not be applied here. Code that combines
two iterations is as follows:

for (i=0; i<M; i+=2) {
s1 = s2 = 0;
for (j) {

s1 = s1 + a[i][j] * x[j];
s2 = s2 + a[i+1][j] * x[j];

}
y[i] = s1; y[i+1] = s2;

}

The problem here is that if aij is nonzero, it is not guaranteed that ai+1,j is nonzero. The irregularity of the
sparsity pattern makes optimizing the matrix-vector product hard. Modest improvements are possible by
identifying parts of the matrix that are small dense blocks [14, 27, 132].

On a GPU the sparse matrix-vector product is also limited by memory bandwidth. Programming is now
harder because the GPU has to work in data parallel mode, with many active threads.

An interesting optimization becomes possible if we consider the context in which the sparse matrix-vector
product typically appears. The most common use of this operation is in iterative solution methods for linear
systems (section 5.5), where it is applied with the same matrix in possibly hundreds of iterations. Thus we
could consider leaving the matrix stored on the GPU and only copying the input and output vectors for each
product operation.

6.4.3 The transpose product

In section 5.4.1.3 you saw that the code for both the regular and the tranpose matrix-vector product are
limited to loop orderings where rows of the matrix are traversed. (In section 1.5.2 you saw a discussion of
computational effects of changes in loop order; in this case we are limited to row traversal by the storage
format.)

In this section we will briefly look at the parallel transpose product. Equivalently to partitioninging the
matrix by rows and performing the transpose product, we look at a matrix stored and partitioned by columns
and perform the regular product.

The algorithm for the product by columns can be given as:
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y ← 0
for j:

for i:
yi ← yi + aijxj

Both in shared and distributed memory we distribute outer iterations over processors. The problem is then
that each outer iteration updates the whole output vector. This is a problem: with shared memory it leads
to multiple writes to locations in the output and in distributed memory it requires communication that is as
yet unclear.

One way to solve this would be to allocate a private output vector y(p) for each process:

y(p) ← 0
for j ∈ the rows of processor p

for all i:
y

(p)
i ← y

(p)
i + ajixj

after which we sum y ←∑
p y

(p).

6.4.4 Setup of the sparse matrix-vector product

While in the square domain case it was easy for a processor to decide which are its neighbours, in the sparse
case this is not so simple. The straightforward way to proceed is to have a preprocessing stage:

• Each processor makes an inventory of what non-local indices it needs; assuming that each pro-
cessor knows what range of indices each other processor owns, it then decides which indices to
get from what neighbours.
• Each processor sends a list of indices to each of its neighbours; this list will be empty for most

of the neighbours, but we can not omit sending it.
• Each processor then receives these lists from all others, and draws up lists of which indices to

send.

You will note that, even though the communication during the matrix-vector product involves only a few
neighbours for each processor, giving a cost that isO(1) in the number of processors, the setup involves all-
to-all communications, which is O(P ) in the number of processors. The setup can be reduced to O(logP )
with some trickery [42].

Exercise 6.11. The above algorithm for determining the communication part of the sparse
matrix-vector product can be made far more efficient if we assume a matrix that is
structurally symmetric: aij 6= 0⇔ aji 6= 0. Show that in this case no communication
is needed to determine the communication pattern.

6.5 Computational aspects of iterative methods

All iterative methods feature the following operations:

• A matrix-vector product; this was discussed for the sequential case in section 5.4 and for the
parallel case in section 6.4. In the parallel case, construction of FEM matrices has a complication
that we will discuss in section 6.5.2.
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• The construction of the preconditioner matrixK ≈ A, and the solution of systemsKx = y. This
was discussed in the sequential case in section 5.5.5. Below we will go into parallelism aspects
in section 6.6.
• Some vector operations (including inner products, in general). These will be discussed next.

6.5.1 Vector operations

There are two types of vector operations in a typical iterative method: vector additions and inner products.

Exercise 6.12. Consider the CG method of section 5.5.10, figure 5.8, applied to the matrix from
a 2D BVP; equation (4.14), First consider the unpreconditioned case M = I . Show
that there is a roughly equal number of floating point operations are performed in the
matrix-vector product and in the vector operations. Express everything in the matrix
size N and ignore lower order terms. How would this balance be if the matrix had 20
nonzeros per row?
Next, investigate this balance between vector and matrix operations for the FOM
scheme in section 5.5.8. Since the number of vector operations depends on the iter-
ation, consider the first 50 iterations and count how many floating point operations are
done in the vector updates and inner product versus the matrix-vector product. How
many nonzeros does the matrix need to have for these quantities to be equal?

Exercise 6.13. Flop counting is not the whole truth. What can you say about the efficiency of
the vector and matrix operations in an iterative method, executed on a single proces-
sor?

6.5.1.1 Vector additions

The vector additions are typically of the form x ← x + αy or x ← αx + y. If we assume that all vectors
are distributed the same way, this operation is fully parallel.

6.5.1.2 Inner products

Inner products are vector operations, but they are computationally more interesting than updates, since they
involve communication.

When we compute an inner product, most likely every processor needs to receive the computed value. We
use the following algorithm:

for processor p do
compute ap ← xtpyp where xp, yp are the part of x, y stored on processor p

do a global reduction to compute a =
∑

p ap

broadcast the result
Algorithm 1: Compute a← xty where x, y are distributed vectors

The reduction and broadcast (which can be joined into an Allreduce) combine data over all processors,
so they have a communication time that increases with the number of processors. This makes the inner

Victor Eijkhout 217



6. High performance linear algebra

product potentially an expensive operation, and people have suggested a number of ways to reducing their
impact on the performance of iterative methods.

Exercise 6.14. Iterative methods are typically used for sparse matrices. In that context, you can
argue that the communication involved in an inner product can have a larger influence
on overall performance than the communication in the matrix-vector product. What is
the complexity of the matrix-vector product and the inner product as a function of the
number of processors?

Here are some of the approaches that have been taken.

• The CG method has two inner products per iteration that are inter-dependent. It is possible to
rewrite the method so that it computes the same iterates (in exact arithmetic, at least) but so that
the two inner products per iteration can be combined. See [20, 23, 99, 137].
• It may be possible to overlap the inner product calculation with other, parallel, calculations [26].
• In the GMRES method, use of the classical Gram-Schmidt (GS) method takes far fewer indepen-

dent inner product than the modified GS method, but it is less stable. People have investigated
strategies for deciding when it is allowed to use the classic GS method [87].

6.5.2 Finite element matrix construction

The FEM leads to an interesting issue in parallel computing. For this we need to sketch the basic outline
of how this method works. The FEM derives its name from the fact that the physical objects modeled are
divided into small two or three dimensional shapes, the elements, such as triangles and squares in 2D, or
pyramids and bricks in 3D. On each of these, the function we are modeling is then assumed to polynomial,
often of a low degree, such as linear or bilinear.

Figure 6.8: A finite element domain, parallelization of the matrix construction, and parallelization of matrix
element storage

The crucial fact is that a matrix element aij is then the sum of computations, specifically certain integrals,
over all elements that contain both variables i and j:

aij =
∑

e : i,j∈e
a

(e)
ij .
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The computations in each element share many common parts, so it is natural to assign each element e
uniquely to a processor Pe, which then computes all contributions a(e)

ij . In figure 6.8 element 2 is assigned
to processor 0 and element 4 to processor 1.

Now consider variables i and j and the matrix element aij . It is constructed as the sum of computations
over domain elements 2 and 4, which have been assigned to different processors. Therefore, no matter what
processor row i is assigned to, at least one processor will have to communicate its contribution to matrix
element aij .

Clearly it is not possibly to make assignments Pe of elements and Pi of variables such that Pe computes in
full the coefficients aij for all i ∈ e. In other words, if we compute the contributions locally, there needs
to be some amount of communication to assemble certain matrix elements. For this reason, modern linear
algebra libraries such as PETSc (see tutorial section B.6) allow any processor to set any matrix element.

6.6 Parallel preconditioners

Above (sections 5.5.5 and 5.5.5.1) we saw a couple of different choices of K. In this section we will begin
the discussion of parallelization strategies. The discussion is continued in detail in the next sections.

6.6.1 Jacobi preconditioning

The Jacobi method (section 5.5.3) uses the diagonal of A as preconditioner. Applying this is as parallel as
is possible: the statement y ← K−1x scales every element of the input vector independently. Unfortunately
the improvement in the number of iterations with a Jacobi preconditioner is rather limited. Therefore we
need to consider more sophisticated methods such ILU. Unlike with the Jacobi preconditioner, parallelism
is then not trivial.

6.6.2 The trouble with parallelism ILU

Above we saw that, in a flop counting sense, applying an ILU preconditioner (section 5.5.5.1) is about as
expensive as doing a matrix-vector product. This is no longer true if we run our iterative methods on a
parallel computer.

At first glance the operations are similar. A matrix-vector product y = Ax looks like

for i=1..n
y[i] = sum over j=1..n a[i,j]*x[j]

In parallel this would look like

for i=myfirstrow..mylastrow
y[i] = sum over j=1..n a[i,j]*x[j]
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Suppose that a processor has local copies of all the elements ofA and x that it will need, then this operation
is fully parallel: each processor can immediately start working, and if the work load is roughly equal, they
will all finish at the same time. The total time for the matrix-vector product is then divided by the number
of processors, making the speedup more or less perfect.

Consider now the forward solve Lx = y, for instance in the context of an ILU preconditioner:

for i=1..n
x[i] = (y[i] - sum over j=1..i-1 ell[i,j]*x[j]) / a[i,i]

We can simply write the parallel code:

for i=myfirstrow..mylastrow
x[i] = (y[i] - sum over j=1..i-1 ell[i,j]*x[j]) / a[i,i]

but now there is a problem. We can no longer say ‘suppose a processor has local copies of everything in
the right hand side’, since the vector x appears both in the left and right hand side. While the matrix-vector
product is in principle fully parallel over the matrix rows, this triangular solve code is recursive, hence
sequential.

In a parallel computing context this means that, for the second processor to start, it needs to wait for certain
components of x that the first processor computes. Apparently, the second processor can not start until the
first one is finished, the third processor has to wait for the second, and so on. The disappointing conclusion
is that in parallel only one processor will be active at any time, and the total time is the same as for the
sequential algorithm. This is actually not a big problem in the dense matrix case, since parallelism can be
found in the operations for handling a single row (see section 6.10), but in the sparse case it means we can
not use incomplete factorizations without some redesign.

In the next few subsections we will see different strategies for finding preconditioners that perform effi-
ciently in parallel.

6.6.3 Block Jacobi methods

Various approaches have been suggested to remedy this sequentiality the triangular solve. For instance, we
could simply let the processors ignore the components of x that should come from other processors:

for i=myfirstrow..mylastrow
x[i] = (y[i] - sum over j=myfirstrow..i-1 ell[i,j]*x[j])

/ a[i,i]

This is not mathematically equivalent to the sequential algorithm (technically, it is called a block Jacobi
method with ILU as the local solve), but since we’re only looking for an approximationg K ≈ A, this is
simply a slightly cruder approximation.

Exercise 6.15. Take the Gauss-Seidel code you wrote above, and simulate a parallel run. What
is the effect of increasing the (simulated) number of processors?
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Figure 6.9: Sparsity pattern corresponding to a block Jacobi preconditioner

The idea behind block methods can easily be appreciated pictorially; see figure 6.9. In effect, we make an
ILU of the matrix that we get by ignoring all connections between processors. Since in a BVP all points
influence each other (see section 4.2.1), using a less connected preconditioner will increase the number of
iterations if executed on a sequential computer. However, block methods are parallel and, as we observed
above, a sequential preconditioner is very inefficient in a parallel context, so we put up with this increase
in iterations.

6.7 Ordering strategies and parallelism

6.7.1 Nested dissection

Above, you have seen several examples of ordering the variables in the domain other than with the lexico-
graphic ordering . In this section you will see the nested dissection ordering, which was initially designed
as a way to reduce fill-in. However, it is also advantageous in a parallel computing context.

Nested dissection is a recursive process for determining a nontrivial ordering of the unknowns in a domain.
In the first step, the computational domain is split in two parts, with a dividing strip between them; see
figure 6.10. To be precise, the separator is wide enough that there are no connections between the left and
right subdomain . The resulting matrix ADD has a 3 × 3 structure, corresponding to the three divisions of
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Figure 6.10: Domain dissection into two unconnected subdomains and a separator

the domain. Since the subdomains Ω1 and Ω2 are not connected, the submatrices ADD
12 and ADD

21 are zero.

ADD =

A11 ∅ A13

∅ A22 A23

A31 A32 A33

 =



? ? 0

? ? ?
...

. . . . . . . . . ∅ ...
? ? ? 0

? ? ?

? ? 0

? ? ?
...

∅ . . . . . . . . .
...

? ? ? 0
? ? ?

0 · · · · · · 0 ? 0 · · · · · · 0 ? ?



}

(n2 − n)/2

(n2 − n)/2

n

This process of dividing the domain by a separator is also called domain decomposition or substructuring ,
although this name is also associated with the mathematical analysis of the resulting matrices [8]. In this
example of a rectangular domain it is of course trivial to find a separator. However, for the type of equations
we get from BVPs it is usually feasible to find a separator efficiently [92] for any domain.

Let us now consider the LU factorization of this matrix. If we factor it in terms of the 3×3 block structure,
we get

ADD = LU =

 I
∅ I

A31A
−1
11 A32A

−1
22 I

A11 ∅ A13

A22 A23

S33


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where

S33 = A33 −A31A
−1
11 A13 −A32A

−1
22 A23.

The important fact here is that

• the contributions A31A
−1
11 A13 and A32A

−1
22 A23 can be computed simultaneously, so the factor-

ization is largely parallel; and

• both in the forward and backward solve, components 1 and 2 of the solution can be computed
simultaneously, so the solution process is also largely parallel.

The third block can not trivially be handled in parallel, so this introduces a sequential component in the
algorithm. We also need to take a closer look at the structure of S33.

Exercise 6.16. In section 5.4.3.1 you saw the connection between LU factorization and graph
theory: eliminating a node leads to a graph with that node removed, but with certain
new connections added. Show that, after eliminating the first two sets of variables, the
graph of the remaining matrix on the separator will be fully connected.

The upshot is that after eliminating all the variables in blocks 1 and 2 we are left with a matrix S33 that is
fully dense of size n× n.

The introduction of a separator gave us a factorization that was two-way parallel. Now we iterate this
process: we put a separator inside blocks 1 and 2 (see figure 6.11), which gives the following matrix
structure:

Figure 6.11: A four-way domain decomposition
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ADD =



A11 A15 A17

A22 A25 A27

A33 A36 A37

A44 A46 A47

A51 A52 A55 A57

A63 A64 A66 A67

A71 A72 A73 A74 A75 A76 A77


The LU factorization of this is:

I
I

I
I

A51A
−1
11 A52A

−1
22 I

A63A
−1
33 A64A

−1
44 I

A71A
−1
11 A72A

−1
22 A73A

−1
33 A74A

−1
44 A75S

−1
5 A76S

−1
6 I


·



A11 A15 A17

A22 A25 A27

A33 A36 A37

A44 A46 A47

S5 A57

S6 A67

S7


where

S5 = A55 −A51A
−1
11 A15 −A52A

−1
22 A25, S6 = A66 −A63A

−1
33 A36 −A64A

−1
44 A46

S7 = A77 −
∑

i=1,2,3,4A7iA
−1
ii Ai7 −

∑
i=5,6A7iS

−1
i A17.

Constructing the factorization now goes as follows:

• Blocks Aii are factored in parallel for i = 1, 2, 3, 4; similarly the contributions A5iA
−1
ii Ai5 for

i = 1, 2,A6iA
−1
ii Ai6 for i = 3, 4, andA7iA

−1
ii Ai7 for i = 1, 2, 3, 4 can be constructed in parallel.

• The Schur complement matrices S5, S6 are formed and subsequently factored in parallel, and the
contributions A7iS

−1
i A17 for i = 5, 6 are constructed in parallel.

• The Schur complement S7 is formed and factored.

Analogous to the above reasoning, we conclude that after eliminating blocks 1,2,3,4 the updated matrices
S5, S6 are dense of size n/2, and after eliminating blocks 5,6 the Schur complement S7 is dense of size n.

Exercise 6.17. Show that solving a system with ADD has a similar parallelism to constructing
the factorization as described above.

For future reference, we will call the sets 1 and 2 each others’ siblings, and similarly for 3 and 4. The set 5
is the parent of 1 and 2, 6 is the parent of 3 and 4; 5 and 6 are siblings and 7 is the parent of 5 and 6.
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6.7.1.1 Domain decomposition

In figure 6.11 we divided the domain four ways by a recursive process. This leads up to our discussion of
nested dissection. It is also possible to immediately split a domain in any number of strips, or in a grid
of subdomains. As long as the separators are wide enough, this will give a matrix structure with many
independent subdomains. As in the above discussion, an LU factorization will be characterized by

• parallel processing of the subdomains, both in the factorization and L,U solves, and
• a system to be solved on the separator structure.

Figure 6.12: One-way domain decomposition

Exercise 6.18. The matrix from a two-dimensional BVP has a block tridiagonal structure. Di-
vide the domain in four strips, that is, using three separators (see figure 6.12). Note
that the separators are uncoupled in the original matrix.
Now sketch the sparsity structure of the resulting system on the separators are elimi-
nation of the subdomains. Show that the system is block tridiagonal.

6.7.1.2 Complexity

The nested dissection method repeats the above process until the subdomains are very small. For a theoret-
ical analysis, we keep dividing until we have subdomains of size 1 × 1, but in practice one could stop at
sizes such as 32, and use an efficient dense solver to factor and invert the blocks.
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To derive the complexity of the algorithm, we take another look at figure 6.11, and see that complexity
argument, the total space a full recursive nested dissection factorization needs is the sum of

• one dense matrix on a separator of size n, plus
• two dense matrices on separators of size n/2,
• taking together 3/2n2 space and 5/12n3 time;
• the two terms above then get repeated on four subdomains of size (n/2)× (n/2).

With the observation that n =
√
N , this sums to

space = 3/2n2 + 4 · 3/2(n/2)2 + · · ·
= N(3/2 + 3/2 + · · · ) log n terms
= O(N logN)

time = 5/12n3/3 + 4 · 5/12(n/2)3/3 + · · ·
= 5/12N3/2(1 + 1/4 + 1/16 + · · · )
= O(N3/2)

Apparently, we now have a factorization that is parallel to a large extent, and that is done in O(N logN)
space, rather than O(N3/2) (see section 5.4.3.3). The factorization time has also gone down from O(N2)
to O(N3/2).

Unfortunately, this space savings only happens in two dimensions: in three dimensions we need

• one separator of size n× n, taking (n× n)2 = N4/3 space and 1/3 · (n× n)3 = 1/3 ·N2 time,
• two separators of size n× n/2, taking N3/2/2 space and 1/3 ·N2/4 time,
• four separators of size n/2× n/2, taking N3/2/4 space and 1/3 ·N2/16 time,
• adding up to 7/4N3/2 space and 21/16N2/3 time;
• on the next level there are 8 subdomains that contribute these terms with n→ n/2 and therefore
N → N/8.

This makes the total space

7

4
N3/2(1 + (1/8)4/3 + · · · ) = O(N3/2)

and the total time

21

16
N2(1 + 1/16 + · · · )/3 = O(N2).

We no longer have the tremendous savings of the 2D case. A much more complicated analysis shows that the
order improvement holds for general problems in 2D, and that 3D in general has a higher complexity [91].

6.7.1.3 Parallelism

The nested dissection method clearly introduces a lot of parallelism, and we can characterize it as task
parallelism (section 2.4.3): associated with each separator is a task of factoring its matrix, and later one
of solving a linear system on its variables. However, the tasks are not independent: in figure 6.11 the
factorization on domain 7 has to wait for 5 and 6, and they have to wait for 1,2,3,4. Thus, we have tasks
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with dependencies in the form of a tree: each separator matrix can be factored only when its children have
been factored.

Mapping these tasks to processors is not trivial. First of all, if we are dealing with shared memory we can
use a simple task queue:

Queue← {}
for all bottom level subdomains d do

add d to the Queue

while Queue is not empty do
if a processor is idle then

assign a queued task to it

if a task is finished AND its sibling is finished then
add its parent to the queue

The main problem here is that at some point we will have more processors than tasks, thus causing load
unbalance. This problem is made more severe by the fact that the last tasks are also the most substantial,
since the separators double in size from level to level. (Recall that the work of factoring a matrix goes up
with the third power of the size!) Thus, for the larger separators we have to switch from task parallelism to
medium-grained parallelism, where processors collaborate on factoring a block.

With distributed memory, we can now solve the parallelism problem with a simple task queue, since it
would involve moving large amounts of data. (But recall that work is a higher power of the matrix size,
which this time works in our favour, making communication relatively cheap.) The solution is then to use
some form of domain decomposition. In figure 6.11 we could have four processors, associated with block
1,2,3,4. Processors 1 and 2 would then negotiate which one factors block 5 (and similarly processors 3
and 4 and block 6), or they could both do it redundantly.

6.7.1.4 Preconditioning

As with all factorizations, it is possible to turn the nested dissection method into a preconditioner by making
the factorization incomplete. (For the basic idea of incomplete factorizations, see section 5.5.5.1). However,
here the factorization is formulated completely in terms of block matrices , and the division by the pivot
element becomes an inversion or system solution with the pivot block matrix. We will not go into this
further; for details see the literature [3, 38, 100].

6.7.2 Variable reordering and colouring: independent sets

Another permutation of the problem variables is based on graph colouring (section A.5.3). The direct goal
here is to maximize available parallelism.
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Figure 6.13: Red-black ordering of a the points on a line

Let us take a simple example, where A is a tridiagonal matrix. The equation Ax = b looks like
a11 a12 ∅
a21 a22 a23

a32 a33 a34

∅ . . . . . . . . .



x1

x2

x3
...

 =


y1

y2

y3
...


We observe that xi directly depends on xi−1 and xi+1, but not xi−2 or xi+1. Thus, let us see what happens
if we permute the indices to group every other component together.

Pictorially, we take the points 1, . . . , n and colour them red and black (figure 6.13), then we permute them
to first take all red points, and subsequently all black ones. The correspondingly permuted matrix looks as
follows: 

a11 a12

a33 a32 a34

a55
. . . . . .

. . .
a21 a23 a22

a43 a45 a44

. . . . . . . . .





x1

x3

x5
...
x2

x4
...


=



y1

y3

y5
...
y2

y4
...


With this permuted A, the Gauss-Seidel matrix DA + LA looks like

a11 ∅
a33

a55

. . .
a21 a23 a22

a43 a45 a44

. . . . . . . . .


What does this buy us? Well, let’s spell out the solution of a system Lx = y.

for i = 1, 3, 5, . . . do
solve xi ← yi/aii

for i = 2, 4, 6, . . . do
compute t = aii−1xi−1 + aii+1xi+1

solve xi ← (yi − t)/aii
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Apparently the algorithm has three stages that are each parallel over half the domain points. This is illus-
trated in figure 6.14. Theoretically we could accomodate a number of processors that is half the number of

Figure 6.14: Red-black solution on a 1d domain

the domain points, but in practice each processor will have a subdomain. Now you can see in figure 6.15
how this causes a very modest amount of communication: each processor sends at most the data of two red
points to its neighbours.

Figure 6.15: Parallel red-black solution on a 1d domain

Red-black ordering can be applied to two-dimensional problems too. Let us apply a red-black ordering to
the points (i, j) where 1 ≤ i, j ≤ n. Here we first apply a successive numbering to the odd points on the
first line (1, 1), (3, 1), (5, 1), . . ., then the even points of the second line (2, 2), (4, 2), (6, 2), . . ., the odd
points on the third line, et cetera. Having thus numbered half the points in the domain, we continue with
the even points in the first line, the odd points in the second, et cetera. As you can see in figure 6.16, now
the red points are only connected to black points, and the other way around. In graph theoretical terms, you
have found a colouring (see appendix A.5 for the definition of this concept) of the matrix graph with two
colours.
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Figure 6.16: Red-black ordering of the variables of a two-dimensional domain

Exercise 6.19. Apply the red-black ordering to the 2D BVP (4.10). Sketch the resulting matrix
structure.

The red-black ordering is a simple example of graph colouring (sometimes called multi-colouring). In
simple cases, such as the unit square domain we considered in section 4.2.2.2 or its extension to 3D, the
colour number of the adjacency graph is easily determined.

Exercise 6.20. You saw that a red-black ordering of unknowns coupled with the regular five-
point star stencil give two subsets of variables that are not connected among them-
selves, that is, they form a two-colouring of the matrix graph. Can you find a colouring
if nodes are connected by the second stencil in figure 4.4?

There is a simple bound for the number of colours needed for the graph of a sparse matrix: the number of
colours is at most d+ 1 where d is the degree of the graph. To see that we can colour a graph with degree d
using d + 1 colours, consider a node with degree d. No matter how its neighbours are coloured, there is
always an unused colour among the d+ 1 available ones.

Exercise 6.21. Consider a sparse matrix, where the graph can be coloured with d colours. Per-
mute the matrix by first enumerating the unknowns of the first colour, then the second
colour, et cetera. What can you say about the sparsity pattern of the resulting permuted
matrix?

You can now do two things with the notion of graph colouring. If you are looking for a direct solution of
the linear system you can repeat the process of colouring and permuting on the matrix that remains after
you have eliminated one colour. In the case of a tridiagonal matrix you saw that this remaining matrix was
again tridiagonal, so it is clear how to continue the process. This is called recursive doubling . If the matrix
is not tridiagonal but block tridiagonal , this operation can be performed on blocks.

On the other hand, if you are performing an iterative system solution and you are looking for a parallel
preconitioner, you could use SOR or ILU on the permuted matrix.

Exercise 6.22. Show that the flop count of solving a system LUx = y remains the same (in the
highest order term) when you from an ILU factorization in the natural ordering to one
in the colour-permuted ordering.
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If there are N variables, and the adjacency graph of the matrix as d colours, approx-
imately evenly divided. What is the maximal amount of parallelism of solving the
permuted system LUx = y? What is the number of sequential steps?

6.8 Operator splitting

In some contexts, it is necessary to perform implicit calculations through all directions of a two or three-
dimensional array. For example, in section 4.3 you saw how the implicit solution of the heat equation gave
rise to repeated systems

(αI +
d2

dx2
+

d2

dy2
)u(t+1) = u(t) (6.2)

Without proof, we state that the time-dependent problem can also be solved by

(βI +
d2

dx2
)(βI +

d2

dy2
)u(t+1) = u(t) (6.3)

for suitable β. This scheme will not compute the same values on each individual time step, but it will
converge to the same steady state. The scheme can also be used as a preconditioner in the BVP case.

This approach has considerable advantages, mostly in terms of operation counts: the original system has to
be solved either making a factorization of the matrix, which incurs fill-in, or by solving it iteratively.

Exercise 6.23. Analyze the relative merits of these approaches, giving rough operation counts.
Consider both the case where α has dependence on t and where it does not. Also
discuss the expected speed of various operations.

A further advantage appears when we consider the parallel solution of (6.3). Note that we have a two-
dimensional set of variables uij , but the operator I+d2u/dx2 only connects uij , uij−1, uij+1. That is, each
line corresponding to an i value can be processed independently. Thus, both operators can be solved fully
parallel using a one-dimensional partition on the domain. The solution of a the system in (6.2), on the other
hand, has limited parallelism.

Unfortunately, there is a serious complication: the operator in x direction needs a partitioning of the do-
main in on direction, and the operator in y in the other. The solution usually taken is to transpose the uij
value matrix in between the two solves, so that the same processor decomposition can handle both. This
transposition can take a substantial amount of the processing time of each time step.

Exercise 6.24. Discuss the merits of and problems with a two-dimensional decomposition of
the domain, using a grid of P = p×p processors. Can you suggest a way to ameliorate
the problems?

One way to speed up these calculations, is to replace the implicit solve, by an explicit operation; see sec-
tion 6.9.3.
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6.9 Parallelism and implicit operations

In the discussion of IBVPs (section 4.1.2.2) you saw that implicit operations can have great advantages
from the point of numerical stability. However, you also saw that they make the difference between methods
based on a simple operation such as the matrix-vector product, and ones based on the more complicated
linear system solution. There are further problems with implicit methods when you start computing in
parallel.
Exercise 6.25. Let A be the matrix

A =


a11 ∅
a21 a22

. . . . . .
∅ an,n−1 ann

 . (6.4)

Show that the matrix vector product y ← Ax and the system solution x ← A−1y,
obtained by solving the triangular system Ax = y, not by inverting A, have the same
operation count.
Now consider parallelizing the product y ← Ax. Suppose we have n processors, and
each processor i stores xi and the i-th row of A. Show that the product Ax can be
computed without idle time on any processor but the first.
Can the same be done for the solution of the triangular system Ax = y? Show that the
straightforward implementation has every processor idle for an (n − 1)/n fraction of
the computation.

We will now see a number of ways of dealing with this inherently sequential component.

6.9.1 Wavefronts

Above, you saw that solving a lower triangular system of size N can have sequential time complexity of N
steps. In practice, things are often not quite that bad. Implicit algorithms such as solving a triangular system
are inherently sequential, but the number of steps can be less than is apparent at first.
Exercise 6.26. Take another look at the matrix from a two-dimensional BVP on the unit square,

discretized with central differences. Derive the matrix structure if we order the un-
knowns by diagonals. What can you say about the sizes of the blocks and the structure
of the blocks themselves?

Let us take another look at figure 4.1 that describes the difference stencil of a two-dimensional BVP. The
corresponding picture for the lower triangular factor is in figure 6.17. This describes the sequentiality of
the lower triangular solve process x← L−1y:

xk = yk − `k,k−1xk−1 − `k,k−nxk−n
In other words, the value at point k can be found if its neigbours to the left (that is, variable k − 1) and
below (variable k − n) are known.

Turning this around, we see that, if we know x1, we can not only find x2, but also xn+1. In the next step
we can determine x3, xn+2, and x2n+1. Continuing this way, we can solve x by wavefronts: the values of
x on each wavefront are independent, so they can be solved in parallel in the same sequential step.
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Figure 6.17: The difference stencil of the L factor of the matrix of a two-dimensional BVP

Exercise 6.27. Finish this argument. What is the maximum number of processors we can em-
ploy, and what is the number of sequential steps? What is the resulting efficiency?

6.9.2 Recursive doubling

One strategy for dealing with recurrences is recursive doubling, which you already saw in exercise 1.4.
Here we will discuss it in a more systematic manner. First, take the matrix from (6.4) and scale it to be of
the form 

1 ∅
b21 1

. . . . . .
∅ bn,n−1 1


which we write as A = I +B.
Exercise 6.28. How does solving the system (I +B)x = y help in solving Ax = y? What are

the operation counts of solving the system in the two different ways?
Now we do something that looks like Gaussian elimination, except that we do not start with the first row,
but the second. (What would happen if you did Gaussian elimination or LU decomposition on the matrix
I +B?) We use the second row to eliminate b32:

1 ∅
1
−b32 1

. . .
∅ 1

×


1 ∅
b21 1

b32 1
. . . . . .

∅ bn,n−1 1

 =


1 ∅
b21 1

−b32b21 0 1
∅ bn,n−1 1


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which we write as L(2)A = A(2). We also compute L(2)y = y(2) so that A(2)x = y(2) has the same
solution as Ax = y. Solving the transformed system gains us a little: after we compute x1, x2 and x3 can
be computed in parallel.

Now we repeat this elimination process by using the fourth row to eliminate b54, the sixth row to elimi-
nate b76, et cetera. The final result is, summarizing all L(i) matrices:

1 ∅
0 1
−b32 1

0 1
−b54 1

0 1
−b76 1

. . . . . .


×(I+B) =



1 ∅
b21 1

−b32b21 0 1
b43 1

−b54b43 0 1
b65 1

−b76b65 0 1
. . . . . . . . .


which we write as L(I +B) = C, and solving (I +B)x = y now becomes Cx = L−1y.

This final result needs close investigation.

• First of all, computing y′ = L−1y is simple. (Work out the details. How much parallelism is
available?)
• Solving Cx = y′ is still sequential, but it no longer takes n steps: from x1 we can get x3, from

that we get x5, et cetera. In other words, there is only a sequential relationship between the odd
numbered components of x.
• The even numbered components of x do not depend on each other, but only on the odd compo-

nents: x2 follows from x1, x4 from x3, et cetera. Once the odd components have been computed,
admittedly sequentially, this step is fully parallel.

We can describe the sequential solving of the odd components by itself:
1 ∅
c21 1

. . . . . .
∅ cn,n−1 1



x1

x3
...
xn

 =


y′1
y′3
...
y′n


where ci+1i = −b2n+1,2nb2n,2n−1. In other words, we have reduced a size n sequential problem to a
sequential problem of the size kind and a parallel problem, both of size n/2. Now we can repeat this
procedure recursively, reducing the original problem to a sequence of parallel operations, each half the size
of the former.

The process of computing all partial sums through recursive doubling is also referred to as parallel prefix .
In the abstract it can be applied to any associative operator.

6.9.3 Approximating implicit by explicit operations, series expansion

There are various reasons why it is sometimes allowed to replace an implicit operation, which, as you saw
above, can be problematic in practice, by a different one that is practically more advantageous.
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• Using an explicit method for the heat equation (section 4.3) instead of an implicit one is equally
legitimate, as long as we observe step size restrictions on the explicit method.
• Tinkering with the preconditioner (section 5.5.7) in an iterative method is allowed, since it will

only affect the speed of convergence, not the solution the method converges to. You already saw
one example of this general idea in the block Jacobi method; section 6.6.3. In the rest of this
section you will see how recurrences in the preconditioner, which are implicit operations, can be
replaced by explicit operations, giving various computational advantages.

Solving a linear system is a good example of an implicit operation, and since this comes down to solving two
triangular systems, let us look at ways of finding a computational alternative to solving a lower triangular
system. IfU is upper triangular and nonsingular, we letD be the diagonal ofU , and we writeU = D(I−B)
where B is an upper triangular matrix with a zero diagonal, also called a strictly upper triangular matrix;
we say that I −B is a unit upper triangular matrix.
Exercise 6.29. Let A = LU be an LU factorization where L has ones on the diagonal. Show

how solving a system Ax = b can be done, involving only the solution of unit upper
and lower triangular systems. Show that no divisions are needed during the system
solution.

Our operation of interest is now solving the system (I −B)x = y. We observe that

(I −B)−1 = I +B +B2 + · · · (6.5)

and Bn = 0 where n is the matrix size (check this!), so we can solve (I −B)x = y exactly by

x =

n−1∑
k=0

Bky.

Of course, we want to avoid computing the powers Bk explicitly, so we observe that

1∑
k=0

Bky = (I+B)y,

2∑
k=0

Bky = (I+B(I+B))y,

3∑
k=0

Bky = (I+B(I+B((I+B))))y, (6.6)

et cetera. The resulting algorithm for evaluating
∑n−1

k=0 B
ky is called Horner’s rule , and you see that it

avoids computing matrix powers Bk.
Exercise 6.30. Suppose that I−B is bidiagonal. Show that the above calculation takes n(n+1)

operations. What is the operation count for computing (I − B)x = y by triangular
solution?

We have now turned an implicit operation into an explicit one, but unfortunately one with a high operation
count. In practical circumstances, however, we can truncate the sum of matrix powers.
Exercise 6.31. Let A be the tridiagonal matrix

A =


2 −1 ∅
−1 2 −1

. . . . . . . . .
−1

∅ −1 2


Victor Eijkhout 235



6. High performance linear algebra

of the one-dimensional BVP from section 4.2.2.1.
1. Recall the definition of diagonal dominance in section 5.3.4. Is this matrix diag-

onally dominant?
2. Show that the pivots in an LU factorization of this matrix (without pivoting) sat-

isfy a recurrence. Hint: show that after n elimination steps (n ≥ 0) the remaining
matrix looks like

A(n) =


dn −1 ∅
−1 2 −1

. . . . . . . . .
−1

∅ −1 2


and show the relation between dn+1 and dn.

3. Show that the sequence n 7→ dn is descending, and derive the limit value.
4. Write out the L and U factors in terms of the dn pivots.
5. Are the L and U factors diagonally dominant?

The above exercise implies (note that we did not actually prove it!) that for matrices from BVPs we find
thatBk ↓ 0, in element size and in norm. This means that we can approximate the solution of (I−B)x = y
by, for instance, x = (I + B)y or x = (I + B + B2)y. Doing this still has a higher operation count than
the direct triangular solution, but it is computationally advantageous in at least two ways:

• The explicit algorithm has a better pipeline behaviour.
• The implicit algorithm has problems in parallel, as you have seen; the explicit algorithm is easily

parallelized.

Of course, this approximation may have further implications for the stability of the overall numerical algo-
rithm.

Exercise 6.32. Describe the parallelism aspects of Horner’s rule; equation (6.6).

6.10 Block algorithms on multicore architectures

In section 5.3.7 you saw that certain linear algebra algorithms can be formulated in terms of submatri-
ces. This point of view can be beneficial for the efficient execution of linear algebra operations on shared
memory architectures such as current multicore processors.

As an example, let us consider the Cholesky factorization , which computes A = LLt for a symmetric
positive definite matrix A; see also section 5.3.2. Recursively, we can describe the algorithm as follows:

Chol

(
A11 At21

A21 A22

)
= LLt where L =

(
L11 0

Ã21 Chol(A22 − Ã21Ã
t
21)

)
and where Ã21 = A21L

−t
11 , A11 = L11L

t
11.
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In practice, the block implementation is applied to a partitioning finished

Akk Ak,>k
A>k,k A>k,>k


where k is the index of the current block row, and the factorization is finished for all indices < k. The
factorization is written as follows, using Blas names for the operations:

for k = 1,nblocks:
Chol: factor LkLtk ← Akk
Trsm: solve Ã>k,k ← A>k,kL

−t
k

Gemm: form the product Ã>k,kÃt>k,k
Syrk: symmmetric rank-k update A>k,>k ← A>k,>k − Ã>k,kÃt>k,k

The key to parallel performance is to partition the indices > k and write the algorithm in terms of these
blocks: 

finished

Akk Ak,k+1 Ak,k+2 · · ·
Ak+1,k Ak+1,k+1 Ak+1,k+2 · · ·
Ak+2,k Ak+2,k+2

...
...


The algorithm now gets an extra level of inner loops:

for k = 1,nblocks:
Chol: factor LkLtk ← Akk
for ` > k:

Trsm: solve Ã`,k ← A`,kL
−t
k

for `1, `2 > k:
Gemm: form the product Ã`1,kÃ

t
`2,k

for `1, `2 > k, `1 ≤ `2:
Syrk: symmmetric rank-k update A`1,`2 ← A`1,`2 − Ã`1,kÃt`2,k

Now it is clear that the algorithm has a good deal of parallelism: the iterations in every `-loop can be
processed independently. However, these loops get shorter in every iteration of the outer k-loop, so it is not
immediate how many processors we can accomodate. Moreover, it is not necessary to preserve the order of
operations of the algorithm above. For instance, after

L1L
t
1 = A11, A21 ← A21L

−t
1 , A22 ← A22 −A21A

t
21

the factorization L2L
t
2 = A22 can start, even if the rest of the k = 1 iteration is still unfinished. Instead of

looking at the algorithm, it is a better idea to construct a Directed Acyclic Graph (DAG) (see section A.5
for a brief tutorial on graphs) of the tasks of all inner iterations. Figure 6.18 shows the DAG of all tasks of
matrix of 4 × 4 blocks. This graph is constructed by simulating the Cholesky algorithm above, making a
vertex for every task, adding an edge (i, j) if task j uses the output of task i.
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Exercise 6.33. What is the diameter of this graph? Identify the tasks that lie on the path that
determines the diameter. What is the meaning of these tasks in the context of the
algorithm? This path is called the critical path . Its length determines the execution time
of the computation in parallel, even if an infinite number of processors is available.

Exercise 6.34. Assume there are T tasks that all take a unit time to execute, and assume we
have p processors. What is the theoretical minimum time to execute the algorithm?
Now amend this formula to take into account the critical path; call its length C.

In the execution of the tasks a DAG, several observations can be made.

• If more than one update is made to a block, it is probably advantageous to have these updates be
computed by the same process. This simplifies maintaining cache coherence .
• If data is used and later modified, the use must be finished before the modification can start.

This can even be true if the two actions are on different processors, since the memory subsystem
typically maintains cache coherence, so the modifications can affect the process that is reading
the data. This case can be remedied by having a copy of the data in main memory, giving a
reading process data that is reserved (see section 1.4.1).
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Figure 6.18: Graph of task dependencies in a 4× 4 Cholesky factorization
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Chapter 7

Molecular dynamics

Molecular dynamics is a technique for simulating the atom-by-atom behavior of molecules and deriving
macroscopic properties from these atomistic motions. It has application to biological molecules such as
proteins and nucleic acids, as well as natural and synthetic molecules in materials science and nanotech-
nology. Molecular dynamics falls in the category of particle methods, which includes N-body problems in
celestial mechanics and astrophysics, and many of the ideas presented here will carry over to these other
fields. In addition, there are special cases of molecular dynamics including ab initio molecular dynamics
where electrons are treated quantum mechanically and thus chemical reactions can be modeled. We will
not treat these special cases, but will instead concentrate on classical molecular dynamics.

The idea behind molecular dynamics is very simple: a set of particles interact according to Newton’s law of
motion, F = ma. Given the initial particle positions and velocities, the particle masses and other parame-
ters, as well as a model of the forces that act between particles, Newton’s law of motion can be integrated
numerically to give a trajectory for each of the particles for all future (and past) time. Commonly, the
particles reside in a computational box with periodic boundary conditions.

A molecular dynamics time step is thus composed of two parts:
1: compute forces on all particles
2: update positions (integration).

The computation of the forces is the expensive part. State-of-the-art molecular dynamics simulations are
performed on parallel computers because the force computation is costly and a vast number of time steps
are required for reasonable simulation lengths. In many cases, molecular dynamics is applied to simulations
on molecules with a very large number of atoms as well, e.g., up to a million for biological molecules and
long time scales, and up to billions for other molecules and shorter time scales.

Numerical integration techniques are also of interest in molecular dynamics. For simulations that take a
large number of time steps and for which the preservation of quantities such as energy is more important
than order of accuracy, the solvers that must be used are different than the traditional ODE solvers presented
in Chapter 4.

In the following, we will introduce force fields used for biomolecular simulations and discuss fast methods
for computing these forces. Then we devote sections to the parallelization of molecular dynamics for short-
range forces and the parallelization of the 3-D FFT used in fast computations of long-range forces. We
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end with a section introducing the class of integration techniques that are suitable for molecular dynamics
simulations. Our treatment of the subject of molecular dynamics in this chapter is meant to be introductory
and practical; for more information, the text [47] is recommended.

7.1 Force Computation

7.1.1 Force Fields

In classical molecular dynamics, the model of potential energy and of the forces that act between atoms
is called a force field. The force field is a tractable but approximate model of quantum mechanical effects
which are computationally too expensive to determine for large molecules. Different force fields are used
for different types of molecules, as well as for the same molecule by different researchers, and none are
ideal.

In biochemical systems, commonly-used force fields model the potential energy function as the sum of
bonded, van der Waals, and electrostatic (Coulomb) energy:

E = Ebonded + ECoul + EvdW.

The potential is a function of the positions of all the atoms in the simulation. The force on an atom is the
negative gradient of this potential at the position of the atom.

The bonded energy is due to covalent bonds in a molecule,

Ebonded =
∑

bonds

ki(ri − ri,0)2 +
∑

angles

ki(θi − θi,0)2 +
∑

torsions

Vn(1 + cos(nω − γ))

where the three terms are, respectively, sums over all covalent bonds, sums over all angles formed by two
bonds, and sums over all dihedral angles formed by three bonds. The fixed parameters ki, ri,0, etc. depend
on the types of atoms involved, and may differ for different force fields. Additional terms or terms with
different functional forms are also commonly used.

The remaining two terms for the potential energy E are collectively called the nonbonded terms. Compu-
tationally, they form the bulk of the force calculation. The electrostatic energy is due to atomic charges and
is modeled by the familiar

ECoul =
∑
i

∑
j>i

qiqj
4πε0rij

where the sum is over all pairs of atoms, qi and qj are the charges on atoms i and j, and rij is the dis-
tance between atoms i and j. Finally, the van der Waals energy approximates the remaining attractive and
repulsive effects, and is commonly modeled by the Lennard-Jones function

EvdW =
∑
i

∑
j>i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
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where εij and σij are force field parameters depending on atom types. At short distances, the repulsive (r12)
term is in effect, while at long distances, the dispersive (attractive, −r6) term is in effect.

Parallelization of the molecular dynamics force calculation depends on parallelization each of these individ-
ual types of force calculations. The bonded forces are local computations in the sense that for a given atom,
only nearby atom positions and data are needed. The van der Waals forces are also local and are termed
short-range because they are negligible for large atom separations. The electrostatic forces are long-range,
and various techniques have been developed to speed up these calculations. In the next two subsections, we
separately discuss the computation of short-range and long-range nonbonded forces.

7.1.2 Computing Short-Range Nonbonded Forces

The computation of short-range nonbonded forces for a particle can be truncated beyond a cutoff radius,
rc, of that particle. The naive approach to perform this computation for a particle i is by examining all
other particles and computing their distance to particle i. For n particles, the complexity of this approach is
O(n2), which is equivalent to computing forces between all pairs of particles. There are two data structures,
cell lists and Verlet neighbor lists, that can be used independently for speeding up this calculation, as well
as an approach that combines the two.

  

rc

(a) Cell list method.   

rvrc

(b) Verlet neighbor list method.

Figure 7.1: Computing nonbonded forces within a cutoff, rc. To compute forces involving the highlighted
particle, only particles in the shaded regions are considered.

Cell Lists

The idea of cell lists appears often in problems where a set of points that are nearby a given point is sought.
Referring to Fig. 7.1(a), where we illustrate the idea with a 2-D example, a grid is laid over the set of
particles. If the grid spacing is no less than rc, then to compute the forces on particle i, only the particles
in the cell containing i and the 8 adjacent cells need to be considered. One sweep through all the particles
is used to construct a list of particles for each cell. These cell lists are used to compute the forces for
all particles. At the next time step, since the particles have moved, the cell lists must be regenerated or
updated. The complexity of this approach is O(n) for computing the data structure and O(n × nc) for the
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force computation, where nc is the average number of particles in 9 cells (27 cells in 3-D). The storage
required for the cell list data structure is O(n).

Verlet Neighbor Lists

The cell list structure is somewhat inefficient because, for each particle i, nc particles are considered, but
this is much more than the number of particles within the cutoff rc. A Verlet neighbor list is a list of
particles within the cutoff for a particle i. Each particle has its own list, and thus the storage required is
O(n× nv) where nv is the average number of particles within the cutoff. Once these lists are constructed,
computing the forces is then very fast, requiring the minimal complexity O(n × nv). Constructing the list
is more expensive, requiring examining all the particles for each particle, i.e., no less than the original
complexity of O(n2). The advantage, however, is that the neighbor lists can be reused for many time steps
if an expanded cutoff, rv is used. Referring to a 2-D example in Fig. 7.1(b), the neighbor list can be reused
as long as no particle from outside the two circles moves inside the inner circle. If the maximum speed of
the particles can be estimated or bounded, then one can determine a number of time steps for which it is
safe to reuse the neighbor lists. (Alternatively, it may be possible to signal when any particle crosses to a
position within the cutoff.) Technically, the Verlet neighbor list is the list of particles within the expanded
cutoff, rv.

Using Cell and Neighbor Lists Together

The hybrid approach is simply to use Verlet neighbor lists but to use cell lists to construct the neighbor
lists. This reduces the high cost when neighbor lists need to be regenerated. This hybrid approach is very
effective and is often the approach used in state-of-the-art molecular dynamics software.

Both cell lists and Verlet neighbor lists can be modified to exploit the fact that the force fij on particle i
due to particle j is equal to −fji (Newton’s third law) and only needs to be computed once. For example,
for cell lists, only 4 of the 8 cells (in 2-D) need to be considered.

7.1.3 Computing Long-Range Forces

Electrostatic forces are challenging to compute because they are long-range: each particle feels a non-
negligible electrostatic force from all other particles in the simulation. An approximation that is sometimes
used is to truncate the force calculation for a particle after a certain cutoff radius (as is done for short-range
van der Waals forces). This generally produces unacceptable artifacts in the results, however.

There are several more accurate methods for speeding up the computation of electrostatic forces, avoiding
the O(n2) sum over all pairs of n particles. We briefly outline some of these methods here.

Hierarchical N-body Methods

Hierarchical N-body methods, including the Barnes-Hut method and the fast multipole method, are popular
for astrophysical particle simulations, but are typically too costly for the accuracy required in biomolecular
simulations. In the Barnes-Hut method, space is recursively divided into 8 equal cells (in 3-D) until each cell
contains zero or one particles. Forces between nearby particles are computed individually, as normal, but
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for distant particles, forces are computed between one particle and a set of distant particles within a cell. An
accuracy measure is used to determine if the force can be computed using a distant cell or must be computed
by individually considering its children cells. The Barnes-Hut method has complexity O(n log n). The fast
multipole method has complexity O(n); this method calculates the potential and does not calculate forces
directly.

Particle-Mesh Methods

In particle-mesh methods, we exploit the Poisson equation

∇2φ = −1

ε
ρ

which relates the potential φ to the charge density ρ, where 1/ε is a constant of proportionality. To utilize
this equation, we discretize space using a mesh, assign charges to the mesh points, solve Poisson’s equation
on the mesh to arrive at the potential on the mesh. The force is the negative gradient of the potential
(for conservative forces such as electrostatic forces). A number of techniques have been developed for
distributing point charges in space to a set of mesh points and also for numerically interpolating the force
on the point charges due to the potentials at the mesh points. Many fast methods are available for solving the
Poisson equation, including multigrid methods and fast Fourier transforms. With respect to terminology,
particle-mesh methods are in contrast to the naive particle-particle method where forces are computed
between all pairs of particles.

It turns out that particle-mesh methods are not very accurate, and a more accurate alternative is to split each
force into a short-range, rapidly-varying part and a long-range, slowly-varying part:

fij = fsrij + f lrij .

One way to accomplish this easily is to weigh f by a function h(r), which emphasizes the short-range
part (small r) and by 1 − h(r) which emphasizes the long-range part (large r). The short-range part is
computed by computing the interaction of all pairs of particles within a cutoff (a particle-particle method)
and the long-range part is computed using the particle-mesh method. The resulting method, called particle-
particle-particle-mesh (PPPM, or P3M) is due to Hockney and Eastwood, in a series of papers beginning in
1973.

Ewald Method

The Ewald method is the most popular of the methods described so far for electrostatic forces in biomolecu-
lar simulations and was developed for the case of periodic boundary conditions. The structure of the method
is similar to PPPM in that the force is split between short-range and long-range parts. Again, the short-range
part is computed using particle-particle methods, and the long-range part is computed using Fourier trans-
forms. Variants of the Ewald method are very similar to PPPM in that the long-range part uses a mesh,
and fast Fourier transforms are used to solve the Poisson equation on the mesh. For additional details, see,
for example [47]. In Section 7.3, we describe the parallelization of the 3-D FFT to solve the 3-D Poisson
equation.
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7.2 Parallel Decompositions

We now discuss the parallel computation of forces. Plimpton [111] created a very useful categorization of
molecular dynamics parallelization methods, identifying atom, force, and spatial decomposition methods.
Here, we closely follow his description of these methods. We also add a fourth category which has come
to be recognized as differing from the earlier categories, called neutral territory methods, a name coined
by Shaw [119]. Neutral territory methods are currently used by many state-of-the-art molecular dynamics
codes. Spatial decompositions and neutral territory methods are particularly advantageous for parallelizing
cutoff-based calculations.

7.2.1 Atom Decompositions

In an atom decomposition, each particle is assigned to one processor, and that processor is responsible for
computing the particle’s forces and updating its position for the entire simulation. For the computation to
be roughly balanced, each processor is assigned approximately the same number of particles (a random
distribution works well). An important point of atom decompositions is that each processor generally needs
to communicate with all other processors to share updated particle positions.

(a) Force matrix. (b) Force matrix, redundancies removed.

Figure 7.2: Atom decomposition, showing a force matrix of 16 particles distributed among 8 processors. A
dot represents a nonzero entry in the force matrix. On the left, the matrix is symmetric; on the right, only
one element of a pair of skew-symmetric elements is computed, to take advantage of Newton’s third law.

An atom decomposition is illustrated by the force matrix in Fig. 7.2(a). For n particles, the force matrix
is an n-by-n matrix; the rows and columns are numbered by particle indices. A nonzero entry fij in the
matrix denotes a nonzero force on particle i due to particle j which must be computed. This force may be
a nonbonded and/or a bonded force. When cutoffs are used, the matrix is sparse, as in this example. The
matrix is dense if forces are computed between all pairs of particles. The matrix is skew-symmetric because
of Newton’s third law, fij = −fji. The lines in Fig. 7.2(a) show how the particles are partitioned. In the
figure, 16 particles are partitioned among 8 processors.
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Algorithm 1 shows one time step from the point of view of one processor. At the beginning of the time step,
each processor holds the positions of particles assigned to it.

Algorithm 1 Atom decomposition time step
1: send/receive particle positions to/from all other processors
2: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
3: compute forces for particles assigned to this processor
4: update positions (integration) for particles assigned to this processor

An optimization is to halve the amount of computation, which is possible because the force matrix is skew-
symmetric. To do this, we choose exactly one of fij or fji for all skew-symmetric pairs such that each
processor is responsible for computing approximately the same number of forces. Choosing the upper or
lower triangular part of the force matrix is a bad choice because the computational load is unbalanced. A
better choice is to compute fij if i+ j is even in the upper triangle, or if i+ j is odd in the lower triangle,
as shown in Fig. 7.2(b). There are many other options.

When taking advantage of skew-symmetry in the force matrix, all the forces on a particle owned by a
processor are no longer computed by that processor. For example, in Fig. 7.2(b), the forces on particle
1 are no longer computed only by the first processor. To complete the force calculation, processors must
communicate to send forces that are needed by other processors and receive forces that are computed by
other processors. The above algorithm must now be modified by adding a communication step (step 4) as
shown in Algorithm 2.

Algorithm 2 Atom decomposition time step, without redundant calculations
1: send/receive particle positions to/from all other processors
2: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
3: compute partial forces for particles assigned to this processor
4: send particle forces needed by other processors and receive particle forces needed by this processor
5: update positions (integration) for particles assigned to this processor

This algorithm is advantageous if the extra communication is outweighed by the savings in computation.
Note that the amount of communication doubles in general.

7.2.2 Force Decompositions

In a force decomposition, the forces are distributed among the processors for computation. A straightfor-
ward way to do this is to partition the force matrix into blocks and to assign each block to a processor.
Fig. 7.3(a) illustrates this for the case of 16 particles and 16 processors. Particles also need to be assigned
to processors (as in atom decompositions) for the purpose of having processors assigned to update particle
positions. In the example of the Figure, processor i is assigned to update the positions of particle i; in prac-
tical problems, a processor would be assigned to update the positions of many particles. Note that, again,
we first consider the case of a skew-symmetric force matrix.
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(a) Force matrix. (b) Force matrix, redundancies removed.

Figure 7.3: Force decomposition, showing a force matrix of 16 particles and forces partitioned among 16
processors.

We now examine the communication required in a time step for a force decomposition. Consider processor
3, which computes partial forces for particles 0, 1, 2, 3, and needs positions from particles 0, 1, 2, 3, and also
12, 13, 14, 15. Thus processor 3 needs to perform communication with processors 0, 1, 2, 3, and processors
12, 13, 14, 15. After forces have been computed by all processors, processor 3 needs to collect forces on
particle 3 computed by other processors. Thus processor 2 needs to perform communication again with
processors 0, 1, 2, 3.

Algorithm 3 shows what is performed in one time step, from the point-of-view of one processor. At the
beginning of the time step, each processor holds the positions of all the particles assigned to it.

Algorithm 3 Force decomposition time step
1: send positions of my assigned particles which are needed by other processors; receive row particle

positions needed by my processor (this communication is between processors in the same processor
row, e.g., processor 3 communicates with processors 0, 1, 2, 3)

2: receive column particle positions needed by my processor (this communication is generally with pro-
cessors in another processor row, e.g., processor 3 communicates with processors 12, 13, 14, 15)

3: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
4: compute forces for my assigned particles
5: send forces needed by other processors; receive forces needed for my assigned particles (this communi-

cation is between processors in the same processor row, e.g., processor 3 communicates with processors
0, 1, 2, 3)

6: update positions (integration) for my assigned particles

In general, if there are p processors (and p is square, for simplicity), then the the force matrix is partitioned
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into
√
p by

√
p blocks. The force decomposition just described requires a processor to communicate in

three steps, with
√
p processors in each step. This is much more efficient than atom decompositions which

require communications among all p processors.

We can also exploit Newton’s third law in force decompositions. Like for atom decompositions, we first
choose a modified force matrix where only one of fij and fji is computed. The forces on particle i are
computed by a row of processors and now also by a column of processors. Thus an extra step of communi-
cation is needed by each processor to collect forces from a column of processors for particles assigned to it.
Whereas there were three communication steps, there are now four communication steps when Newton’s
third law is exploited (the communication is not doubled in this case as in atom decompositions).

A modification to the force decomposition saves some communication. In Fig. 7.4, the columns are re-
ordered using a block-cyclic ordering. Consider again processor 3, which computes partial forces for parti-
cles 0, 1, 2, 3. It needs positions from particles 0, 1, 2, 3, as before, but now also with processors 3, 7, 11,
15. The latter are processors in the same processor column as processor 3. Thus all communications are
within the same processor row or processor column, which may be advantageous on mesh-based network
architectures. The modified method is shown as Algorithm 4.

(a) Force matrix. (b) Force matrix, redundancies removed.

Figure 7.4: Force decomposition, with permuted columns in the force matrix. Note that columns 3, 7, 11,
15 are now in the block column corresponding to processors 3, 7, 11, 15 (the same indices), etc.

7.2.3 Spatial Decompositions

In a spatial decomposition, space is decomposed into cells. Each cell is assigned to a processor which is
responsible for computing the forces on particles that lie inside the cell. Fig. 7.5(a) illustrates a spatial
decomposition into 64 cells for the case of a 2-D simulation. (This is a decomposition of space and is not
to be confused with a force matrix.) Typically, the number of cells is chosen to be equal to the number of
processors. Since particles move during the simulation, the assignment of particles to cells changes as well.
This is in contrast to atom and force decompositions.
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Algorithm 4 Force decomposition time step, with permuted columns of force matrix
1: send positions of my assigned particles which are needed by other processors; receive row particle

positions needed by my processor (this communication is between processors in the same processor
row, e.g., processor 3 communicates with processors 0, 1, 2, 3)

2: receive column particle positions needed by my processor (this communication is generally with pro-
cessors the same processor column, e.g., processor 3 communicates with processors 3, 7, 11, 15)

3: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
4: compute forces for my assigned particles
5: send forces needed by other processors; receive forces needed for my assigned particles (this communi-

cation is between processors in the same processor row, e.g., processor 3 communicates with processors
0, 1, 2, 3)

6: update positions (integration) for my assigned particles

Fig. 7.5(b) shows one cell (center square) and the region of space (shaded) that contains particles that are
potentially within the cutoff radius, rc, with particles in the given cell. The shaded region is often called
the import region, since the given cell must import positions of particles lying in this region to perform its
force calculation. Note that not all particles in the given cell must interact with all particles in the import
region, especially if the import region is large compared to the cutoff radius.

  (a) Decomposition into 64 cells.   

rc

(b) Import region for one cell.

Figure 7.5: Spatial decomposition, showing particles in a 2-D computational box, (a) partitioned into 64
cells, (b) import region for one cell.

Algorithm 5 shows what each processor performs in one time step. We assume that at the beginning of the
time step, each processor holds the positions of the particles in its cell.

To exploit Newton’s third law, the shape of the import region can be halved. Now each processor only
computes a partial force on particles in its cell, and needs to receive forces from other processors to compute
the total force on these particles. Thus an extra step of communication is involved. We leave it as an exercise
to the reader to work out the details of the modified import region and the pseudocode for this case.
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Algorithm 5 Spatial decomposition time step
1: send positions needed by other processors for particles in their import regions; receive positions for

particles in my import region
2: compute forces for my assigned particles
3: update positions (integration) for my assigned particles

In the implementation of a spatial decomposition method, each cell is associated with a list of particles in
its import region, similar to a Verlet neighbor list. Like a Verlet neighbor list, it is not necessary to update
this list at every time step, if the import region is expanded slightly. This allows the import region list to be
reused for several time steps, corresponding to the amount of time it takes a particle to traverse the width
of the expanded region. This is exactly analogous to Verlet neighbor lists.

In summary, the main advantage of spatial decomposition methods is that they only require communication
between processors corresponding to nearby particles. A disadvantage of spatial decomposition methods is
that, for very large numbers of processors, the import region is large compared to the number of particles
contained inside each cell.

7.2.4 Neutral Territory Methods

Our description of neutral territory methods follows closely that of Shaw [119]. A neutral territory method
can be viewed as combining aspects of spatial decompositions and force decompositions. To parallelize the
integration step, particles are assigned to processors according to a partitioning of space. To parallelize the
force computation, each processor computes the forces between two sets of particles, but these particles
may be unrelated to the particles that have been assigned to the processor for integration. As a result
of this additional flexibility, neutral territory methods may require much less communication than spatial
decomposition methods.

An example of a neutral territory method is shown in Fig. 7.6 for the case of a 2-D simulation. In the method
shown in the Figure, the given processor is assigned the computation of forces between particles lying in
the horizontal bar with particles lying in the vertical bar. These two regions thus form the import region
for this method. By comparing to Fig. 7.6(b), the import region for this neutral territory method is much
smaller than that for the corresponding spatial decomposition method. The advantage is greater when the
size of the cells corresponding to each processor is small compared to the cutoff radius.

After the forces are computed, the given processor sends the forces it has computed to the processors that
need these forces for integration. We thus have Algorithm 6.

Algorithm 6 Neutral territory method time step
1: send and receive particle positions corresponding to import regions
2: compute forces assigned to this processor
3: send and receive forces required for integration
4: update positions (integration) for particles assigned to this processor

Like other methods, the import region of the neutral territory method can be modified to take advantage of
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rc

Figure 7.6: Neutral territory method, showing particles in a 2-D computational box and the import region
(shaded) for one cell (center square). This Figure can be compared directly to the spatial decomposition
case of Fig. 7.5(b). See Shaw [119] for additional details.

Newton’s third law. We refer to Shaw [119] for additional details and for illustrations of neutral territory
methods in 3-D simulations.

7.3 Parallel Fast Fourier Transform

A common component of many methods for computing long-range forces is the 3-D FFT for solving
the Poisson equation on a 3-D mesh. The Fourier transform diagonalizes the Poisson operator (called the
Laplacian) and one forward and one inverse FFT transformation are required in the solution. Consider the
discrete Laplacian operator L (with periodic boundary conditions) and the solution of φ in −Lφ = ρ. Let
F denote the Fourier transform. The original problem is equivalent to

−(FLF−1)Fφ = Fρ

φ = −F−1(FLF−1)−1Fρ.

The matrix FLF−1 is diagonal. The forward Fourier transform F is applied to ρ, then the Fourier-space
components are scaled by the inverse of the diagonal matrix, and finally, the inverse Fourier transform F−1

is applied to obtain the solution φ.

For realistic protein sizes, a mesh spacing of approximately 1 Ångstrom is typically used, leading to a 3-D
mesh that is quite small by many standards: 64× 64× 64, or 128× 128× 128. Parallel computation would
often not be applied to a problem of this size, but parallel computation must be used because the data ρ is
already distributed among the parallel processors (assuming a spatial decomposition is used).

A 3-D FFT is computed by computing 1-D FFTs in sequence along each of the three dimensions. For the
64 × 64 × 64 mesh size, this is 4096 1-D FFTs of dimension 64. The parallel FFT calculation is typically
bound by communication. The best parallelization of the FFT depends on the size of the transforms and
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the architecture of the computer network. Below, we first describe some concepts for parallel 1-D FFTs
and then describe some concepts for parallel 3-D FFTs. For current software and research dedicated to the
parallelization and efficient computation (using SIMD operations) of large 1-D transforms, we refer to the
SPIRAL and FFTW packages. These packages use autotuning to generate FFT codes that are efficient for
the user’s computer architecture.

7.3.1 Parallel 1-D FFT

1-D FFT without Transpose

Fig. 7.7 shows the data dependencies (data flow diagram) between the inputs (left) and outputs (right) for
the 16-point radix-2 decimation-in-frequency FFT algorithm. (Not shown is a bit-reversal permutation that
may be necessary in the computation.) The Figure also shows a partitioning of the computation among
four processors. In this parallelization, the initial data is not moved among processors, but communication
occurs during the computation. In the example shown in the Figure, communication occurs in the first two
FFT stages; the final two stages do not involve communication. When communication does occur, every
processor communicates with exactly one other processor.

1-D FFT with Transpose

Use of transposes is common to parallelize FFT computations. Fig. 7.8(a) shows the same data flow diagram
as in Fig. 7.7, but horizontal lines have been removed and additional index labels have been added for clarity.
As before, the first two FFT stages are performed without communication. The data is then transposed
among the processors. With this transposed data layout, the last two FFT stages can be performed without
communication. The final data is not in the original order; an additional transpose may be needed, or the
data may be used in this transposed order. Fig. 7.8(b) shows how the indices are partitioned among four
processors before and after the transpose. From these two Figures, notice that the first two stages have data
dependencies that only involve indices in the same partition. The same is true for the second two stages for
the partitioning after the transpose. Observe also that the structure of the computations before and after the
transpose are identical.

7.3.2 Parallel 3-D FFT

3-D FFT with Block Decomposition

Fig. 7.9(a) shows a block decomposition of the FFT input data when a spatial decomposition is used for a
mesh of size 8 ×8 ×8 distributed across 64 processors arranged in a 4 ×4 ×4 topology. The parallel 1-D
FFT algorithms can be applied in each of the dimensions. For the example shown in the Figure, each 1-D
FFT computation involves 4 processors. Each processor performs multiple 1-D FFTs simultaneously (four
in this example). Within each processor, data is ordered contiguously if traversing one of the dimensions,
and thus data access is strided for computation in the other two dimensions. Strided data access can be slow,
and thus it may be worthwhile to reorder the data within each processor when computing the FFT for each
of the dimensions.
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Figure 7.7: Data flow diagram for 1-D FFT for 16 points. The shaded regions show a decomposition for 4
processors (one processor per region). In this parallelization, the first two FFT stages have no communica-
tion; the last two FFT stages do have communication.

3-D FFT with Slab Decomposition

The slab decomposition is shown in Fig. 7.9(b) for the case of 4 processors. Each processor holds one
or more planes of the input data. This decomposition is used if the input data is already distributed in
slabs, or if it can be easily redistributed this way. The two 1-D FFTs in the plane of the slabs require no
communication. The remaining 1-D FFTs require communication and could use one of the two approaches
for parallel 1-D FFTs described above. A disadvantage of the slab decomposition is that for large numbers
of processors, the number of processors may exceed the number of points in the 3-D FFT along any one
dimension. An alternative is the pencil decomposition below.

3-D FFT with Pencil Decomposition

The pencil decomposition is shown in Fig. 7.9(c) for the case of 16 processors. Each processor holds one
or more pencils of the input data. If the original input data is distributed in blocks as in Fig. 7.9(a), then
communication among a row of processors (in a 3-D processor mesh) can distribute the data into the pencil
decomposition. The 1-D FFTs can then be performed with no communication. To perform the 1-D FFT
in another dimension, the data needs to be redistributed into pencils in another dimension. In total, four
communication stages are needed for the entire 3-D FFT computation.
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(a) Data flow diagram (shown without horizontal lines for clarity) for
1-D FFT for 16 points.
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(b) Partitioning of the in-
dices before (left) and after
(right) the transpose.

Figure 7.8: 1-D FFT with transpose. The first two stages do not involve communication. The data is then
transposed among the processors. As a result, the second two stages also do not involve communication.

7.4 Integration for Molecular Dynamics

To numerically integrate the system of ordinary differential equations in molecular dynamics, special meth-
ods are required, different than the traditional ODE solvers that were studied in Chapter 4. These special
methods, called symplectic methods, are better than other methods at producing solutions that have con-
stant energy, for example, for systems that are called Hamiltonian (which include systems from molecu-
lar dynamics). When Hamiltonian systems are integrated with many time steps over a long time interval,
preservation of structure such as total energy is often more important than the order of accuracy of the
method. In this section, we motivate some ideas and give some details of the Störmer-Verlet method, which
is sufficient for simple molecular dynamics simulations.

Hamiltonian systems are a class of dynamical systems which conserve energy and which can be written in
a form called Hamilton’s equations. Consider, for symplicity, the simple harmonic oscillator

u′′ = −u
where u is the displacement of a single particle from an equilibrium point. This equation could model a
particle with unit mass on a spring with unit spring constant. The force on a particle at position u is −u.
This system does not look like a molecular dyanamics system but is useful for illustrating several ideas.

The above second order equation can be written as a system of first order equations

q′ = p

p′ = −q
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(c) Pencil Decomposition

Figure 7.9: Three data decompositions for 3-D FFTs.

where q = u and p = u′ which is common notation used in classical mechanics. The general solution is(
q
p

)
=

(
cos t sin t
− sin t cos t

)(
q
p

)
.

The kinetic energy of the simple harmonic oscillator is p2/2 and the potential energy is q2/2 (the negative
gradient of potential energy is the force, −q). Thus the total energy is proportional to q2 + p2.

Now consider the solution of the system of first order equations by three methods, explicit Euler, implicit
Euler, and a method called the Störmer-Verlet method. The initial condition is (q, p) = (1, 0). We use a
time step of h = 0.05 and take 500 steps. We plot q and p on the horizontal and vertical axes, respectively
(called a phase plot). The exact solution, as given above, is a unit circle centered at the origin.

Figure 7.10 shows the solutions. For explicit Euler, the solution spirals outward, meaning the displacement
and momentum of the solution increases over time. The opposite is true for the implicit Euler method. A
plot of the total energy would show the energy increasing and decreasing for the two cases, respectively.
The solutions are better when smaller time steps are taken or when higher order methods are used, but
these methods are not at all appropriate for integration of symplectic systems over long periods of time.
Figure 7.10(c) shows the solution using a symplectic method called the Störmer-Verlet method. The solution
shows that q2 + p2 is preserved much better than in the other two methods.

The Störmer-Verlet method is derived very easily. We derive it for the second order equation

u′′ = f(t, u)

by simply replacing the left-hand side with a finite difference approximation

uk+1 − 2uk + uk−1

h2
= f(tk, uk)

which can be rearranged to obtain the method

uk+1 = 2uk − uk−1 + h2f(tk, uk).

The formula can equivalently be derived from Taylor series. The method is similar to linear multistep
methods in that some other technique is needed to supply the initial step of the method. The method is also
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(a) Explicit Euler (b) Implicit Euler (c) Störmer-Verlet Method

Figure 7.10: Phase plot of the solution of the simple harmonic oscillator for three methods with initial value
(1,0), time step 0.05, and 500 steps. For explicit Euler, the solution spirals outward; for implicit Euler, the
solution spirals inward; the total energy is best preserved with the Störmer-Verlet method.

time-reversible, because the formula is the same if k+1 and k−1 are swapped. To explain why this method
is symplectic, unfortunately, is beyond the scope of this introduction.

The method as written above has a number of disadvantages, the most severe being that the addition of the
small h2 term is subject to catastrophic cancellation. Thus this formula should not be used in this form, and
a number of mathematically equivalent formulas (which can be derived from the formula above) have been
developed.

One alternative formula is the leap-frog method:

uk+1 = uk + hvk+1/2

vk+1/2 = vk−1/2 + hf(tk, uk)

where v is the first derivative (velocity) which is offset from the displacement u by a half step. This formula
does not suffer from the same roundoff problems and also makes available the velocities, although they
need to be re-centered with displacements in order to calculate total energy at a given step. The second of
this pair of equations is basically a finite difference formula.

A third form of the Störmer-Verlet method is the velocity Verlet variant:

uk+1 = uk + hvk +
h2

2
f(tk, uk)

vk+1 = vk +
h2

2
(f(tk, uk) + f(tk+1, uk+1))

where now the velocities are computed at the same points as the displacements. Each of these algorithms
can be implemented such that only two sets of quantities need to be stored (two previous positions, or a
position and a velocity). These variants of the Störmer-Verlet method are popular because of their simplicity,
requiring only one costly force evaluation per step. Higher-order methods have generally not been practical.
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The velocity Verlet scheme is also the basis of multiple time step algorithms for molecular dynamics. In
these algorithms, the slowly-varying (typically long-range) forces are evaluated less frequently and update
the positions less frequently than the quickly-varying (typically short-range) forces. Finally, many state-of-
the-art molecular dynamics integrate a Hamiltonian system that has been modified in order to control the
simulation temperature and pressure. Much more complicated symplectic methods have been developed for
these systems.
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Chapter 8

Combinatorics

Traditional scientific computing applications concern continuous data, often stemming from PDEs. In this
chapter we will concern two applications areas, sorting and graph computations, that are not traditionally
considered as scientific computing, but that are interesting from a point of high performance and large scale
computing.

8.1 Sorting

Sorting is not a common operation in scientific computing: one expects it to be more important in databases,
whether these be financial or biological (for instance in sequence alignment). However, it sometimes comes
up, for instance in Adaptive Mesh Refinement (AMR) and other applications where significant manipula-
tions of data structures occurs.

In this section we will briefly look at the QuickSort algorithm and how it can be done in parallel. For more
details, see [83] and the references therein.

8.1.1 Brief introduction to sorting

There are many sorting algorithms. One way to distinguish them is by their computational complexity, that
is, given an array of n elements, how many operations does it take to sort them, as a function of n. For
some sorting algorithms, the answer to this question is not simple to give. While some algorithms work
largely independent of the state of the input data, for others, the operation count does depend on it. One
could imagine that a sorting algorithm would make a pass over the data to check if it was already sorted. In
that case, the complexity is n operations for a sorted list, and something higher for an unsorted list.

The so-called bubble sort algorithm has a complexity independent of the data to be sorted. This algorithm
is given by:

for t from n− 1 down to 1 do
for e from 1 to t do

if elements e and e+ 1 are ordered the wrong way then
exchange them

Algorithm 2: The bubble sort algorithm
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It is easy to see that this algorithm has a complexity of O(n2): the inner loop does t comparisons and up to
t exchanges. Summing this from 1 to n− 1 gives approximately n2/2 comparisons and a at most the same
number of exchanges.

Theoretically one can show that a sorting algorithm has to have at least complexity O(n log n)1. There are
indeed several algorithms that are guaranteed to attain this complexity, but a very popular algorithm, called
quicksort has only an ‘expected’ complexity of O(n log n), and a worst case complexity of O(n2).

8.1.2 Quicksort

Quicksort is a recursive algorithm, that, unlike bubble sort, is not deterministic. It is a two step procedure,
based on a reordering of the sequence2:

Algorithm: Dutch National Flag ordering of an array

Input : An array of elements, and a ‘pivot’ value

Output: The input array with elements ordered as red-white-blue, where red elements are larger
than the pivot, white elements are equal to the pivot, and blue elements are less than the
pivot

We state without proof that this can be done in O(n) operations. With this, quicksort becomes:

Algorithm: Quicksort

Input : An array of elements

Output: The input array, sorted

while The array is longer than one element do
pick an arbitrary value as pivot

apply the Dutch National Flag reordering to this array

Quicksort( the blue elements )

Quicksort( the red elements )

The indeterminacy of this algorithm, and the variance in its complexity, stems from the pivot choice. In
the worst case, the pivot is always the (unique) smallest element of the array. There will then be no blue
elements, the only white element is the pivot, and the recursive call will be on the array of n − 1 red
elements. It is easy to see that the running time will then be O(n2). On the other hand, if the pivot is always
(close to) the median, that is, the element that is intermediate in size, then the recursive calls will have an

1. One can consider a sorting algorithm as a decision tree: a first comparison is made, depending on it two other comparisons
are made, et cetera. Thus, an actual sorting becomes a path through this decision tree. If every path has running time h, the tree
has 2h nodes. Since a sequence of n elements can be ordered in n! ways, the tree needs to have enough paths to accomodate all of
these; in other words, 2h ≥ n!. Using Stirling’s formula, this means that n ≥ O(n logn)
2. The name is explained by its origin with the Dutch computer scientist Edsger Dijkstra; see http://en.wikipedia.
org/wiki/Dutch_national_flag_problem.
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about equal running time, and we get a recursive formula for the running time:

Tn = 2Tn/2 +O(n)

which is (again without proof) O(n log n).

We will now consider parallel implementations of quicksort.

8.1.3 Quicksort in shared memory

A simple parallelization of the quicksort algorithm can be achieved by executing the two recursive calls in
parallel. This is easiest realized with a shared memory model, and threads (section 2.5.1) for the recursive
calls. However, this implementation is not efficient.

On an array of length n, and with perfect pivot choice, there will be n threads active in the final stage of
the algorithm. Optimally, we would want a parallel algorithm to run in O(log n) time, but here the time is
dominated by the initial reordering of the array by the first thread.

Exercise 8.1. Make this argument precise. What is the total running time, the speedup, and the
efficiency of parallelizing the quicksort algorithm this way?

Since shared memory is not the most interesting case, we will forego trying to make the thread implemen-
tation more efficient, and we will move on straight away to distributed memory parallelization.

8.1.4 Quicksort on a hypercube

As was apparent from the previous section, for an efficient parallelization of the quicksort algorithm, we
need to make the Dutch National Flag reordering parallel too. Let us then assume that the array has been
partitioned over the p processors of a hypercube of dimension d (meaning that p = 2d).

In the first step of the parallel algorithm, we choose a pivot, and broadcast it to all processors. All processors
will then apply the reordering independently on their local data.

In order to bring together the red and blue elements in this first level, every processor is now paired up with
one that has a binary address that is the same in every bit but the most significant one. In each pair, the blue
elements are sent to the processor that has a 1 value in that bit; the red elements go to the processor that has
a 0 value in that bit.

After this exchange (which is local, and therefore fully parallel), the processors with an address 1xxxxx
have all the red elements, and the processors with an address 0xxxxx have all the blue elements. The
previous steps can now be repeated on the subcubes.

This algorithm keeps all processors working in every step; however, it is susceptible to load imbalance if
the chosen pivots are far from the median. Moreover, this load imbalance is not lessened during the sort
process.
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8.1.5 Quicksort on a general parallel processor

Quicksort can also be done on any parallel machine that has a linear ordering of the processors. We assume
at first that every processor holds exactly one array element, and, because of the flag reordering, sorting
will always involve a consecutive set of processors.

Parallel quicksort of an array (or subarray in a recursive call) starts by constructing a binary tree on the
processors storing the array. A pivot value is chosen and broadcast through the tree. The tree structure is
then used to count on each processor how many elements in the left and right subtree are less than, equal
to, or more than the pivot value.

With this information, the root processor can compute where the red/white/blue regions are going to be
stored. This information is sent down the tree, and every subtree computes the target locations for the
elements in its subtree.

If we ignore network contention, the reordering can now be done in unit time, since each processor sends
at most one element. This means that each stage only takes time in summing the number of blue and red
elements in the subtrees, which is O(log n) on the top level, O(log n/2) on the next, et cetera. This makes
for almost perfect speedup.

8.2 Graph problems

Various problems in scientific computing can be formulated as graph problems (for an introduction to
graph theory see Appendix A.5); for instance, you have encountered the problem of load balancing (sec-
tion 2.10.1.2) and finding independent sets (section 6.7.2). Many traditional graph algorithms are not im-
mediately, or at least not efficiently, applicable, since the graphs are often distributed, and traditional graph
theory assume global knowledge of the whole graph.

Recently, new types of graph computations in have arisen in scientific computing. Here the graph are no
longer tools, but objects of study themselves. Examples are the World Wide Web or the social graph of
Facebook , or the graph of all possible protein interactions in a living organism.

For this reason, combinatorial computational science is becoming a discipline in its own right. We will look
at some specific graph problems in this chapter.

8.2.1 ‘Real world’ graphs

In discussions such as in section 4.2.2.2 you have seen how the discretization of PDEs leads to computa-
tional problems that has a graph aspect to them. Such graphs have properties that make them amenable to
certain kinds of problems. For instance, using FDMs or FEMs to model two or three-dimensional objects
leads graphs where each node is connected to just a few neighbours. This makes it easy to find separators ,
which in turn allows such solution methods as nested dissection; see section 6.7.1.

There are however applications with computationally intensive graph problems that do not look like FEM
graphs. We will briefly look at the example of the world-wide web, and algorithms such Google’s PageRank
which try to find authoratative nodes.

For now, we will call such graphs random graphs , although this term has a technical meaning too [40].
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8.2.1.1 Properties of random graphs

The graphs we have seen in most of this course have properties that stem from the fact that they model
objects in our three-dimensional world. Thus, the typical distance between two nodes is typically O(N1/3)
where N is the number of nodes. Random graphs do not behave like this: they often have a small world
property where the typical distance is O(logN). A famous example is the graph of film actors and their
connection by having appeared in the same movie: according to ‘Six degrees of separation’, no two actors
have a distance more than six in this graph. In graph terms this means that the diameter of the graph is six.

Small-world graphs have other properties, such as the existence of cliques (although these feature too in
higher order FEM problems) and hubs: nodes of a high degree. This leads to implications such as the
following: deleting a random node in such a graph does not have a large effect on shortest paths.
Exercise 8.2. Considering the graph of airports and the routes that exist between them. If there

are only hubs and non-hubs, argue that deleting a non-hub has no effect on shortest
paths between other airports. On the other hand, consider the nodes ordered in a two-
dimensional grid, and delete an arbitrary node. How many shortest paths are affected?

8.2.2 Hypertext algorithms

There are several algorithms based on linear algebra for measuring the importance of web sites [88]. We
will briefly define a few and discuss computational implications.

8.2.2.1 HITS

In the HITS (Hypertext-Induced Text Search) algorithm, sites have a hub score that measures how many
other sites it points to, and an authority score that measures how many sites point to it. To calculate such
scores we define an incidence matrix L, where

Lij =

{
1 document i points to document j
0 otherwise

The authority scores xi are defined as the sum of the hub scores yj of everything that points to i, and the
other way around. Thus

x = Lty
y = Lx

or x = LLtx and y = LtLy, showing that this is an eigenvalue problem. The eigenvector we need has only
nonnegative entries; this is known as the Perron vector for a nonnegative matrix, see appendix A.1.4. The
Perron vector is computed by a power method ; see next section.

A practical search strategy is:
• Find all documents that contain the search terms;
• Build the subgraph of these documents, and possible one or two levels of documents related to

them;
• Compute authority and hub scores on these documents, and present them to the user as an ordered

list.

262 Introduction to High Performance Scientific Computing



8.2. Graph problems

8.2.2.2 Pagerank

The PageRank [107] basic idea is similar to HITS. Again we define a connectivity matrix

Mij =

{
1 if page j links to i
0 otherwise

With e = (1, . . . , 1), the vector dt = etM counts how many links there are on a page: di is the number of
links on page i. We construct a diagonal matrix D = diag(d1, . . .) we normalize M to T = MD−1.

Now the columns sums (that is, the sum of the elements in any column) of T are all 1, which we can express
as etTe. Such a matrix is called stochastic matrix. It has the following interpretation:

If p is a vector of probabilities, that is, pi is the probability that the user is looking at
page i, then Tp is the vector of probabilities after the user has clicked on a random
link.

The PageRank algorithm introduces another element: sometimes the user will get bored from clicking, and
will go to an arbitrary page (there are also provisions for pages with no outgoing links). If we call s the
chance that the user will click on a link, then the chance of going to an arbitrary page is 1− s. Together, we
now have the process

p′ ← sTp+ (1− s)e,

that is, if p is a vector of probabilities then p′ is a vector of probabilities that describes where the user is
after making one page transition, either by clicking on a link or by ‘teleporting’.

The PageRank vector is the stationary point of this process; you can think of it as the probability distribution
after the user has made infinitely many transitions. The PageRank vector satisfies

p = sTp+ (1− s)e⇔ (I − sT )p = (1− s)e.

Thus, we now have to wonder whether I − sT has an inverse. If the inverse exists it satisfies

(I − sT )−1 = I + sT + s2T 2 + · · ·

It is not hard to see that the inverse exists: with the Gershgorin theorem (appendix A.1.5) you can see that
the eigenvalues of T satisfy |λ| ≤ 1. Now use that s < 1, so the series of partial sums converges.

The above formula for the inverse also indicates a way to compute the PageRank vector p by using a series
of matrix-vector multiplications.

Exercise 8.3. Write pseudo-code for computing the PageRank vector, given the matrix T . Show
that you never need to compute the powers of T explicitly. (This is an instance of
Horner’s rule .

In the case that s = 1, meaning that we rule out teleportation, the PageRank vector satisfies p = Tp, which
is again the problem of finding the Perron vector; see appendix A.1.4.

We find the Perron vector by a power iteration (section A.1.3)

p(i+1) = Tp(i).
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This is a sparse matrix vector product, but unlike in the BVP case the sparsity is unlikely to have a structure
such as bandedness. Computationally, one probably has to use the same parallelism arguments as for a
dense matrix: the matrix has to be distributed two-dimensionally [104].
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Chapter 9

Monte Carlo Methods

Monte Carlo simulation is a broad term for methods that use random numbers and statistical sampling to
solve problems, rather than exact modeling. From the nature of this sampling, the result will have some
uncertainty, but the statistical ‘law of large numbers’ will ensure that the uncertainty goes down as the
number of samples grows. The statistical law that underlies this is as follows: ifN independent observations
are made of a quantity with standard deviation σ, then the standard deviation of the mean is σ/

√
N . This

means that more observations will lead to more accuracy; what makes Monte Carlo methods interesting is
that this gain in accuracy is not related to dimensionality of the original problem.

Monte Carlo techniques are of course natural candidatates for simulating phenomena that are statistical in
nature, such as radioactive decay, or Brownian motion. Other problems where Monte Carlo simulation is
attractive are outside the realm of scientific computing. For instance, the Black-Scholes model for stock
option pricing [9] uses Monte Carlo simulation.

Some problems that you have seen before, such as solving a linear system of equations, can be tackled with
Monte Carlo techniques. However, this is not a typical application. Below we will discuss two applications
where exact methods would take far too much time to compute and where statistical sampling can quickly
give a reasonably accurate answer.

An important tool for statistical sampling is random number generator. We start by briefly discussing the
problems in generating random numbers, especially in parallel.

9.1 Parallel Random Number Generation
Random numbers are often used in simulations as some examples below will show. True random numbers
are very hard to obtain: they could be generated by measuring quantum processes such as radioactive
particles, but this is very cumbersome. Instead, we use pseudo-random numbers . This means that we use a
deterministic mathematical process, that is sufficiently irregular that for practical purposes no order can be
found in it.

An easy way to generate random numbers (we leave off the ‘pseudo’ qualification) is to use linear congru-
ential generators (for all you ever need to know about random numbers, see Knuth [80]), recurrences of the
form

xk+1 = (axk + b) mod m.

265



9. Monte Carlo Methods

This sequence is periodic, since it consists of nonnegative integers at most m − 1, and with period m
under certain conditions. A typical period is 231. The starting point x0 of the series is known as the ‘seed’.
Software for random numbers often lets you specify the seed. To get reproducible results you would run
your program with the same seed multiple times; to get random behaviour over multiple runs of your
program you could for instance derive the seed from clock and calendar functions.

Random number generation is problematic in parallel. To see this, consider a parallel process that uses
a random number generator on each subprocess, and consider a single processor emulating the parallel
process. Now this single process in effect has a random number generator that consists of interleaving
the parallel generator results. This means that, if we use the same generator in all parallel processes, the
effective generator over the whole process will produce stretches of identical values.

We can solve this problem by having a central task that supplies the random values for all processes, but
this introduces a bottleneck. A better solution is to set up independent generators with parameter choices
that guarantee statistical randomness. This is not simple. For instance, if two sequences x(1)

i , x
(2)
i have the

same values of a, b,m, and their starting points are close together, the sequences will be strongly correlated.
Less trivial examples of correlation exist.

Various techniques for random number generation exist, such as using two sequences, where one generates
the starting points for the other sequence, which is the one actually used in the simulation. Software for
parallel random number generator can be found at http://sprng.cs.fsu.edu/ [95].

9.2 Examples

9.2.1 Integration by statistics

Let’s start with something simpler than integration: measuring an area. Suppose you have a pond of an
irregular shape in your backyard, and that the yard itself is rectangular with known dimensions. If you
would now throw pebbles into your yard so that they are equally likely to land at any given spot, then the
ratio of pebbles falling in the pond to those falling outside equals the ratio of the areas.

Less fanciful and more mathematically, let Ω ∈ [0, 1]2, and let a function f(x̄) describing the boundary
of Ω, that is{

f(x̄) < 0 x 6∈ Ω

f(x̄) > 0 x ∈ Ω

Now take random points x̄0, x̄1, x̄2 ∈ [0, 1]2, then we can estimate the area of Ω by counting how often
f(x̄i) is positive or negative.

We can extend this idea to integration. The average value of a function on an interval (a, b) is defined as

〈f〉 =
1

b− a

∫ b

a
f(x)dx
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On the other hand, we can also estimate the average as

〈f〉 ≈ 1

N

n∑
i=1

f(xi)

if the points xi are reasonably distributed and the function f is not too wild. This leads us to∫ b

a
f(x)dx ≈ (b− a)

1

N

n∑
i=1

f(xi)

Statistical theory, that we will not go into, tells us that the uncertainty σI in the integral is related to the
standard deviation σf by

σI ∼
1√
N
σf

for normal distributions.

So far, Monte Carlo integration does not look much different from classical integration. The difference
appears when we go to higher dimensions. In that case, for classical integration we would need N points in
each dimension, leading to Nd points in d dimensions. In the Monte Carlo method, on the other hand, the
points are taken at random from the d-dimensional space, and a much lower number of points suffices.

Computationally, Monte Carlo methods are attractive since all function evaluations can be performed in
parallel.

9.2.2 Monte Carlo simulation of the Ising model

The Ising model (for an introduction, see [21]) was originally proposed to model ferromagnetism. Mag-
netism is the result of atoms aligning their ‘spin’ direction: let’s say spin can only be ‘up’ or ‘down’, then
a material has magnetism if more atoms have spin up than down, or the other way around. The atoms are
said to be in a structure called a ‘latice’.

Now image heating up a material, which loosens up the atoms. If an external field is applied to the material,
the atoms will start aligning with the field, and if the field is removed the magnetism disappears again.
However, below a certain critical temperature the material will retain its magnetism. We will use Monte
Carlo simulation to find the stable configurations that remain.

Let’s say the lattice Λ has N atoms, and we denote a configuration of atoms as σ = (σ1, . . . , σN ) where
each σi = ±1. The energy of a lattice is modeled as

H = H(σ) = −J
∑
i

σi − E
∑
ij

σiσj .

The first term models the interaction of individual spins σi with an external field of strength J . The second
term, which sums over nearest neighbour pairs, models alignment of atom pairs: the product σiσj is positive
if the atoms have identical spin, and negative if opposite.
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In statistical mechanics , the probability of a configuration is

P (σ) = exp(−H(σ))/Z

where the ‘partitioning function’ Z is defined as

Z =
∑
σ

exp(H(σ))

where the sum runs over all 2N configurations.

A configuration is stable if its energy does not decrease under small perturbations. To explore this, we
iterate over the lattice, exploring whether altering the spin of atoms lowers the energy. We introduce an
element of chance to prevent artificial solutions. (This is the Metropolis algorithm [98].)

for fixed number of iterations do
for each atom i do

calculate the change ∆E from changing the sign of σi

if ∆E < or exp(−∆E) greater than some random number then
accept the change

This algorithm can be parallelized, if we notice the similarity with the structure of the sparse matrix-
vector product. In that algorithm too we compute a local quantity by combining inputs from a few nearest
neighbours. This means we can partitioning the lattice, and compute the local updates after each processor
collects a ghost region .

Having each processor iterate over local points in the lattice corresponds to a particular global ordering of
the lattice; to make the parallel computation equivalent to a sequential one we also need a parallel random
generator (section 9.1).
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Appendix A

Theoretical background

This course requires no great mathematical sophistication. Mostly it assumes that you know the basics of
linear algebra: what are matrices and vectors, and the most common operations on them.

In the following appendices we will cover some less common bits of theory that have been moved out of
the main storyline of the preceeding chapters.

• In A.1 we cover some linear algebra material that you may not, or probably will not, have seen
before.
• Appendix A.2 gives the basic definitions of complexity theory, which you need for analyzing

algorithms.
• Much of scientific computing is about the treatment of Ordinary and Partial Differential Equa-

tions. In this book, they are discussed in chapters 4 and 6. Appendix A.3 gives some background
knowledge about PDEs, and appendix A.4 discusses Taylor expansion, which is a basic mecha-
nism for getting a computational form of ODEs and PDEs.
• In the discussion of computational methods and of parallel architectures, graph theory often

comes up. The basic concepts are discussed in appendix A.5.
• Finally, A.6 gives the definition and a short discussion of Finite State Automatons (FSAs), which

comes up in the definition of CPUs.
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A.1 Linear algebra

In this course it is assumed that you know what a matrix and a vector are, simple algorithms such as how
to multiply them, and some properties such as invertibility of a matrix. This appendix introduces some
concepts and theorems that are not typically part of a first course in linear algebra.

A.1.1 Norms

A.1.1.1 Vector norms

A norm is any function n(·) on a vector space V with the following properties:

• n(x) ≥ 0 for all x ∈ V and n(x) = 0 only for x = 0,
• n(λx) = |λ|n(x) for all x ∈ V and λ ∈ R.
• n(x+ y) ≤ n(x) + n(y)

For any p ≥ 1, the following defines a vector norm:

|x|p = p

√∑
i

|xi|p.

Common norms are ‖ · ‖1 (‘sum of absolute values’) and ‖ · ‖2 (‘square root of sum of squares’); the ‖ · ‖∞
norm is defined as limp→∞ ‖ · ‖p, and it is not hard to see that this equals

‖x‖∞ = max
i
|xi|.

A.1.1.2 Matrix norms

By considering a matrix of size n as a vector of length n2, we can define the Frobenius matrix norm:

‖A‖F =

√∑
i,j

|aij |2.

However, we will mostly look at associated matrix norms:

‖A‖p = sup
‖x‖p=1

‖Ax‖p = sup
x

‖Ax‖p
‖x‖p

.

From their definition, it easily follows that

‖Ax‖ ≤ ‖A‖‖x‖

for associated norms.

The following are easy to derive:

• ‖A‖1 = maxj
∑

i |aij |,
• ‖A‖∞ = maxi

∑
j |aij |.
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By observing that ‖A‖2 = sup‖x‖2=1 x
tAtAx, it is not hard to derive that ‖A‖2 is the maximal singular

value of A, which is the root of the maximal eigenvalue of AtA.

The matrix condition number is defined as

κ(A) = ‖A‖ ‖A−1‖.

In the symmetric case this is the ratio between the largest and smallest eigenvalue.

A.1.2 Gram-Schmidt orthogonalization

The Gram-Schmidt (GS) algorithm takes a series of vectors and inductively orthogonalizes them. This
can be used to turn an arbitrary basis of a vector space into an orthogonal basis; it can also be viewed as
transforming a matrix A into one with orthogonal columns. If Q has orthogonal columns, QtQ is diagonal,
which is often a convenient property to have.

The basic principle of the GS algorithm can be demonstrated with two vectors u, v. Suppose we want a
vector v′ so that u, v and u, v′ span the same space, but v′ ⊥ u. For this we let

v′ ← v − utv

utu
u.

It is easy to see that this satisfies the requirements.

Suppose we have an set of vectors u1, . . . , un that we want to orthogonalize. We do this by successive
applications of the above transformation:

For i = 1, . . . , n:
For j = 1, . . . i− 1:

let cji = utjui/u
t
juj

For i = 1, . . . , n:
update ui ← ui − cjiuj

Often the vector v in the algorithm above is normalized; this adds a line

ui ← ui/‖ui‖
to the algorithm. GS orthogonalization with this normalization, applied to a matrix, is also known as the
QR factorization .

Exercise 1.1. Suppose that we apply the GS algorithm to the columns of a rectangular matrixA,
giving a matrix Q. Prove that there is an upper triangular matrix R such that A = QR.
(Hint: look at the cji coefficients above.) If we normalize the orthogonal vector in the
algorithm above, Q has the additional property that QtQ = I . Prove this too.

The GS algorithm as given above computes the desired result, but only in exact arithmetic. A computer
implementation can be quite inaccurate if the angle between v and one of the ui is small. In that case, the
Modified Gram-Schmidt (MGS) algorithm will perform better:

For i = 1, . . . , n:
let ci = utiv/u

t
iui

update v ← v − ciui
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To contrast it with MGS, the original GS algorithm is also known as Classical Gram-Schmidt (CGS).

As an illustration of the difference between the two methods, consider the matrix

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε


where ε is of the order of the machine precision, so that 1+ε2 = 1 in machine arithmetic. The CGS method
proceeds as follows:

• The first column is of length 1 in machine arithmetic, so

q1 = a1 =


1
ε
0
0

 .

• The second column gets orthogonalized as v ← a2 − 1 · q1, giving

v =


0
−ε
ε
0

 , normalized: q2 =


0

−
√

2
2√
2

2
0


• The third column gets orthogonalized as v ← a3 − c1q1 − c2q2, where

{
c1 = qt1a3 = 1

c2 = qt2a3 = 0
⇒ v =


0
−ε
0
ε

 ; normalized: q3 =


0√
2

2
0√
2

2


It is easy to see that q2 and q3 are not orthogonal at all. By contrast, the MGS method differs in the last step:

• As before, qt1a3 = 1, so

v ← a3 − q1 =


0
−ε
ε
0

 .

Then, qt2v =
√

2
2 ε (note that qt2a3 = 0 before), so the second update gives

v ← v −
√

2

2
εq2 =


0
ε
2
− ε

2
ε

 , normalized:


0√
6

6

−
√

6
6

2
√

6
6


Now all qtiqj are on the order of ε for i 6= j.
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A.1.3 The power method

The vector sequence

xi = Axi−1,

where x0 is some starting vector, is called the power method since it computes the product of subsequent
matrix powers times a vector:

xi = Aix0.

There are cases where the relation between the xi vectors is simple. For instance, if x0 is an eigenvector
of A, we have for some scalar λ

Ax0 = λx0 and xi = λix0.

However, for an arbitrary vector x0, the sequence {xi}i is likely to consist of independent vectors. Up to a
point.

Exercise 1.2. Let A and x be the n× n matrix and dimension n vector

A =


1 1

1 1
. . . . . .

1 1
1

 , x = (0, . . . , 0, 1)t.

Show that the sequence [x,Ax, . . . , Aix] is an independent set for i < n. Why is this
no longer true for i ≥ n?
Now consider the matrix B:

B =



1 1
. . . . . .

1 1
1

1 1
. . . . . .

1 1
1


, y = (0, . . . , 0, 1)t

Show that the set [y,By, . . . , Biy] is an independent set for i < n/2, but not for any
larger values of i.

While in general the vectors x,Ax,A2x, . . . can be expected to be independent, in computer arithmetic this
story is no longer so clear.

Suppose the matrix has eigenvalues λ0 > λ1 ≥ · · ·λn−1 and corresponding eigenvectors ui so that

Aui = λiui.
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Let the vector x be written as

x = c0u0 + · · ·+ cn−1un−1,

then

Aix = c0λ
i
0ui + · · ·+ cn−1λ

i
n−1un−1.

If we write this as

Aix = λi0

[
c0ui + c1

(
λ1

λ0

)i
+ · · ·+ cn−1

(
λn−1

λ0

)i]
,

we see that, numerically, Aix will get progressively closer to a multiple of u0, the dominant eigenvector .
Hence, any calculation that uses independence of the Aix vectors is likely to be inaccurate.

A.1.4 Nonnegative matrices; Perron vectors

If A is a nonnegative matrix, the maximal eigenvalue has the property that its eigenvector is nonnegative:
this is the the Perron-Frobenius theorem .

Theorem 1 If a nonnegative matrix A is irreducible, its eigenvalues satisfy
• The eigenvalue α1 that is largest in magnitude is real and simple:

α1 > |α2| ≥ · · · .

• The corresponding eigenvector is positive.

A.1.5 The Gershgorin theorem

Finding the eigenvalues of a matrix is usually complicated. However, there are some tools to estimate
eigenvalues. In this section you will see a theorem that, in some circumstances, can give useful information
on eigenvalues.

Let A be a square matrix, and x, λ an eigenpair: Ax = λx. Looking at one component, we have

aiixi +
∑
j 6=i

aijxj = λxi.

Taking norms:

(aii − λ) ≤
∑
j 6=i
|aij |

∣∣∣∣xjxi
∣∣∣∣

Taking the value of i for which |xi| is maximal, we find

(aii − λ) ≤
∑
j 6=i
|aij |.

This statement can be interpreted as follows:
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The eigenvalue λ is located in the circle around aii with radius
∑

j 6=i |aij |.
Since we do not know for which value of i |xi| is maximal, we can only say that there is some value of i
such that λ lies in such a circle. This is the Gershgorin theorem.

Theorem 2 Let A be a square matrix, and let Di be the circle with center aii and radius
∑

j 6=i |aij |, then
the eigenvalues are contained in the union of circles ∪iDi.

We can conclude that the eigenvalues are in the interior of these discs, if the constant vector is not an
eigenvector.
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A.2 Complexity

At various places in this book we are interested in how many operations an algorithm takes. It depends on
the context what these operations are, but often we count additions (or subtractions) and multiplications.
This is called the arithmetic or computational complexity of an algorithm. For instance, summing n num-
bers takes n−1 additions. Another quantity that we may want to describe is the amount of space (computer
memory) that is needed. Sometimes the space to fit the input and output of an algorithm is all that is needed,
but some algorithms need temporary space. The total required space is called the space complexity of an
algorithm.

Both arithmetic and space complexity depend on some description of the input, for instance, for summing
an array of numbers, the length n of the array is all that is needed. We express this dependency by saying
‘summing an array of numbers has time complexity n− 1 additions, where n is the length of the array’.

The time (or space) the summing algorithm takes is not dependent on other factors such as the values of
the numbers. By contrast, some algorithms such as computing the greatest common divisor of an array of
integers can be dependent on the actual values.

Exercise 1.3. What is the time and space complexity of multiplying two square matrices of size
n× n? Assume that an addition and a multiplication take the same amount of time.

Often we aim to simplify the formulas that describe time or space complexity. For instance, if the complex-
ity of an algorithm is n2 + 2n, we see that for n > 2 the complexity is less than 2n2, and for n > 4 it is
less than (3/2)n2. On the other hand, for all values of n the complexity is at least n2. Clearly, the quadratic
term n2 is the most important, and the linear term n becomes less and less important by ratio. We express
this informally by saying that the complexity is quadratic in n as n → ∞: there are constants c, C so that
for n large enough the complexity is at least cn2 and at most Cn2.

This is expressed for short by saying that the complexity is of order n2, written as O(n2) as n → ∞. In
chapter 4 you will see phenomena that we want to describe as orders of a parameter that goes to zero. In
that case we write for instance f(h) = O(h2) as h ↓ 0, meaning that f is bounded by ch2 and Ch2 for
certain constants c, C and h small enough.
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A.3 Partial Differential Equations

Partial Differential Equations are the source of a large fraction of HPC problems. Here is a quick derivation
of two of the most important ones.

A.3.1 Partial derivatives

Derivatives of a function u(x) are a measure of the rate of change. Partial derivatives to the same, but for a
function u(x, y) of two variables. Notated ux and uy, these partial derivates indicate the rate of change if
only one variable changes and the other stays constant.

Formally, we define ux, uy by:

ux(x, y) = lim
h→0

u(x+ h, y)− u(x, y)

h
, uy(x, y) = lim

h→0

u(x, y + h)− u(x, y)

h

A.3.2 Poisson or Laplace Equation

Let T be the temperature of a material, then its heat energy is proportional to it. A segment of length ∆x
has heat energy Q = c∆x · u. If the heat energy in that segment is constant

δQ

δt
= c∆x

δu

δt
= 0

but it is also the difference between inflow and outflow of the segment. Since flow is proportional to tem-
perature differences, that is, to ux, we see that also

0 =
δu

δx

∣∣∣∣
x+∆x

− δu

δx

∣∣∣∣
x

In the limit of ∆x ↓ 0 this gives uxx = 0, which is called the Laplace equation . If we have a source term,
for instance corresponding to externally applied heat, the equation becomes uxx = f , which is called the
Poisson equation .

A.3.3 Heat Equation

Let T be the temperature of a material, then its heat energy is proportional to it. A segment of length ∆x
has heat energy Q = c∆x · u. The rate of change in heat energy in that segment is

δQ

δt
= c∆x

δu

δt

but it is also the difference between inflow and outflow of the segment. Since flow is proportional to tem-
perature differences, that is, to ux, we see that also

δQ

δt
=
δu

δx

∣∣∣∣
x+∆x

− δu

δx

∣∣∣∣
x

In the limit of ∆x ↓ 0 this gives ut = αuxx.
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A.3.4 Steady state

The solution of an IBVP is a function u(x, t). In cases where the forcing function and the boundary con-
ditions do not depend on time, the solution will converge in time, to a function called the steady state
solution:

lim
t→∞

u(x, t) = usteadystate(x).

This solution satisfies a BVP, which can be found by setting ut ≡ 0. For instance, for the heat equation

ut = uxx + q(x)

the steady state solution satisfies −uxx = q(x).
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A.4 Taylor series

Taylor series expansion is a powerful mathematical tool. In this course it is used several times in proving
properties of numerical methods.

The Taylor expansion theorem, in a sense, asks how well functions can be approximated by polynomials,
that is, for a given function f , can we find coefficients ci with i = 1, . . . , n so that

f(x) ≈ c0 + c1x+ c2x
2 + · · ·+ cnx

n.

This question obviously needs to be refined. What do we mean by ‘approximately equal’? This approx-
imation formula can not hold for all functions f and all x: the function sinx is bounded for all x, but
any polynomial is unbounded for x → ±∞, so any polynomial approximation to the sinx function is
unbounded. Clearly we can only approximate on an interval.

We will show that a function f with sufficiently many derivatives can be approximated as follows: if the
n-th derivative f (n) is continuous on an interval I , then there are coefficients c0, . . . , cn−1 such that

∀x∈I : |f(x)−
∑
i<n

cix
i| ≤ cMn where Mn = maxx∈I |f (n)(x)|

It is easy to get inspiration for what these coefficients should be. Suppose

f(x) = c0 + c1x+ c2x
2 + · · ·

(where we will not worry about matters of convergence and how long the dots go on) then filling in

x = 0 gives c0 = f(0).

Next, taking the first derivative

f ′(x) = c1 + 2c2x+ 3c3x
2 + · · ·

and filling in

x = 0 gives c1 = f ′(0).

From the second derivative

f ′′(x) = 2c2 + 6c3x+ · · ·

so filling in x = 0 gives

c2 = f ′′(0)/2.

Similarly, in the third derivative

filling in x = 0 gives c3 = 1
3!f

(3)(0).

Victor Eijkhout 279



A. Theoretical background

Now we need to be a bit more precise. Cauchy’s form of Taylor’s theorem says that

f(x) = f(a) +
1

1!
f ′(a)(x− a) + · · ·+ 1

n!
f (n)(a)(x− a)n +Rn(x)

where the ‘rest term’ Rn is

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− a)n+1 where ξ ∈ (a, x) or ξ ∈ (x, a) depending.

If f (n+1) is bounded, and x = a+ h, then the form in which we often use Taylor’s theorem is

f(x) =
n∑
k=0

1

k!
f (k)(a)hk +O(hn+1).

We have now approximated the function f on a certain interval by a polynomial, with an error that decreases
geometrically with the inverse of the degree of the polynomial.

For a proof of Taylor’s theorem we use integration by parts. First we write∫ x

a
f ′(t)dt = f(x)− f(a)

as

f(x) = f(a) +

∫ x

a
f ′(t)dt

Integration by parts then gives

f(x)=f(a) + [xf ′(x)− af ′(a)]−
∫ x
a tf

′′(t)dt
=f(a) + [xf ′(x)− xf ′(a) + xf ′(a)− af ′(a)]−

∫ x
a tf

′′(t)dt
=f(a) + x

∫ x
a f
′′(t)dt+ (x− a)f ′(a)−

∫ x
a tf

′′(t)dt
=f(a) + (x− a)f ′(a) +

∫ x
a (x− t)f ′′(t)dt

Another application of integration by parts gives

f(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) +

1

2

∫ x

a
(x− t)2f ′′′(t)dt

Inductively, this gives us Taylor’s theorem with

Rn+1(x) =
1

n!

∫ x

a
(x− t)nf (n+1)(t)dt

By the mean value theorem this is

Rn+1(x)= 1
(n+1)!f

(n+1)(ξ)
∫ x
a (x− t)nf (n+1)(t)dt

= 1
(n+1)!f

(n+1)(ξ)(x− a)n+1
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A.5 Graph theory

Graph theory is the branch of mathematics that studies pairwise relations between objects. Graphs both
appear as tools for analyzing issues in HPC, and as objects of study themselves. This appendix introduces
the basic concepts and some relevant theory.

A.5.1 Definitions

A graph consists of a set of objects, and set of relations between them. The objects, called the nodes or
vertices of the graph, usually form a finite set, so we usually identify them with consecutive integers 1 . . . n
or 0 . . . n − 1. The relation that holds between nodes is described by the edges of the graph: if i and j are
related, we say that (i, j) is an edge of the graph. This relation does not need to be symmetric, take for
instance the ‘less than’ relation.

Formally, then, a graph is a tuple G = 〈V,E〉 where V = {1, . . . n} for some n, and E ⊂ {(i, j) : 1 ≤
i, j ≤ n, i 6= j}.

{
V = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (2, 6), (4, 3), (4, 4), (4, 5)}

Figure A.1: A simple graph

A graph is called an undirected graph if (i, j) ∈ E ⇔ (j, i) ∈ E. The alternative is a directed graph , where
we indicate an edge (i, j) with an arrow from i to j.

Two concepts that often appear in graph theory are the degree and the diameter of a graph.

Definition 1 The degree denotes the maximum number of nodes that are connected to any node:

d(G) ≡ max
i
|{j : j 6= i ∧ (i, j) ∈ E}| .

Definition 2 The diameter of a graph is the length of the longest shortest path in the graph, where a path
is defined as a set of vertices v1, . . . , vk+1 such that vi 6= vj for all i 6= j and

∀1≤i≤k : (vi, vi+1) ∈ E.

The length of this path is k.

The concept of diameter is illustrated in figure A.2.
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A graph

Two paths from 1 to 6; 〈1, 4, 6〉 is the shorter

The longest shortest path of this graph

Figure A.2: Shortest paths

A path where all nodes are disjoint except for v1 = vk+1 is called a cycle .

Sometimes we are only interested in the mere existence of an edge (i, j), at other times we attach a value
or ‘weight’ wij to that edge. A graph with weighted edges is called a weighted graph . Such a graph can be
represented as a tuple G = 〈V,E,W 〉 where E and W have the same cardinality.

A.5.2 Common types of graphs

A.5.2.1 Directed Acyclic Graphs

A graph that does not have cycles is called acyclic . A special case of this type of graph is the Directed
Acyclic Graph (DAG). This type of graph can for instance be used to model dependencies between tasks:
if there is an edge between i, j, it means that task i has to be done before task j.

A.5.2.2 Trees

One special case of DAGs is the tree graph : here any node can have multiple incoming edges, but only one
outgoing edge. Nodes with no incoming edges are leaf nodes; a node with no outgoing edges is called a
root (can there be more than one root?), and all other nodes are called interior nodes .
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A.5.3 Graph colouring and independent sets

We can assign labels to the nodes of a graph, which is equivalent to partitioning the set of nodes into disjoint
subsets. One type of labeling that is of interest is graph colouring: here the labels (or ‘colours’) are chosen
so that, if nodes i and j have the same colour, there is no edge connecting them: (i, j) 6∈ E.

There is a trivial colouring of a graph, where each node has its own colour. More interestingly, the minimum
number of colours with which you can colour a graph is called the colour number of the graph.

Exercise 1.4. Show that, if a graph has degree d, the colour number is at most d+ 1.

A famous graph colouring problem is the ‘four colour theorem’: if a graph depicts countries on a two-
dimensional map (a so-called ‘planar’ graph), then the colour number is at most four. In general, finding
the colour number is hard (in fact, NP-hard).

The colour sets of a graph colouring are also called independent sets , since within each colour no node is
connected to a node of the same colour.

A.5.4 Graphs and matrices

A graph can be rendered in a number of ways. You could of course just list nodes and edges, but little
insight can be derived that way. Simple graphs can be visualized by drawing vertices and edges, but for
large graphs this becomes unwieldy. Another option is to construct the adjacency matrix of the graph. For
a graph G = 〈V,E〉, the adjacency matrix M (with a size n equal to the number of vertices |V |) is defined
by

Mij =

{
1 (i, j) ∈ E
0 otherwise

Conversely, if you have a matrix, especially a sparse matrix , you can construct its adjacency graph . This is
illustrated in figure A.3 for both a dense and a sparse matrix. In this example, the matrices are structurally

Figure A.3: A dense and a sparse matrix, both with their adjacency graph

symmetric, so we use lines instead of arrows in the graphs. There is an edge on each vertex corresponding
to the diagonal element; this edge will often be left out of illustrations.

If a matrix has no zero elements, its adjacency graph has an edge between each pair of vertices. Such a
graph is called a clique . If the graph is undirected, the adjacency matrix is symmetric, and conversely, if a
matrix is structurally symmetric , its adjacency graph is undirected.
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As an example of graph concepts that can easily be read from the adjacency matrix, consider reducibility.

Definition 3 A graph is called irreducible if for every pair i, j of nodes there is a path from i to j and from
j to i. A graph is reducible if it is not irreducible.

Exercise 1.5. Let A be a matrix

A =

(
B C
∅ D

)
where B and D are square matrices. Prove the reducibility of the graph of which this
is the adjacency matrix.

For graphs with edge weights, we set the elements of the adjacency matrix to the weights:

Mij =

{
wij (i, j) ∈ E
0 otherwise

Here is another example of how adjacency matrices can simplify reasoning about graphs.

Exercise 1.6. Let G = 〈V,E〉 be an undirected graph, and let G′ = 〈V,E′〉 be the graph with
the same vertices, but with vertices defined by

(i, j) ∈ E′ ⇔ ∃k : (i, k) ∈ E ∧ (k, j) ∈ E.

If M is the adjacency matrix of G, show that M2 is the adjacency matrix of G′, where
we use boolean multiplication on the elements: 1 · 1 = 1, 1 + 1 = 1.

A.5.5 Spectral graph theory

With a graphG and its adjacency matrixAG, we can define a stochastic matrix or Markov matrix by scaling
AG to have unit column sums1:

WG = D−1
G AG where (DG)ii = deg(i).

This matrix describes random walks through the graph. Interpret the vertices of the graph as locations
or states, meaning you can be in exactly one of them at any time. Let a vector p be a description of the
probabilities of being in the nodes ofG, then etp = 1. Now we interpret the edge weights as the probabilities
of making a transition to another node. Mathematically, tWGp describes the probabilities after a single
transition. Note that normalizing the column sums means that these transition probabilities add up to 1.

Another matrix to associate with a graph is the graph Laplacian

LG = DG −AG.

This matrix has zero rowsums and positive diagonal entries, so by the Gershgorin theorem (section A.1.5
all its eigenvalues are in the complex right half plane.

1. A definition using unit row sums is possible too, in that case every product Ax appearing in algorithms is replaced by xtA.
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Exercise 1.7. Show that the vector of all ones is an eigenvector with eigenvalue 1.

This Laplacian matrix gives us a quadratic form:

xtLGx =
∑

(i,j)∈E

(xi − xj)2.

A.5.5.1 Eigenvalue theorems for graph matrices

There are various interesting theorems connected with the graph adjacency and Laplacian matrix. We will
not give any proofs; see [122].

First we give Fiedler’s theorem .

Theorem 3 Let G be a weighted path graph on n vertices, let LP have eigenvalues 0 = λ1 < λ2 ≤ . . . ≤
λn, and let vk be an eigenvector of λk. Then vk changes sign k − 1 times.

Another theorem by Fiedler [43]:

Theorem 4 Let G = (V,E,w) be a weighted connected graph, and let LG be its Laplacian matrix. Let
0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of LG and let v1, . . . , vn be the corresponding eigenvectors.
For any k ≥ 2, let Wk = {i ∈ V : vk(i) ≥ 0}. Then, the graph induced by G on Wk has at most k − 1
connected components.

The important consequence of this is that the eigenvector to the first nontrivial eigenvalue can be used to
partition the graph in two connected pieces: one of nodes where the eigenvector is positive, and one where
the eigenvector is negative.

The adjacency matrix is nonnegative, and there is an extensive theory for this type of matrix [7]; see the
Perron-Frobenius theorem in section A.1.4.

Lemma 1 The largest eigenvalue of the adjacency matrix can be bounded by the maximum node degree:

α1 ≤ dmax.

A.5.5.2 Cheeger’s inequality

Above we remarked that the first non-trivial eigenvalue of the graph Laplacian has a relation to partitioning
a graph in two parts. The Cheeger’s constant and Cheeger’s inequality relate this eigenvalue to a certain
quality measure of partitionings.

Let V be the set of vertices and S ⊂ V , then Cheeger’s constant of a graph is defined as

C = min
S

e(S, V − S)

min vol(S), vol(V − S)
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where e(S, V − S) denotes the number of edges connecting S to V − S, and the volume of a set of nodes
is defined as

vol(S) =
∑
e∈S

d(e).

Cheeger’s inequality then states

2C ≥ λ ≥ C2

2

where λ is the first nontrivial eigenvalue of the graph Laplacian.
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A.6 Finite State Automatons

Finite State Automatons (FSAs) are mathematical abstractions of simple machines. For example, take a
vending machine that will dispense a candy bar when a quarter has been inserted. There are four actions
possible with a vending machine: insert a quarter, press ‘coin return’ to ask for any inserted money back,
open the window to take the candy bar, and close the window again. Whether an action is possible (es-
pecially the third) depends on the state the machine is in. There are three states: the begin state, the state
where the quarter has been inserted and the window unlocked (let us call this ‘ready to dispense’), and the
state where the window is open (which we will call ‘dispensing’).

In certain states, certain actions are not possible. For instance, in the beginning state the window can not be
opened.

The mathematical description of this vending machine consists of 1. the list of states, 2. a table of how the
possible actions make the machine go from one state to another. However, rather than writing down the
table, a graphical representation is usually more insightful.
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Practical tutorials

In the theory part of this book you learned mathematical models can be translated to algorithms that can be
realized efficiently on modern hardware. You learned how data structures and coding decisions influence
the performance of your code. In other words, you should now have all the tools to write programs that
solve scientific problems.

This would be all you would need to know, if there was any guarantee that a correctly derived algorithm
and well designed data structure could immediately be turned into a correct program. Unfortunately, there
is more to programming than that. This collection of tutorials will give you the tools to be an effective
scientific programmer.

The vast majority of scientific programming is done on the Unix platform so we start out with a tutorial on
Unix in section B.1, followed by an explanation of the how your code is handled by compilers and linkers
and such in section B.2.

Next you will learn about some tools that will increase your productivity and effectiveness:

• The Make utility is used for managing the building of projects; section B.3.
• Source control systems store your code in such a way that you can undo changes, or maintain

multiple versions; in section B.4 you will see the subversion software.
• Storing and exchanging scientific data becomes an important matter once your program starts to

produce results; in section B.5 you will learn the use of HDF5.
• A lot of functionality that you need has been coded already by other people; in section B.6 you

will learn about some of the scientific libraries that are available to you.
• Visual output of program data is important, but too wide a topic to discuss here in great detail;

section B.7 teaches you the basics of the gnuplot package, which is suitable for simple data
plotting.

We also consider the activity of program development itself: section B.8 considers how to code to prevent
errors, and section B.9 teaches you to debug code with gdb. Section B.10 contains some information on
how to write a program that uses more than one programming language.

Finally, section B.11 teaches you about the LATEX document system, so that you can report on your work in
beautifully typeset articles.

Many of the tutorials are very hands-on. Do them while sitting at a computer!
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B.1 Unix intro

Unix is an Operating System (OS), that is, a layer of software between the user or a user program and the
hardware. It takes care of files and screen output, and it makes sure that many processes can exist side by
side on one system. However, it is not immediately visible to the user. Most of the time that you use Unix,
you are typing commands which are executed by an interpreter called the shell . The shell makes the actual
OS calls. There are a few possible Unix shells available, but in this tutorial we will assume that you are
using the sh or bash shell, although many commands are common to the various shells in existence.

This short tutorial will get you going; if you want to learn more about Unix and shell scripting, see for
instance http://www.tldp.org/guides.html.

B.1.1 Files and such

Purpose. In this section you will learn about the Unix file system, which consists of
directories that store files . You will learn about executable files and commands for
displaying data files.

B.1.1.1 Looking at files

Purpose. In this section you will learn commands for displaying file contents.

The ls command gives you a listing of files that are in your present location.

Exercise. Type ls. Does anything show up?

Expected outcome. If there are files in your directory, they will be listed; if there are none, no output will
be given. This is standard Unix behaviour: no output does not mean that something went wrong, it only
means that there is nothing to report.

The cat command is often used to display files, but it can also be used to create some simple content.

Exercise. Type cat > newfilename (where you can pick any filename) and type some text. Conclude
with Control-d on a line by itself. Now use cat to view the contents of that file: cat newfilename.

Expected outcome. In the first use of cat, text was concatenated from the terminal to a file; in the second
the file was cat’ed to the terminal output. You should see on your screen precisely what you typed into the
file.

Caveats. Be sure to type Control-d as the first thing on the last line of input. If you really get stuck,
Control-c will usually get you out. Try this: start creating a file with cat > filename and hit
Control-c in the middle of a line. What are the contents of your file?

Above you used ls to get a directory listing. You can also use the ls command on specific files:
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Exercise. Do ls newfilename with the file that you created above; also do ls nosuchfile with a
file name that does not exist.

Expected outcome. For an existing file you get the file name on your screen; for a non-existing file you get
an error message.

The ls command can give you all sorts of information.

Exercise. Read the man page of the ls command: man ls. Find out the size and creation date of some
files, for instance the file you just created.

Expected outcome. Did you find the ls -s and ls -l options? The first one lists the size of each file,
usually in kilobytes, the other gives all sorts of information about a file, including things you will learn
about later.

Caveats. The man command puts you in a mode where you can view long text documents. This viewer
is common on Unix systems (it is available as the more or less system command), so memorize the
following ways of navigating: Use the space bar to go forward and the u key to go back up. Use g to go to
the beginning fo the text, and G for the end. Use q to exit the viewer. If you really get stuck, Control-c
will get you out.

(If you already know what command you’re looking for, you can use man to get online information about
it. If you forget the name of a command, man -k keyword can help you find it.)

The touch command creates an empty file, updates the timestamp of a file if it already exists. Use ls -l
to confirm this behaviour.

Three more useful commands for files are: cp for copying, mv (short for ‘move’) for renaming, and rm
(‘remove’) for deleting. Experiment with them.

There are more commands for displaying a file, parts of a file, or information about a file.

Exercise. Do ls /usr/share/words or ls /usr/share/dict/words to confirm that a file with
words exists on your system. Now experiment with the commands head, tail, more, and wc using that
file.

Expected outcome. head displays the first couple of lines of a file, tail the last, and more uses the
same viewer that is used for man pages. Read the man pages for these commands and experiment with
increasing and decreasing the amount of output. The wc (‘word count’) command reports the number of
words, characters, and lines in a file.

B.1.1.2 Directories

Purpose. Here you will learn about the Unix directory tree, how to manipulate it and
how to move around in it.
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A unix file system is a tree of directories, where a directory is a container for files or more directories. We
will display directories as follows:

/..............................................The root of the directory tree
bin...................................................Binary programs
home.......................................Location of users directories

The root of the Unix directory tree is indicated with a slash. Do ls / to see what the files and directories
there are in the root. Note that the root is not the location where you start when you reboot your personal
machine, or when you log in to a server.

Exercise. The command to find out your current working directory is pwd. Your home directory is your
working directory immediately when you log in. Find out your home directory.

Expected outcome. You will typically see something like /home/yourname or /Users/yourname.
This is system dependent.

Do ls to see the contents of the working directory. In the displays in this section, directory names will be
followed by a slash: dir/ but this character is not part of their name. You can get this output by using ls
-F, and you can tell your shell to use this output consistently by stating alias ls=ls -F at the start of
your session. Example:

/home/you/
adirectory/
afile

The command for making a new directory is mkdir.

Exercise. Make a new directory with mkdir newdir and view the current directory with ls

Expected outcome. You should see this structure:
/home/you/

newdir/.............................................the new directory

The command for going into another directory, that is, making it your working directory, is cd (‘change
directory’). It can be used in the following ways:

• cd Without any arguments, cd takes you to your home directory.
• cd <absolute path> An absolute path starts at the root of the directory tree, that is, starts

with /. The cd command takes you to that location.
• cd <relative path> A relative path is one that does not start at the root. This form of the
cd command takes you to <yourcurrentdir>/<relative path>.

Exercise. Do cd newdir and find out where you are in the directory tree with pwd. Confirm with ls
that the directory is empty. How would you get to this location using an absolute path?

Expected outcome. pwd should tell you /home/you/newdir, and ls then has no output, meaning there
is nothing to list. The absolute path is /home/you/newdir.
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Exercise. Let’s quickly create a file in this directory: touch onefile, and another directory: mkdir
otherdir. Do ls and confirm that there are a new file and directory.

Expected outcome. You should now have:
/home/you/

newdir/..................................................you are here
onefile
otherdir/

The ls command has a very useful option: with ls -a you see your regular files and hidden files, which
have a name that starts with a dot. Doing ls -a in your new directory should tell you that there are the
following files:

/home/you/
newdir/..................................................you are here

.

..
onefile
otherdir/

The single dot is the current directory, and the double dot is the directory one level back.

Exercise. Predict where you will be after cd ./otherdir/.. and check to see if you were right.

Expected outcome. The single dot sends you to the current directory, so that does not change anything. The
otherdir part makes that subdirectory your current working directory. Finally, .. goes one level back.
In other words, this command puts your right back where you started.

Since your home directory is a special place, there are shortcuts for cd’ing to it: cd without arguments, cd
˜, and cd $HOME all get you back to your home.

Go to your home directory, and from there do ls newdir to check the contents of the first directory you
created, without having to go there.

Exercise. What does ls .. do?

Expected outcome. Recall that .. denotes the directory one level up in the tree: you should see your own
home directory, plus the directories of any other users.

Exercise. Can you use ls to see the contents of someone else’s home directory? In the previous exercise
you saw whether other users exist on your system. If so, do ls ../thatotheruser.

Expected outcome. If this is your private computer, you can probably view the contents of the other user’s
directory. If this is a university computer or so, the other directory may very well be protected – permissions
are discussed in the next section – and you get ls: ../otheruser: Permission denied.

Make an attempt to move into someone else’s home directory with cd. Does it work?
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You can make copies of a directory with cp, but you need to add a flag to indicate that you recursively copy
the contents: cp -r. Make another directory somedir in your home so that you have

/home/you/
newdir/..............................you have been working in this one
somedir/......................................you just created this one

What is the difference between cp -r newdir somedir and cp -r newdir thirddir where
thirddir is not an existing directory name?

B.1.1.3 Permissions

Purpose. In this section you will learn about how to give various users on your system
permission to do (or not to do) various things with your files.

Unix files, including directories, have permissions, indicating ‘who can do what with this file’. Actions that
can be performed on a file fall into three categories:

• reading r: any access to a file (displaying, getting information on it) that does not change the
file;
• writing w: access to a file that changes its content, or even its metadata such as ‘date modified’;
• executing x: if the file is executable, to run it; if it is a directory, to enter it.

The people who can potentially access a file are divided into three classes too:

• the user u: the person owning the file;
• the group g: a group of users to which the owner belongs;
• other o: everyone else.

These nine permissions are rendered in sequence

user group other

rwx rwx rwx

For instance rw-r--r-- means that the owner can read and write a file, the owner’s group and everyone
else can only read.

Permissions are also rendered numerically in groups of three bits, by letting r = 4, w = 2, x = 1:

rwx

421

Common codes are 7 = rwx and 6 = rw. You will find many files that have permissions 755 which stands
for an executable that everyone can run, but only the owner can change, or 644 which stands for a data file
that everyone can see but again only the owner can alter. You can set permissions by

chmod <permissions> file # just one file
chmod -R <permissions> directory # directory, recursively

Examples:
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chmod 766 file # set to rwxrw-rw-
chmod g+w file # give group write permission
chmod g=rx file # set group permissions
chod o-w file # take away write permission from others
chmod o= file # take away all permissions from others.
chmod g+r,o-x file # give group read permission

# remove other execute permission

The man page gives all options.

Exercise. Make a file foo and do chmod u-r foo. Can you now inspect its contents? Make the file
readable again, this time using a numeric code. Now make the file readable to your classmates. Check by
having one of them read the contents.

Expected outcome. When you’ve made the file ‘unreadable’ by yourself, you can still ls it, but not cat it:
that will give a ‘permission denied’ message.

Make a file com with the following contents:

#!/bin/sh
echo "Hello world!"

This is a legitimate shell script. What happens when you type ./com? Can you make the script executable?

Adding or taking away permissions can be done with the following syntax:

B.1.1.4 Wildcards

You already saw that ls filename gives you information about that one file, and ls gives you all files
in the current directory. To see files with certain conditions on their names, the wildcard mechanism exists.
The following wildcards exist:

* any number of characters.
? any character.

Example:

%% ls
s sk ski skiing skill
%% ls ski*
ski skiing skill

The second option lists all files whose name start with ski, followed by any number of other characters’;
below you will see that in different contexts ski* means ‘sk followed by any number of i characters’.
Confusing, but that’s the way it is.
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B.1.2 Text searching and regular expressions

Purpose. In this section you will learn how to search for text in files.

For this section you need at least one file that contains some amount of text. You can for instance get random
text from http://www.lipsum.com/feed/html.

The grep command can be used to search for a text expression in a file.

Exercise. Search for the letter q in your text file with grep q yourfile and search for it in all files in
your directory with grep q *. Try some other searches.

Expected outcome. In the first case, you get a listing of all lines that contain a q; in the second case, grep
also reports what file name the match was found in: qfile:this line has q in it.

Caveats. If the string you are looking for does not occur, grep will simply not output anything. Remember
that this is standard behaviour for Unix commands if there is nothing to report.

In addition to searching for literal strings, you can look for more general expressions.

ˆ the beginning of the line
$ the end of the line
. any character
* any number of repetitions
[xyz] any of the characters xyz

This looks like the wildcard mechanism you just saw (section B.1.1.4) but it’s subtly different. Compare
the example above with:

%% cat s
sk
ski
skill
skiing
%% grep "ski*" s
sk
ski
skill
skiing

In the second case you search for a string consisting of sk and any number of i characters, including zero
of them.

Some more examples: you can find

• All lines that contain the letter ‘q’ with grep q yourfile;
• All lines that start with an ‘a’ with grep "ˆa" yourfile (if your search string contains

special characters, it is a good idea to use quote marks to enclose it);
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• All lines that end with a digit with grep "[0-9]$" yourfile.

Exercise. Construct the search strings for finding

• lines that start with an uppercase character, and
• lines that contain exactly one character.

Expected outcome. For the first, use the range characters [], for the second use the period to match any
character.

Exercise. Add a few lines x = 1, x = 2, x = 3 (that is, have different numbers of spaces between
x and the equals sign) to your test file, and make grep commands to search for all assignments to x.

The characters in the table above have special meanings. If you want to search that actual character, you
have to escape it.

Exercise. Make a test file that has both abc and a.c in it, on separate lines. Try the commands grep
"a.c" file, grep a\.c file, grep "a\.c" file.

Expected outcome. You will see that the period needs to be escaped, and the search string needs to be
quoted. In the absence of either, you will see that grep also finds the abc string.

B.1.2.1 Stream editing with sed

Unix has various tools for processing text files on a line-by-line basis. The stream editor sed is one ex-
ample. If you have used the vi editor, you are probably used to a syntax like s/foo/bar/ for making
changes. With sed, you can do this on the commandline. For instance

sed ’s/foo/bar/’ myfile > mynewfile

will apply the substitute command s/foo/bar/ to every line of myfile. The output is shown on your
screen so you should capture it in a new file; see section B.1.3.2 for more on output redirection.

B.1.2.2 Cutting up lines with cut

Another tool for editing lines is cut, which will cut up a line and display certain parts of it. For instance,

cut -c 2-5 myfile

will display the characters in position 2–5 of every line of myfile. Make a test file and verify this example.

Maybe more useful, you can give cut a delimiter character and have it split a line on occurrences of
that delimiter. For instance, your system will mostly likely have a file /etc/passwd that contains user
information1, with every line consisting of fields separated by colons. For instance:

1. This is traditionally the case; on Mac OS information about users is kept elsewhere and this file only contains system
services.
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daemon:*:1:1:System Services:/var/root:/usr/bin/false
nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh

The seventh and last field is the login shell of the user; /bin/false indicates that the user is unable to
log in.

You can display users and their login shells with:

cut -d ":" -f 1,7 /etc/passwd

This tells cut to use the colon as delimiter, and to print fields 1 and 7.

B.1.3 Command execution

B.1.3.1 Search paths

Purpose. In this section you will learn how Unix determines what to do when you
type a command name.

If you type a command such as ls, the shell does not just rely on a list of commands: it will actually go
searching for a program by the name ls. This means that you can have multiple different commands with
the same name, and which one gets executed depends on which one is found first.

Exercise. What you may think of as ‘Unix commands’ are often just executable files in a system directory.
Do which cd, and do an ls -l on the result

Expected outcome. The location of cd is something like /usr/bin/cd. If you ls that, you will see that
it is probably owned by root. Its executable bits are probably set for all users.

The locations where unix searches for commands is the ‘search path’, which is stored in the environment
variable (for more details see below) PATH.

Exercise. Do echo $PATH. Can you find the location of cd? Are there other commands in the same
location? Is the current directory ‘.’ in the path? If not, do export PATH=".:$PATH". Now create an
executable file cd in the current director (see above for the basics), and do cd.

Expected outcome. The path will be a list of colon-separated directories,
for instance /usr/bin:/usr/local/bin:/usr/X11R6/bin. If the working directory is in the
path, it will probably be at the end: /usr/X11R6/bin:. but most likely it will not be there. If you put
‘.’ at the start of the path, unix will find the local cd command before the system one.

Some people consider having the working directory in the path a security risk. If your directory is writable,
someone could put a malicious script named cd (or any other system command) in your directory, and you
would execute it unwittingly.
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It is possible to define your own commands as aliases of existing commands.

Exercise. Do alias chdir=cd and convince yourself that now chdir works just like cd. Do alias
rm=’rm -i’; look up the meaning of this in the man pages. Some people find this alias a good idea; can
you see why?

Expected outcome. The -i ‘interactive’ option for rm makes the command ask for confirmation before
each delete. Since unix does not have a trashcan that needs to be emptied explicitly (as on Windows or the
Mac OS), this can be a good idea.

B.1.3.2 Redirection and Pipelines

Purpose. In this section you will learn how to feed one command into another, and
how to connect commands to input and output files.

So far, the unix commands you have used have taken their input from your keyboard, or from a file named
on the command line; their output went to your screen. There are other possibilities for providing input
from a file, or for storing the output in a file.

B.1.3.2.1 Input redirection The grep command had two arguments, the second being a file name. You
can also write grep string < yourfile, where the less-than sign means that the input will come
from the named file, yourfile.

B.1.3.2.2 Output redirection More usefully, grep string yourfile > outfilewill take what
normally goes to the terminal, and send it to outfile. The output file is created if it didn’t already exist,
otherwise it is overwritten. (To append, use grep text yourfile >> outfile.)

Exercise. Take one of the grep commands from the previous section, and send its output to a file. Check
that the contents of the file are identical to what appeared on your screen before. Search for a string that
does not appear in the file and send the output to a file. What does this mean for the output file?

Expected outcome. Searching for a string that does not occur in a file gives no terminal output. If you
redirect the output of this grep to a file, it gives a zero size file. Check this with ls and wc.

B.1.3.2.3 Standard files Unix has three standard files that handle input and output:

stdin is the file that provides input for processes.
stdout is the file where the output of a process is written.
stderr is the file where error output is written.

In an interactive session, all three files are connected to the user terminal. Using input or output redirection
then means that the input is taken or the output sent to a different file than the terminal.

298 Introduction to High Performance Scientific Computing



B.1. Unix intro

B.1.3.2.4 Command redirection Instead of taking input from a file, or sending output to a file, it is pos-
sible to connect two commands together, so that the second takes the output of the first as input. The syntax
for this is cmdone | cmdtwo; this is called a pipeline. For instance, grep a yourfile | grep b
finds all lines that contains both an a and a b.

Exercise. Construct a pipeline that counts how many lines there are in your file that contain the string th.
Use the wc command (see above) to do the counting.

There are a few more ways to combine commands. Suppose you want to present the result of wc a bit
nicely. Type the following command

echo The line count is wc -l foo

where foo is the name of an existing file. The way to get the actual line count echoed is by the backquote:

echo The line count is ‘wc -l foo‘

Anything in between backquotes is executed before the rest of the command line is evaluated. The way wc
is used here, it prints the file name. Can you find a way to prevent that from happening?

B.1.3.3 Processes

The Unix operating system can run many programs at the same time, by rotating through the list and giving
each only a fraction of a second to run each time. The command ps can tell you everything that is currently
running.

Exercise. Type ps. How many programs are currently running? By default ps gives you only programs that
you explicitly started. Do ps guwax for a detailed list of everything that is running. How many programs
are running? How many belong to the root user, how many to you?

Expected outcome. To count the programs belonging to a user, pipe the ps command through an appropriate
grep, which can then be piped to wc.

In this long listing of ps, the second column contains the process numbers. Sometimes it is useful to have
those. The cut command explained above can cut certain position from a line: type ps guwax | cut
-c 10-14.

To get dynamic information about all running processes, use the top command. Read the man page to find
out how to sort the output by CPU usage.

When you type a command and hit return, that command becomes, for the duration of its run, the foreground
process . Everything else that is running at the same time is a background process .

Make an executable file hello with the following contents:

#!/bin/sh
while [ 1 ] ; do
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sleep 2
date

done

and type ./hello.

Exercise. Type Control-z. This suspends the foreground process. It will give you a number like [1]
or [2] indicating that it is the first or second program that has been suspended or put in the background.
Now type bg to put this process in the background. Confirm that there is no foreground process by hitting
return, and doing an ls.

Expected outcome. After you put a process in the background, the terminal is available again to accept
foreground commands. If you hit return, you should see the command prompt. However, the background
process still keeps generating output.

Exercise. Type jobs to see the processes in the current session. If the process you just put in the back-
ground was number 1, type fg %1. Confirm that it is a foreground process again.

Expected outcome. If a shell is executing a program in the foreground, it will not accept command input,
so hitting return should only produce blank lines.

Exercise. When you have made the hello script a foreground process again, you can kill it with Control-c.
Try this. Start the script up again, this time as ./hello & which immediately puts it in the background.
You should also get output along the lines of [1] 12345 which tells you that it is the first job you put in
the background, and that 12345 is its process ID. Kill the script with kill %1. Start it up again, and kill
it by using the process number.

Expected outcome. The command kill 12345 using the process number is usually enough to kill a
running program. Sometimes it is necessary to use kill -9 12345.

B.1.3.4 Shell customization

Above it was mentioned that ls -F is an easy way to see which files are regular, executable, or directories;
by typing alias ls=’ls -F’ the ls command will automatically expanded to ls -F every time it is
invoked. If you would like this behaviour in every login session, you can add the alias command to your
.profile file. Other shells than sh/bash have other files for such customizations.

B.1.4 Scripting

The unix shells are also programming environments. You will learn more about this aspect of unix in this
section.
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B.1.4.1 Shell variables

Above you encountered PATH, which is an example of an shell, or environment, variable. These are vari-
ables that are known to the shell and that can be used by all programs run by the shell. You can see the full
list of all variables known to the shell by typing env.

You can get the value of a shell variable by prefixing it with a dollar sign. Type the following two commands
and compare the output:

echo PATH
echo $PATH

Exercise. Check on the value of the HOME variable by typing echo $HOME. Also find the value of HOME
by piping env through grep.

B.1.4.2 Control structures

Like any good programming system, the shell has some control structures. Their syntax takes a bit of getting
used to. (Different shells have different syntax; in this tutorial we only discuss the bash shell.

In the bash shell, control structures can be written over several lines:

if [ $PATH = "" ] ; then
echo "Error: path is empty"

fi

or on a single line:

if [ ‘wc -l file‘ -gt 100 ] ; then echo "file too long" ; fi

There are a number of tests defined, for instance -f somefile tests for the existence of a file. Change
your script so that it will report -1 if the file does not exist.

There are also loops. A for loop looks like

for var in listofitems ; do
something with $var

done

This does the following:

• for each item in listofitems, the variable var is set to the item, and
• the loop body is executed.

As a simple example:

%% for x in a b c ; do echo $x ; done
a
b
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c

In a more meaningful example, here is how you would make backups of all your .c files:

for cfile in *.c ; do
cp $cfile $cfile.bak

done

Shell variables can be manipulated in a number of ways. Execute the following commands to see that you
can remove trailing characters from a variable:

%% a=b.c
%% echo ${a%.c}
b

With this as a hint, write a loop that renames all your .c files to .x files.

B.1.4.3 Scripting

It is possible to write programs of unix shell commands. First you need to know how to put a program in a
file and have it be executed. Make a file script1 containing the following two lines:

#!/bin/bash
echo "hello world"

and type ./script1 on the command line. Result? Make the file executable and try again.

You can give your script command line arguments. If you want to be able to call

./script1 foo bar

you can use variables $1,$2 et cetera in the script:

#!/bin/bash

echo "The first argument is $1"
echo "There were $# arguments in all"

Write a script that takes as input a file name argument, and reports how many lines are in that file.

Edit your script to test whether the file has less than 10 lines (use the foo -lt bar test), and if it does,
cat the file. Hint: you need to use backquotes inside the test.

The number of command line arguments is available as $#. Add a test to your script so that it will give a
helpful message if you call it without any arguments.
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B.1.5 Expansion

The shell performs various kinds of expansion on a command line, that is, replacing part of the command-
line with different text.

Brace expansion:

%% echo a{b,cc,ddd}e
abe acce addde

This can for instance be used to delete all extension of some base file name:

%% rm tmp.{c,s,o} # delete tmp.c tmp.s tmp.o

Tilde expansion gives your own, or someone else’s home directory:

%% echo ˜
/share/home/00434/eijkhout
%% echo ˜eijkhout
/share/home/00434/eijkhout

Parameter expansion gives the value of shell variables:

%% x=5
%% echo $x
5

Undefined variables do not give an error message:

%% echo $y

There are many variations on parameter expansion. Above you already saw that you can strip trailing
characters:

%% a=b.c
%% echo ${a%.c}
b

Here is how you can deal with undefined variables:

%% echo ${y:-0}
0

The backquote mechanism (section B.1.3.2 above) is known as command substitution:

%% echo 123 > w
%% cat w
123
%% wc -c w
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4 w
%% if [ ‘cat w | wc -c‘ -eq 4 ] ; then echo four ; fi
four

Unix shell programming is very much oriented towards text manipulation, but it is possible to do arithmetic.
Arithmetic substitution tells the shell to treat the expansion of a parameter as a number:

%% x=1
%% echo $((x*2))
2

Integer ranges can be used as follows:

%% for i in {1..10} ; do echo $i ; done
1
2
3
4
5
6
7
8
9
10

B.1.6 Shell interaction

Interactive use of Unix, in contrast to script writing (section B.1.4), is a complicated conversation between
the user and the shell. You, the user, type a line, hit return, and the shell tries to interpret it. There are several
cases.

• Your line contains one full command, such as ls foo: the shell will execute this command.
• You can put more than one command on a line, separated by semicolons: mkdir foo; cd
foo. The shell will execute these commands in sequence.
• Your input line is not a full command, for instance while [ 1]. The shell will recognize that

there is more to come, and use a different prompt to show you that it is waiting for the remainder
of the command.
• Your input line would be a legitimate command, but you want to type more on a second line. In

that case you can end your input line with a backslash character, and the shell will recognize that
it needs to hold off on executing your command. In effect, the backslash will hide (escape) the
return.

When the shell has collected a command line to execute, by using one or more of your input line or only
part of one, as described just now, it will apply expansion to the command line (section B.1.5). It will then
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interpret the commandline as a command and arguments, and proceed to invoke that command with the
arguments as found.

There are some subtleties here. If you type ls *.c, then the shell will reognize the wildcard character and
expand it to a command line, for instance ls foo.c bar.c. Then it will invoke the ls command with
the argument list foo.c bar.c. Note that ls does not receive *.c as argument! In cases where you do
want the unix command to receive an argument with a wildcard, you need to escape it so that the shell will
not expand it. For instance, find . -name \*.c will make the shell invoke find with arguments .
-name *.c.

B.1.7 The system and other users

If you are on your personal machine, you may be the only user logged in. On university machines or other
servers, there will often be other users. Here are some commands relating to them.

whoami show your login name
who show the other currently logged in users

finger otherusername get information about another user
top which processes are running on the system; use top -u to get this sorted the amount of cpu

time they are currently taking. (On Linux, try also the vmstat command.)
uptime how long has your system been up?

B.1.8 Review questions

Exercise 2.1. Write a shell script for making backups. When you call is with ./backup
somefile it should test whether somefile.bak exists, and if not, copy the one
to the other. (This is crude, if the backup file already exists, it is overwritten.)
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B.2 Compilers and libraries

B.2.1 An introduction to binary files

Purpose. In this section you will be introduced to the different types of binary files
that you encounter while programming.

One of the first things you become aware of when you start programming is the distinction between the
readable source code, and the unreadable, but executable, program code. In this tutorial you will learn
about a couple more file types:

• A source file can be compiled to an object file, which is a bit like a piece of an executable: by
itself it does nothing, but it can be combined with other object files to form an executable.
• A library is a bundle of object files that can be used to form an executable. Often, libraries are

written by an expert and contain code for specialized purposes such as linear algebra manipu-
lations. Libraries are important enough that they can be commercial, to be bought if you need
expert code for a certain purpose.

You will now learn how these types of files are created and used.

B.2.2 Simple compilation

Purpose. In this section you will learn about executables and object files.

Let’s start with a simple program that has the whole source in one file.

One file: hello.c

#include <stdlib.h>
#include <stdio.h>

int main() {
printf("hello world\n");
return 0;

}

Compile this program with your favourite compiler; we will use gcc in this tutorial, but substitute your
own as desired. As a result of the compilation, a file a.out is created, which is the executable.

%% gcc hello.c
%% ./a.out
hello world

You can get a more sensible program name with the -o option:

%% gcc -o helloprog hello.c
%% ./helloprog
hello world
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Now we move on to a program that is in more than one source file.

Main program: fooprog.c

#include <stdlib.h>
#include <stdio.h>

extern bar(char*);

int main() {
bar("hello world\n");
return 0;

}

Subprogram: fooprog.c

#include <stdlib.h>
#include <stdio.h>

void bar(char *s) {
printf("%s",s);
return;

}

As before, you can make the program with one command.

%% gcc -o foo fooprog.c foosub.c
%% ./foo
hello world

However, you can also do it in steps, compiling each file separately and then linking them together.

%% gcc -c fooprog.c
%% gcc -c foosub.c
%% gcc -o foo fooprog.o foosub.o
%% ./foo
hello world

The -c option tells the compiler to compile the source file, giving an object file . The third command than
acts as the linker , tieing together the object files into an executable. (With programs that are spread over
several files there is always the danger of editing a subroutine definition and then forgetting to update all
the places it is used. See the ‘make’ tutorial, section B.3, for a way of dealing with this.)

B.2.3 Libraries

Purpose. In this section you will learn about libraries.
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If you have written some subprograms, and you want to share them with other people (perhaps by selling
them), then handing over individual object files is inconvenient. Instead, the solution is to combine them
into a library. First we look at static libraries , for which the archive utility ar is used. A static library is
linked into your executable, becoming part of it. This may lead to large executables; you will learn about
shared libraries next, which do not suffer from this problem.

Create a directory to contain your library (depending on what your library is for this can be a system
directory such as /usr/bin), and create the library file there.

%% mkdir ../lib
%% ar cr ../lib/libfoo.a foosub.o

The nm command tells you what’s in the library:
%% nm ../lib/libfoo.a

../lib/libfoo.a(foosub.o):
00000000 T _bar

U _printf

Line with T indicate functions defined in the library file; a U indicates a function that is used.

The library can be linked into your executable by explicitly giving its name, or by specifying a library path:
%% gcc -o foo fooprog.o ../lib/libfoo.a
# or
%% gcc -o foo fooprog.o -L../lib -lfoo
%% ./foo
hello world

A third possibility is to use the LD_LIBRARY_PATH shell variable. Read the man page of your compiler
for its use, and give the commandlines that create the foo executable, linking the library through this path.

Although they are somewhat more complicated to use, shared libraries have several advantages. For in-
stance, since they are not linked into the executable but only loaded at runtime, they lead to (much) smaller
executables. They are not created with ar, but through the compiler. For instance:

%% gcc -dynamiclib -o ../lib/libfoo.so foosub.o
%% nm ../lib/libfoo.so

../lib/libfoo.so(single module):
00000fc4 t __dyld_func_lookup
00000000 t __mh_dylib_header
00000fd2 T _bar

U _printf
00001000 d dyld__mach_header
00000fb0 t dyld_stub_binding_helper
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Shared libraries are not actually linked into the executable; instead, the executable will contain the infor-
mation where the library is to be found at execution time:

%% gcc -o foo fooprog.o -L../lib -Wl,-rpath,‘pwd‘/../lib -lfoo
%% ./foo
hello world

The link line now contains the library path twice:

1. once with the -L directive so that the linker can resolve all references, and
2. once with the linker directive -Wl,-rpath,‘pwd‘/../lib which stores the path into the

executable so that it can be found at runtime.

Build the executable again, but without the -Wl directive. Where do things go wrong and why? You can
also fix this problem by using LD_LIBRARY_PATH. Explore this.

Use the command ldd to get information about what shared libraries your executable uses. (On Mac OS X,
use otool -L instead.)
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B.3 Managing projects with Make

The Make utility helps you manage the building of projects: its main task is to facilitate rebuilding only
those parts of a multi-file project that need to be recompiled or rebuilt. This can save lots of time, since it
can replace a minutes-long full installation by a single file compilation. Make can also help maintaining
multiple installations of a program on a single machine, for instance compiling a library with more than
one compiler, or compiling a program in debug and optimized mode.

Make is a Unix utility with a long history, and traditionally there are variants with slightly different be-
haviour, for instance on the various flavours of Unix such as HP-UX, AUX, IRIX. These days, it is advis-
able, no matter the platform, to use the GNU version of Make which has some very powerful extensions;
it is available on all Unix platforms (on Linux it is the only available variant), and it is a de facto stan-
dard. The manual is available at http://www.gnu.org/software/make/manual/make.html,
or you can read the book [96].

There are other build systems, most notably Scons and Bjam . We will not discuss those here. The examples
in this tutorial will be for the C and Fortran languages, but Make can work with any language, and in fact
with things like TEX that are not really a language at all; see section B.3.6.

B.3.1 A simple example

Purpose. In this section you will see a simple example, just to give the flavour of
Make.

The files for this section can be downloaded from http://tinyurl.com/ISTC-make-tutorial.

B.3.1.1 C

Make the following files:

foo.c

#include "bar.h"
int c=3;
int d=4;
int main()
{

int a=2;
return(bar(a*c*d));

}

bar.c

#include "bar.h"
int bar(int a)
{

int b=10;
return(b*a);
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}

bar.h

extern int bar(int);

and a makefile:

Makefile

fooprog : foo.o bar.o
cc -o fooprog foo.o bar.o

foo.o : foo.c
cc -c foo.c

bar.o : bar.c
cc -c bar.c

clean :
rm -f *.o fooprog

The makefile has a number of rules like

foo.o : foo.c
<TAB>cc -c foo.c

which have the general form

target : prerequisite(s)
<TAB>rule(s)

where the rule lines are indented by a TAB character.

A rule, such as above, states that a ‘target’ file foo.o is made from a ‘prerequisite’ foo.c, namely by
executing the command cc -c foo.c. The precise definition of the rule is:

• if the target foo.o does not exist or is older than the prerequisite foo.c,
• then the command part of the rule is executed: cc -c foo.c
• If the prerequisite is itself the target of another rule, than that rule is executed first.

Probably the best way to interpret a rule is:

• if any prerequisite has changed,
• then the target needs to be remade,
• and that is done by executing the commands of the rule;
• checking the prerequisite requires a recursive application of make:

– if the prerequisite does not exist, find a rule to create it;
– if the prerequisity already exists, check applicable rules to see if it needs to be remade.

If you call make without any arguments, the first rule in the makefile is evaluated. You can execute other
rules by explicitly invoking them, for instance make foo.o to compile a single file.

Exercise. Call make.
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Expected outcome. The above rules are applied: make without arguments tries to build the first target,
fooprog. In order to build this, it needs the prerequisites foo.o and bar.o, which do not exist. How-
ever, there are rules for making them, which make recursively invokes. Hence you see two compilations,
for foo.o and bar.o, and a link command for fooprog.

Caveats. Typos in the makefile or in file names can cause various errors. In particular, make sure you use
tabs and not spaces for the rule lines. Unfortunately, debugging a makefile is not simple. Make’s error
message will usually give you the line number in the make file where the error was detected.

Exercise. Do make clean, followed by mv foo.c boo.c and make again. Explain the error mes-
sage. Restore the original file name.

Expected outcome. Make will complain that there is no rule to make foo.c. This error was caused when
foo.c was a prerequisite for making foo.o, and was found not to exist. Make then went looking for a
rule to make it and no rule for creating .c files exists.

Now add a second argument to the function bar. This requires you to edit bar.c and bar.h: go ahead
and make these edits. However, it also requires you to edit foo.c, but let us for now ‘forget’ to do that.
We will see how Make can help you find the resulting error.

Exercise. Call make to recompile your program. Did it recompile foo.c?

Expected outcome. Even through conceptually foo.c would need to be recompiled since it uses the bar
function, Make did not do so because the makefile had no rule that forced it.

In the makefile, change the line

foo.o : foo.c

to

foo.o : foo.c bar.h

which adds bar.h as a prerequisite for foo.o. This means that, in this case where foo.o already exists,
Make will check that foo.o is not older than any of its prerequisites. Since bar.h has been edited, it is
younger than foo.o, so foo.o needs to be reconstructed.

Exercise. Confirm that the new makefile indeed causes foo.o to be recompiled if bar.h is changed. This
compilation will now give an error, since you ‘forgot’ to edit the use of the bar function.

B.3.1.2 Fortran

Make the following files:

foomain.F
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program test
use testmod

call func(1,2)

end program

foomod.F

module testmod

contains

subroutine func(a,b)
integer a,b
print *,a,b,c
end subroutine func

end module

and a makefile:

Makefile

fooprog : foomain.o foomod.o
gfortran -o fooprog foo.o foomod.o

foomain.o : foomain.F
gfortran -c foomain.F

foomod.o : foomod.F
gfortran -c foomod.F

clean :
rm -f *.o fooprog

If you call make, the first rule in the makefile is executed. Do this, and explain what happens.

Exercise. Call make.

Expected outcome. The above rules are applied: make without arguments tries to build the first target,
foomain. In order to build this, it needs the prerequisites foomain.o and foomod.o, which do not
exist. However, there are rules for making them, which make recursively invokes. Hence you see two
compilations, for foomain.o and foomod.o, and a link command for fooprog.

Caveats. Typos in the makefile or in file names can cause various errors. Unfortunately, debugging a make-
file is not simple. You will just have to understand the errors, and make the corrections.

Exercise. Do make clean, followed by mv foomod.c boomod.c and make again. Explain the error
message. Restore the original file name.
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Expected outcome. Make will complain that there is no rule to make foomod.c. This error was caused
when foomod.c was a prerequisite for foomod.o, and was found not to exist. Make then went looking
for a rule to make it, and no rule for making .F files exists.

Now add an extra parameter to func in foomod.F and recompile.

Exercise. Call make to recompile your program. Did it recompile foomain.F?

Expected outcome. Even through conceptually foomain.F would need to be recompiled, Make did not
do so because the makefile had no rule that forced it.

Change the line

foomain.o : foomain.F

to

foomain.o : foomain.F foomod.o

which adds foomod.o as a prerequisite for foomain.o. This means that, in this case where foomain.o
already exists, Make will check that foomain.o is not older than any of its prerequisites. Recursively,
Make will then check if foomode.o needs to be updated, which is indeed the case. After recompiling
foomode.F, foomode.o is younger than foomain.o, so foomain.o will be reconstructed.

Exercise. Confirm that the corrected makefile indeed causes foomain.F to be recompiled.

B.3.1.3 About the make file

The make file needs to be called makefile or Makefile; it is not a good idea to have files with both
names in the same directory. If you want Make to use a different file as make file, use the syntax make -f
My_Makefile.

B.3.2 Variables and template rules

Purpose. In this section you will learn various work-saving mechanisms in Make, such
as the use of variables and of template rules.

B.3.2.1 Makefile variables

It is convenient to introduce variables in your makefile. For instance, instead of spelling out the compiler
explicitly every time, introduce a variable in the makefile:

CC = gcc
FC = gfortran
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and use ${CC} or ${FC} on the compile lines:

foo.o : foo.c
${CC} -c foo.c

foomain.o : foomain.F
${FC} -c foomain.F

Exercise. Edit your makefile as indicated. First do make clean, then make foo (C) or make fooprog
(Fortran).

Expected outcome. You should see the exact same compile and link lines as before.

Caveats. Unlike in the shell, where braces are optional, variable names in a makefile have to be in braces or
parentheses. Experiment with what hapens if you forget the braces around a variable name.

One advantage of using variables is that you can now change the compiler from the commandline:

make CC="icc -O2"
make FC="gfortran -g"

Exercise. Invoke Make as suggested (after make clean). Do you see the difference in your screen out-
put?

Expected outcome. The compile lines now show the added compiler option -O2 or -g.

Make also has built-in variables:

$@ The target. Use this in the link line for the main program.
$ˆ The list of prerequisites. Use this also in the link line for the program.
$< The first prerequisite. Use this in the compile commands for the individual object files.

Using these variables, the rule for fooprog becomes

fooprog : foo.o bar.o
${CC} -o $@ $ˆ

and a typical compile line becomes

foo.o : foo.c bar.h
${CC} -c $<

You can also declare a variable

THEPROGRAM = fooprog

and use this variable instead of the program name in your makefile. This makes it easier to change your
mind about the name of the executable later.

Victor Eijkhout 315



B. Practical tutorials

Exercise. Construct a commandline so that your makefile will build the executable fooprog v2.

Expected outcome. make THEPROGRAM=fooprog v2

B.3.2.2 Template rules

In your makefile, the rules for the object files are practically identical:

• the rule header (foo.o : foo.c) states that a source file is a prerequisite for the object file
with the same base name;
• and the instructions for compiling (${CC} -c $<) are even character-for-character the same,

now that you are using Make’s built-in variables;
• the only rule with a difference is

foo.o : foo.c bar.h
${CC} -c $<

where the object file depends on the source file and another file.

We can take the commonalities and summarize them in one rule2:

%.o : %.c
${CC} -c $<

%.o : %.F
${FC} -c $<

This states that any object file depends on the C or Fortran file with the same base name. To regenerate
the object file, invoke the C or Fortran compiler with the -c flag. These template rules can function as a
replacement for the multiple specific targets in the makefiles above, except for the rule for foo.o.

The dependence of foo.o on bar.h, or foomain.o on foomod.o, can be handled by adding a rule

# C
foo.o : bar.h
# Fortran
foomain.o : foomod.o

with no further instructions. This rule states, ‘if file bar.h or foomod.o changed, file foo.o or foomain.o
needs updating’ too. Make will then search the makefile for a different rule that states how this updating is
done, and it will find the template rule.

Exercise. Change your makefile to incorporate these ideas, and test.

2. This mechanism is the first instance you’ll see that only exists in GNU make, though in this particular case there is a similar
mechanism in standard make. That will not be the case for the wildcard mechanism in the next section.
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B.3.3 Wildcards

Your makefile now uses one general rule for compiling all your source files. Often, these source files will
be all the .c or .F files in your directory, so is there a way to state ‘compile everything in this directory’?
Indeed there is. Add the following lines to your makefile, and use the variable COBJECTS or FOBJECTS
wherever appropriate.

# wildcard: find all files that match a pattern
CSOURCES := ${wildcard *.c}
# pattern substitution: replace one pattern string by another
COBJECTS := ${patsubst %.c,%.o,${SRC}}

FSOURCES := ${wildcard *.F}
FOBJECTS := ${patsubst %.F,%.o,${SRC}}

B.3.4 Miscellania

B.3.4.1 What does this makefile do?

Above you learned that issuing the make command will automatically execute the first rule in the makefile.
This is convenient in one sense3, and inconvenient in another: the only way to find out what possible actions
a makefile allows is to read the makefile itself, or the – usually insufficient – documentation.

A better idea is to start the makefile with a target
info :

@echo "The following are possible:"
@echo " make"
@echo " make clean"

Now make without explicit targets informs you of the capabilities of the makefile.

B.3.4.2 Phony targets

The example makefile contained a target clean. This uses the Make mechanisms to accomplish some
actions that are not related to file creation: calling make clean causes Make to reason ‘there is no file
called clean, so the following instructions need to be performed’. However, this does not actually cause
a file clean to spring into being, so calling make clean again will make the same instructions being
executed.

To indicate that this rule does not actually make the target, declare
.PHONY : clean

3. There is a convention among software developers that a package can be installed by the sequence ./configure ;
make ; make install, meaning: Configure the build process for this computer, Do the actual build, Copy files to some
system directory such as /usr/bin.
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One benefit of declaring a target to be phony, is that the Make rule will still work, even if you have a file
named clean.

B.3.4.3 Predefined variables and rules

Calling make -p yourtarget causes make to print out all its actions, as well as the values of all
variables and rules, both in your makefile and ones that are predefined. If you do this in a directory where
there is no makefile, you’ll see that make actually already knows how to compile .c or .F files. Find this
rule and find the definition of the variables in it.

You see that you can customize make by setting such variables as CFLAGS or FFLAGS. Confirm this with
some experimentation. If you want to make a second makefile for the same sources, you can call make -f
othermakefile to use this instead of the default Makefile.

Note, by the way, that both makefile and Makefile are legitimate names for the default makefile. It is
not a good idea to have both makefile and Makefile in your directory.

B.3.4.4 Using the target as prerequisite

Suppose you have two different targets that are treated largely the same. You would want to write:

PROGS = myfoo other
${PROGS} : $@.o

${CC} -o $@ $@.o ${list of libraries goes here}

and saying make myfoo would cause

cc -c myfoo.c
cc -o myfoo myfoo.o ${list of libraries}

and likewise for make other. What goes wrong here is the use of $@.o as prerequisite. In Gnu Make,
you can repair this as follows4:

.SECONDEXPANSION:
${PROGS} : $$@.o

Exercise. Write a second main program foosecond.c or foosecond.F, and change your makefile so
that the calls make foo and make foosecond both use the same rule.

B.3.5 Shell scripting in a Makefile

Purpose. In this section you will see an example of a longer shell script appearing in
a makefile rule.

4. Technical explanation: Make will now look at lines twice: the first time $$ gets converted to a single $, and in the second
pass $@ becomes the name of the target.
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In the makefiles you have seen so far, the command part was a single line. You can actually have as many
lines there as you want. For example, let us make a rule for making backups of the program you are building.

Add a backup rule to your makefile. The first thing it needs to do is make a backup directory:

.PHONY : backup
backup :

if [ ! -d backup ] ; then
mkdir backup

fi

Did you type this? Unfortunately it does not work: every line in the command part of a makefile rule gets
executed as a single program. Therefore, you need to write the whole command on one line:

backup :
if [ ! -d backup ] ; then mkdir backup ; fi

or if the line gets too long:

backup :
if [ ! -d backup ] ; then \

mkdir backup ; \
fi

Next we do the actual copy:

backup :
if [ ! -d backup ] ; then mkdir backup ; fi
cp myprog backup/myprog

But this backup scheme only saves one version. Let us make a version that has the date in the name of the
saved program.

The Unix date command can customize its output by accepting a format string. Type the following:
date This can be used in the makefile.

Exercise. Edit the cp command line so that the name of the backup file includes the current date.

Expected outcome. Hint: you need the backquote. Consult the Unix tutorial if you do not remember what
backquotes do.

If you are defining shell variables in the command section of a makefile rule, you need to be aware of the
following. Extend your backup rule with a loop to copy the object files:

backup :
if [ ! -d backup ] ; then mkdir backup ; fi
cp myprog backup/myprog
for f in ${OBJS} ; do \
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cp $f backup ; \
done

(This is not the best way to copy, but we use it for the purpose of demonstration.) This leads to an error
message, caused by the fact that Make interprets $f as an environment variable of the outer process. What
works is:

backup :
if [ ! -d backup ] ; then mkdir backup ; fi
cp myprog backup/myprog
for f in ${OBJS} ; do \

cp $$f backup ; \
done

(In this case Make replaces the double dollar by a single one when it scans the commandline. During the
execution of the commandline, $f then expands to the proper filename.)

B.3.6 A Makefile for LATEX

The Make utility is typically used for compiling programs, but other uses are possible too. In this section,
we will discuss a makefile for LATEX documents.

We start with a very basic makefile:

info :
@echo "Usage: make foo"
@echo "where foo.tex is a LaTeX input file"

%.pdf : %.tex
pdflatex $<

The command make myfile.pdf will invoke pdflatex myfile.tex, if needed, once. Next we
repeat invoking pdflatex until the log file no longer reports that further runs are needed:

%.pdf : %.tex
pdflatex $<
while [ ‘cat ${basename $@}.log | grep "Rerun to get" | wc -l‘ -gt 0 ] ; do \
pdflatex $< ; \

done

We use the ${basename fn} macro to extract the base name without extension from the target name.

In case the document has a bibliography or index, we run bibtex and makeindex.
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%.pdf : %.tex
pdflatex ${basename $@}
-bibtex ${basename $@}
-makeindex ${basename $@}
while [ ‘cat ${basename $@}.log | grep "Rerun to get" \

| wc -l‘ -gt 0 ] ; do \
pdflatex ${basename $@} ; \

done

The minus sign at the start of the line means that Make should not abort if these commands fail.

Finally, we would like to use Make’s facility for taking dependencies into account. We could write a make-
file that has the usual rules

mainfile.pdf : mainfile.tex includefile.tex

but we can also discover the include files explicitly. The following makefile is invoked with

make pdf TEXTFILE=mainfile

The pdf rule then uses some shell scripting to discover the include files (but not recursively), and it calls
emphMake again, invoking another rule, and passing the dependencies explicitly.

pdf :
export includes=‘grep "ˆ.input " ${TEXFILE}.tex \

| awk ’{v=v FS $$2".tex"} END {print v}’‘ ; \
${MAKE} ${TEXFILE}.pdf INCLUDES="$$includes"

%.pdf : %.tex ${INCLUDES}
pdflatex $< ; \
while [ ‘cat ${basename $@}.log \

| grep "Rerun to get" | wc -l‘ -gt 0 ] ; do \
pdflatex $< ; \

done

This shell scripting can also be done outside the makefile, generating the makefile dynamically.
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B.4 Source control

Source code control systems, also called revision control systems, are a way of storing software, where not
only the current version is stored, but also all previous versions. This is done by maintaining a repository
for all versions, while one or more users work on a ‘checked out’ copy of the latest version. Those of the
users that are developers can then commit their changes to the repository. Other users then update their
local copy. The repository typically resides on a remote machine that is reliably backup up.

There are various reasons for keeping your source in a repository.

• If you work in a team, it is the best way to synchronize your work with your colleagues. It is also
a way to document what changes were made, by whom, and why.
• It will allow you to roll back a defective code to a version that worked.
• It allows you to have branches, for instance for customizations that need to be kept out of the

main development line. If you are working in a team, a branch is a way to develop a major
feature, stay up to date with changes your colleagues make, and only add your feature to the
main development when it is sufficiently tested.
• If you work alone, it is a way to synchronize between more than one machine. (You could even

imagine traveling without all your files, and installing them from the repository onto a borrowed
machine as the need arises.)
• Having a source code repository is one way to backup your work.

There are various source code control systems; in this tutorial you will learn the basics of Subversion , also
called svn .

B.4.1 How to do this tutorial

This lab should be done two people, to simulate a group of programmers working on a joint project. You
can also do this on your own by using two copies of the repository.

B.4.2 Create and populate a repository

Purpose. In this section you will create a repository and make a local copy to work
on.

First we need to have a repository. In practice, you will often use one that has been set up by a sysadmin,
but there are several ways to set up a repository yourself.

• There are commercial and free hosting services such as http://code.google.com/projecthosting
(open source only) or http://unfuddle.com/about/tour/plans. Once you create a
repository there, you can make a local copy on your computer:

%% svn co http://yourname.unfuddle.com/svn/yourname_yourproject/ project
Checked out revision 0.

where co is short for ‘check out’.
• Alternatively, you can create a repository in the local file system:
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%% svnadmin create ./repository --fs-type=fsfs

To make it accessible do
%% chmod -R g+rwX ./repository
%% chmod g+rX ˜

To make a copy of the repository you specify a file URL:
%% svn co file://‘pwd‘/repository project

You now have an empty directory project.

Exercise. Go into the project directory and see if it is really empty.

Expected outcome. There is a hidden directory .svn

The project directory knows where the master copy of the repository is stored.

Exercise. Do svn info

Expected outcome. You will see the URL of the repository and the revision number

Caveats. Make sure you are in the right directory. In the outer directories, you will get svn: warning:
’.’ is not a working copy

B.4.3 New files

Purpose. In this section you will make some simple changes: editing an existing file
and creating a new file.

One student now makes a file to add to the repository5.
%% cat > firstfile
a
b
c
d
e
f
ˆD

This file is unknown to svn:
%% svn status
? firstfile

5. It is also possible to use svn import to create a whole repository from an existing directory tree.
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We need to declare the file as belonging to the repository; a subsequent svn commit command then
copies it into the master repository.

%% svn add firstfile
A firstfile
%% svn status
A firstfile
%% svn commit -m "made a first file"
Adding firstfile
Transmitting file data .
Committed revision 1.

Exercise. The second student can now do svn update to update their copy of the repository

Expected outcome. svn should report A firstfile and Updated to revision 1.. Check that
the contents of the file are correct.

Caveats. In order to do the update command, you have to be in a checked-out copy of the repository. Do
svn info to make sure that you are in the right place.

Exercise. Let both students create a new directory with a few files. Declare the directory and commit it. Do
svn update to obtain the changes the other mde.

Expected outcome. You can do svn add on the directory, this will also add the files contained in it.

Caveats. Do not forget the commit.

In order for svn to keep track of your files, you should never do cp or mv on files that are in the repository.
Instead, do svn cp or svn mv. Likewise, there are commands svn rm and svn mkdir.

B.4.4 Conflicts

Purpose. In this section you will learn about how do deal with conflicting edits by two
users of the same repository.

Now let’s see what happens when two people edit the same file. Let both students make an edit to firstfile,
but one to the top, the other to the bottom. After one student commits the edit, the other will see

%% emacs firstfile # make some change
%% svn commit -m "another edit to the first file"
Sending firstfile
svn: Commit failed (details follow):
svn: Out of date: ’firstfile’ in transaction ’5-1’

The solution is to get the other edit, and commit again. After the update, svn reports that it has resolved a
conflict successfully.
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%% svn update
G firstfile
Updated to revision 5.
%% svn commit -m "another edit to the first file"
Sending firstfile
Transmitting file data .
Committed revision 6.

The G at the start of the line indicates that svn has resolved a conflicting edit.

If both students make edits on the same part of the file, svn can no longer resolve the conflicts. For instance,
let one student insert a line between the first and the second, and let the second student edit the second line.
Whoever tries to commit second, will get messages like this:

%% svn commit -m "another edit to the first file"
svn: Commit failed (details follow):
svn: Aborting commit: ’/share/home/12345/yourname/myproject/firstfile’
remains in conflict
%% svn update
C firstfile
Updated to revision 7.

Subversion will give you several options. For instance, you can type e to open the file in an editor. You can
also type p for ‘postpone’ and edit it later. Opening the file in an editor, it will look like

aa
<<<<<<< .mine
bb
=======
123
b
>>>>>>> .r7
cc

indicating the difference between the local version (‘mine’) and the remote. You need to edit the file to
resolve the conflict.

After this, you tell svn that the conflict was resolved, and you can commit:

%% svn resolved firstfile
Resolved conflicted state of ’firstfile’
%% svn commit -m "another edit to the first file"
Sending firstfile
Transmitting file data .
Committed revision 8.
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The other student then needs to do another update to get the correction.

B.4.5 Inspecting the history

Purpose. In this section, you will learn how to get information about the repository.

You’ve already seen svn info as a way of getting information about the repository. To get the history,
do svn log to get all log messages, or svn log 2:5 to get a range.

To see differences in various revisions of individual files, use svn diff. First do svn commit and svn
update to make sure you are up to date. Now do svn diff firstfile. No output, right? Now make
an edit in firstfile and do svn diff firstfile again. This gives you the difference between the
last commited version and the working copy.

You can also ask for differences between committed versions with svn diff -r 4:6 firstfile.

The output of this diff command is a bit cryptic, but you can understand it without too much trouble. There
are also fancy GUI implementations of svn for every platform that show you differences in a much nicer
way.

If you simply want to see what a file used to look like, do svn cat -r 2 firstfile. To get a copy of
a certain revision of the repository, do svn export -r 3 . ../rev3, which exports the repository
at the current directory (‘dot’) to the directory ../rev3.

If you save the output of svn diff, it is possible to apply it with the Unix patch command. This is a
quick way to send patches to someone without them needing to check out the repository.

B.4.6 Shuffling files around

We now realize that we really wanted all these files in a subdirectory in the repository. First we create the
directory, putting it under svn control:

%% svn mkdir trunk
A trunk

Then we move all files there, again prefixing all comands with svn:

%% for f in firstfile otherfile myfile mysecondfile ; do \
svn mv $f trunk/ ; done

A trunk/firstfile
D firstfile
A trunk/otherfile
D otherfile
A trunk/myfile
D myfile
A trunk/mysecondfile
D mysecondfile
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Finally, we commit these changes:

%% svn commit -m "trunk created"
Deleting firstfile
Adding trunk/firstfile
Deleting myfile
Deleting mysecondfile
Deleting otherfile
Adding trunk
Adding trunk/myfile
Adding trunk/mysecondfile
Adding trunk/otherfile

You probably now have picked up on the message that you always use svn to do file manipulations. Let’s
pretend this has slipped your mind.

Exercise. Create a file somefile and commit it to the repository. Then do rm somefile, thereby
deleting a file without svn knowing about it. What is the output of svn status?

Expected outcome. svn indicates with an exclamation point that the file has disappeared.

You can fix this situation in a number of ways:

• svn revert restores the file to the state in which it was last restored. For a deleted file, this
means that it is brought back into existence from the repository. This command is also useful to
undo any local edits, if you change your mind about something.
• svn rm firstfile is the official way to delete a file. You can do this even if you have

already deleted the file outside svn.
• Sometimes svn will get confused about your attempts to delete a file. You can then do svn
--force rm yourfile.

B.4.7 Branching and merging

Suppose you want to tinker with the repository, while still staying up to date with changes that other people
make.

%% svn copy \
<the URL of your repository>/trunk \
<the URL of your repository>/onebranch \
-m "create a branch"

Committed revision 11.

You can check this out as before:
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%% svn co <the URL of your repository>/onebranch \
projectbranch

A projectbranch/mysecondfile
A projectbranch/otherfile
A projectbranch/myfile
A projectbranch/firstfile
Checked out revision 11.

Now, if you make edits in this branch, they will not be visible in the trunk:

%% emacs firstfile # do some edits here
%% svn commit -m "a change in the branch"
Sending firstfile
Transmitting file data .
Committed revision 13.
%% (cd ../myproject/trunk/ ; svn update )
At revision 13.

On the other hand, edits in the main trunk can be pulled into this branch:

%% svn merge ˆ/trunk
--- Merging r13 through r15 into ’.’:
U secondfile

When you are done editing, the branch edits can be added back to the trunk. For this, it is best to have a
clean checkout of the branch:

%% svn co file://‘pwd‘/repository/trunk mycleanproject
A # all the current files

and then do a special merge:

%% cd mycleanproject
%% svn merge --reintegrate ˆ/branch
--- Merging differences between repository URLs into ’.’:
U firstfile
U .

%% svn info
Path: .
URL: <the URL of your repository>/trunk
Repository Root: <the URL of your repository>
Repository UUID: dc38b821-b9c6-4a1a-a194-a894fba1d7e7
Revision: 16
Node Kind: directory
Schedule: normal
Last Changed Author: build
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Last Changed Rev: 14
Last Changed Date: 2009-05-18 13:34:55 -0500 (Mon, 18 May 2009)
%% svn commit -m "trunk updates from the branch"
Sending .
Sending firstfile
Transmitting file data .
Committed revision 17.

B.4.8 Repository browsers

The svn command can give you some amount of information about a repository, but there are graphical
tools that are easier to use and that give a better overview of a repository. For the common platforms, several
such tools exist, free or commercial. Here is a browser based tool: http://wwww.websvn.info.

B.4.9 Other source control systems

Lately, there has been considerable interest in ‘distributed source code control’ system, such as git or
mercurial . In these systems, each user has a local repository against which commits can be made. This has
some advantages over systems like svn.

Consider the case where a developer is working on a patch that takes some time to code and test. During this
time, development on the project goes on, and by the time the patch can be commited, too many changes
have been made for svn to be able to merge the patch. As a result, branching and merging is often a
frustrating experience with traditional system. In distributed systems, the developer can do commits against
the local repository, and roll back versions as needed. Additionally, when the patch is ready to merge back,
it is not a single massive change, but a sequence of small changes, which the source control system should
be better able to handle.

A good introduction to Mercurial can be found at http://www.hginit.com/.
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B.5 Scientific Data Storage

There are many ways of storing data, in particular data that comes in arrays. A surprising number of people
stores data in spreadsheets, then exports them to ascii files with comma or tab delimiters, and expects other
people (or other programs written by themselves) to read that in again. Such a process is wasteful in several
respects:

• The ascii representation of a number takes up much more space than the internal binary repre-
sentation. Ideally, you would want a file to be as compact as the representation in memory.
• Conversion to and from ascii is slow; it may also lead to loss of precision.

For such reasons, it is desirable to have a file format that is based on binary storage. There are a few more
requirements on a useful file format:

• Since binary storage can differ between platforms, a good file format is platform-independent.
This will, for instance, prevent the confusion between big-endian and little-endian storage, as
well as conventions of 32 versus 64 bit floating point numbers.
• Application data can be heterogeneous, comprising integer, character, and floating point data.

Ideally, all this data should be stored together.
• Application data is also structured. This structure should be reflected in the stored form.
• It is desirable for a file format to be self-documenting. If you store a matrix and a right-hand side

vector in a file, wouldn’t it be nice if the file itself told you which of the stored numbers are the
matrix, which the vector, and what the sizes of the objects are?

This tutorial will introduce the HDF5 library, which fulfills these requirements. HDF5 is a large and com-
plicated library, so this tutorial will only touch on the basics. For further information, consult http://
www.hdfgroup.org/HDF5/. While you do this tutorial, keep your browser open on http://www.
hdfgroup.org/HDF5/doc/ or http://www.hdfgroup.org/HDF5/RM/RM_H5Front.html
for the exact syntax of the routines.

B.5.1 Introduction to HDF5

As described above, HDF5 is a file format that is machine-independent and self-documenting. Each HDF5
file is set up like a directory tree, with subdirectories, and leaf nodes which contain the actual data. This
means that data can be found in a file by referring to its name, rather than its location in the file. In this
section you will learn to write programs that write to and read from HDF5 files. In order to check that the
files are as you intend, you can use the h5dump utility on the command line.6

Just a word about compatibility. The HDF5 format is not compatible with the older version HDF4, which is
no longer under development. You can still come across people using hdf4 for historic reasons. This tutorial
is based on HDF5 version 1.6. Some interfaces changed in the current version 1.8; in order to use 1.6 APIs
with 1.8 software, add a flag -DH5_USE_16_API to your compile line.

Many HDF5 routines are about creating objects: file handles, members in a dataset, et cetera. The general
syntax for that is

6. In order to do the examples, the h5dump utility needs to be in your path, and you need to know the location of the hdf5.h
and libhdf5.a and related library files.
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hid_t h_id;
h_id = H5Xsomething(...);

Failure to create the object is indicated by a negative return parameter, so it would be a good idea to create
a file myh5defs.h containing:

#include "hdf5.h"
#define H5REPORT(e) \

{if (e<0) {printf("\nHDF5 error on line %d\n\n",__LINE__); return e;}}

and use this as:

#include "myh5defs.h"

hid_t h_id;
h_id = H5Xsomething(...); H5REPORT(h_id);

B.5.2 Creating a file

First of all, we need to create an HDF5 file.

hid_t file_id;
herr_t status;

file_id = H5Fcreate( filename, ... );
...

status = H5Fclose(file_id);

This file will be the container for a number of data items, organized like a directory tree.

Exercise. Create an HDF5 file by compiling and running the create.c example below.

Expected outcome. A file file.h5 should be created.

Caveats. Be sure to add HDF5 include and library directories:
cc -c create.c -I. -I/opt/local/include
and
cc -o create create.o -L/opt/local/lib -lhdf5. The include and lib directories will be
system dependent.

/*
* File: create.c

* Author: Victor Eijkhout

*/
#include "myh5defs.h"
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#define FILE "file.h5"

main() {

hid_t file_id; /* file identifier */
herr_t status;

/* Create a new file using default properties. */
file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); H5REPORT(file_id);

/* Terminate access to the file. */
status = H5Fclose(file_id);

}

You can display the created file on the commandline:

%% h5dump file.h5
HDF5 "file.h5" {
GROUP "/" {
}
}

Note that an empty file corresponds to just the root of the directory tree that will hold the data.

B.5.3 Datasets

Next we create a dataset, in this example a 2D grid. To describe this, we first need to construct a dataspace:

dims[0] = 4; dims[1] = 6;
dataspace_id = H5Screate_simple(2, dims, NULL);
dataset_id = H5Dcreate(file_id, "/dset", dataspace_id, .... );
....
status = H5Dclose(dataset_id);
status = H5Sclose(dataspace_id);

Note that datasets and dataspaces need to be closed, just like files.

Exercise. Create a dataset by compiling and running the dataset.c code below

Expected outcome. This creates a file dset.h that can be displayed with h5dump.

/*
* File: dataset.c

* Author: Victor Eijkhout
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*/
#include "myh5defs.h"
#define FILE "dset.h5"

main() {

hid_t file_id, dataset_id, dataspace_id; /* identifiers */
hsize_t dims[2];
herr_t status;

/* Create a new file using default properties. */
file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create the data space for the dataset. */
dims[0] = 4;
dims[1] = 6;
dataspace_id = H5Screate_simple(2, dims, NULL);

/* Create the dataset. */
dataset_id = H5Dcreate(file_id, "/dset", H5T_NATIVE_INT, dataspace_id, H5P_DEFAULT);
/*H5T_STD_I32BE*/

/* End access to the dataset and release resources used by it. */
status = H5Dclose(dataset_id);

/* Terminate access to the data space. */
status = H5Sclose(dataspace_id);

/* Close the file. */
status = H5Fclose(file_id);

}

We again view the created file online:

%% h5dump dset.h5
HDF5 "dset.h5" {
GROUP "/" {

DATASET "dset" {
DATATYPE H5T_STD_I32BE
DATASPACE SIMPLE { ( 4, 6 ) / ( 4, 6 ) }
DATA {
(0,0): 0, 0, 0, 0, 0, 0,
(1,0): 0, 0, 0, 0, 0, 0,
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(2,0): 0, 0, 0, 0, 0, 0,
(3,0): 0, 0, 0, 0, 0, 0
}

}
}
}

The datafile contains such information as the size of the arrays you store. Still, you may want to add related
scalar information. For instance, if the array is output of a program, you could record with what input
parameter was it generated.

parmspace = H5Screate(H5S_SCALAR);
parm_id = H5Dcreate

(file_id,"/parm",H5T_NATIVE_INT,parmspace,H5P_DEFAULT);

Exercise. Add a scalar dataspace to the HDF5 file, by compiling and running the parmwrite.c code
below.

Expected outcome. A new file wdset.h5 is created.

/*
* File: parmdataset.c

* Author: Victor Eijkhout

*/
#include "myh5defs.h"
#define FILE "pdset.h5"

main() {

hid_t file_id, dataset_id, dataspace_id; /* identifiers */
hid_t parm_id,parmspace;
hsize_t dims[2];
herr_t status;

/* Create a new file using default properties. */
file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create the data space for the dataset. */
dims[0] = 4;
dims[1] = 6;
dataspace_id = H5Screate_simple(2, dims, NULL);

/* Create the dataset. */
dataset_id = H5Dcreate

334 Introduction to High Performance Scientific Computing



B.5. Scientific Data Storage

(file_id, "/dset", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

/* Add a descriptive parameter */
parmspace = H5Screate(H5S_SCALAR);
parm_id = H5Dcreate

(file_id,"/parm",H5T_NATIVE_INT,parmspace,H5P_DEFAULT);

/* End access to the dataset and release resources used by it. */
status = H5Dclose(dataset_id);
status = H5Dclose(parm_id);

/* Terminate access to the data space. */
status = H5Sclose(dataspace_id);
status = H5Sclose(parmspace);

/* Close the file. */
status = H5Fclose(file_id);

}

%% h5dump wdset.h5
HDF5 "wdset.h5" {
GROUP "/" {

DATASET "dset" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( 4, 6 ) / ( 4, 6 ) }
DATA {
(0,0): 0.5, 1.5, 2.5, 3.5, 4.5, 5.5,
(1,0): 6.5, 7.5, 8.5, 9.5, 10.5, 11.5,
(2,0): 12.5, 13.5, 14.5, 15.5, 16.5, 17.5,
(3,0): 18.5, 19.5, 20.5, 21.5, 22.5, 23.5
}

}
DATASET "parm" {

DATATYPE H5T_STD_I32LE
DATASPACE SCALAR
DATA {
(0): 37
}

}
}
}
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B.5.4 Writing the data

The datasets you created allocate the space in the hdf5 file. Now you need to put actual data in it. This is
done with the H5Dwrite call.

/* Write floating point data */
for (i=0; i<24; i++) data[i] = i+.5;
status = H5Dwrite

(dataset,H5T_NATIVE_DOUBLE,H5S_ALL,H5S_ALL,H5P_DEFAULT,
data);

/* write parameter value */
parm = 37;
status = H5Dwrite

(parmset,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,
&parm);

/*
* File: parmwrite.c

* Author: Victor Eijkhout

*/
#include "myh5defs.h"
#define FILE "wdset.h5"

main() {

hid_t file_id, dataset, dataspace; /* identifiers */
hid_t parmset,parmspace;
hsize_t dims[2];
herr_t status;
double data[24]; int i,parm;

/* Create a new file using default properties. */
file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create the dataset. */
dims[0] = 4; dims[1] = 6;
dataspace = H5Screate_simple(2, dims, NULL);
dataset = H5Dcreate

(file_id, "/dset", H5T_NATIVE_DOUBLE, dataspace, H5P_DEFAULT);

/* Add a descriptive parameter */
parmspace = H5Screate(H5S_SCALAR);
parmset = H5Dcreate

(file_id,"/parm",H5T_NATIVE_INT,parmspace,H5P_DEFAULT);
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/* Write data to file */
for (i=0; i<24; i++) data[i] = i+.5;
status = H5Dwrite

(dataset,H5T_NATIVE_DOUBLE,H5S_ALL,H5S_ALL,H5P_DEFAULT,
data); H5REPORT(status);

/* write parameter value */
parm = 37;
status = H5Dwrite

(parmset,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,
&parm); H5REPORT(status);

/* End access to the dataset and release resources used by it. */
status = H5Dclose(dataset);
status = H5Dclose(parmset);

/* Terminate access to the data space. */
status = H5Sclose(dataspace);
status = H5Sclose(parmspace);

/* Close the file. */
status = H5Fclose(file_id);

}

%% h5dump wdset.h5
HDF5 "wdset.h5" {
GROUP "/" {

DATASET "dset" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( 4, 6 ) / ( 4, 6 ) }
DATA {
(0,0): 0.5, 1.5, 2.5, 3.5, 4.5, 5.5,
(1,0): 6.5, 7.5, 8.5, 9.5, 10.5, 11.5,
(2,0): 12.5, 13.5, 14.5, 15.5, 16.5, 17.5,
(3,0): 18.5, 19.5, 20.5, 21.5, 22.5, 23.5
}

}
DATASET "parm" {

DATATYPE H5T_STD_I32LE
DATASPACE SCALAR
DATA {
(0): 37
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}
}

}
}

If you look closely at the source and the dump, you see that the data types are declared as ‘native’, but
rendered as LE. The ‘native’ declaration makes the datatypes behave like the built-in C or Fortran data
types. Alternatively, you can explicitly indicate whether data is little endian or big endian . These terms
describe how the bytes of a data item are ordered in memory. Most architectures use little endian, as you
can see in the dump output, but, notably, IBM uses big endian.

B.5.5 Reading

Now that we have a file with some data, we can do the mirror part of the story: reading from that file. The
essential commands are

h5file = H5Fopen( .... )
....
H5Dread( dataset, .... data .... )

where the H5Dread command has the same arguments as the corresponding H5Dwrite.

Exercise. Read data from the wdset.h5 file that you create in the previous exercise, by compiling and
running the allread.c example below.

Expected outcome. Running the allread executable will print the value 37 of the parameter, and the
value 8.5 of the (1,2) data point of the array.

Caveats. Make sure that you run parmwrite to create the input file.

/*
* File: allread.c

* Author: Victor Eijkhout

*/
#include "myh5defs.h"
#define FILE "wdset.h5"

main() {

hid_t file_id, dataset, parmset;
herr_t status;
double data[24]; int parm;

/* Open an existing file */
file_id = H5Fopen(FILE, H5F_ACC_RDONLY, H5P_DEFAULT); H5REPORT(file_id);
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/* Locate the datasets. */
dataset = H5Dopen(file_id, "/dset"); H5REPORT(dataset);
parmset = H5Dopen(file_id,"/parm"); H5REPORT(parmset);

/* Read data back */
status = H5Dread

(parmset,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,
&parm); H5REPORT(status);

printf("parameter value: %d\n",parm);

status = H5Dread
(dataset,H5T_NATIVE_DOUBLE,H5S_ALL,H5S_ALL,H5P_DEFAULT,
data); H5REPORT(status);

printf("arbitrary data point [1,2]: %e\n",data[1*6+2]);

/* Terminate access to the datasets */
status = H5Dclose(dataset); H5REPORT(status);
status = H5Dclose(parmset); H5REPORT(status);

/* Close the file. */
status = H5Fclose(file_id);

}

%% ./allread
parameter value: 37
arbitrary data point [1,2]: 8.500000e+00
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B.6 Scientific Libraries

There are many libraries for scientific computing. Some are specialized to certain application areas, others
are quite general. In this section we will take a brief look at the PETSc library for sparse matrix computa-
tions, and the BLAS/Lapack libraries for dense computations.

B.6.1 The Portable Extendable Toolkit for Scientific Computing

PETSc, the Portable Extendable Toolkit for Scientifc Computation [], is a large powerful library, mostly
concerned with linear and nonlinear system of equations that arise from discretized PDEs. Since it has
many hundreds of routines (and a good manual already exists) we limit this tutorial to going through a few
simple, yet representative, PETSc programs.

B.6.1.1 What is in PETSc?

PETSc can be used as a library in the traditional sense, where you use some high level functionality, such
as solving a nonlinear system of equations, in your program. However, it can also be used as a toolbox, to
compose your own numerical applications using low-level tools.

• Linear system solvers (sparse/dense, iterative/direct)
• Nonlinear system solvers
• Tools for distributed matrices
• Support for profiling, debugging, graphical output

The basic functionality of PETSc can be extended through external packages:

• Dense linear algebra: Scalapack, Plapack
• Grid partitioning software: ParMetis, Jostle, Chaco, Party
• ODE solvers: PVODE
• Eigenvalue solvers (including SVD): SLEPc
• Optimization: TAO

B.6.1.2 Design of PETSc

PETSc has an object-oriented design, even though it is implemented in C, a not object oriented language.
PETSc is also parallel: all objects in Petsc are defined on an MPI communicator (section 2.5.3.3). For an
object such as a matrix this means that it is stored distributed over the processors in the communicator; for
objects such as solvers it means that their operation is distributed over the communicator. PETSc objects
can only interact if they are based on the same communicator. Most of the time objects will be defined on
the MPI_COMM_WORLD communicator, but subcommunicators can be used too. This way, you can define
a matrix or a linear system on all your available processors, or on a subset.

Parallelism is handled through MPI. You may need to have occasional MPI calls in a PETSc code, but the
vast bulk of communication is done behind the scenes inside PETSc calls. Shared memory parallel (such
as through OpenMP; section 2.5.2) is not used explicitly, but the user can incorporate it without problems.

The object-oriented design means that a call such as matrix-vector multiplication
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MATMult(A,x,y); // y <- A x

looks the same, regardless whether A is sparse or dense, sequential or parallel.

One implication of this is that the actual data are usually hidden from the user. Data can be accessed through
routines such as

double *array;
VecGetArray(myvector,&array);

but most of the time the application does not explicitly maintain the data, only the PETSc objects containing
the data. As the ultimate consequence of this, the user usually does not allocate data; rather, matrix and
vector arrays get created through the PETSc create calls, and subsequent values are inserted through PETSc
calls:

MatSetValue(A,i,j,v,INSERT_VALUES); // A[i,j] <- v

This may feel like the user is giving up control, but it actually makes programming a lot easier, since the
user does not have to worry about details of storage schemes, especially in parallel.

B.6.1.3 Small examples

In this section we will go through a number of successively more complicated examples of the use of
PETSc. The files can be downloaded from
http://tinyurl.com/ISTC-petsc-tutorial. While doing these examples it is a good idea to
keep the manual page open:
http://tinyurl.com/PETSc-man-page. You can also download a manual in pdf form from
http://tinyurl.com/PETSc-pdf-manual.

When you do these examples, make sure to use a version of PETSc that has debug mode enabled!

B.6.1.3.1 Program structure The first example (we only list C sources in this book; the download in-
cludes their Fortran equivalents) illustrates the basic structure of a PETSc program: the include file at the
top and the calls to PetscInitialize, PetscFinalize. Further more it uses two routines:

• PetscOptionsGetInt is used to check if the program was invoked with a -n option and a
numerical value: if you ran your program as ./init -n 45, the variable n should have the
value 45.
• PetscPrintf functions like the printf function, except that only one processor executes the

print command. If you ran your program as mpiexec -np 4 init and you used printf,
you would get four copies of the output.

init.c

#include "petsc.h"

#undef __FUNCT__
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#define __FUNCT__ "main"
int main(int argc,char **argv)
{

MPI_Comm comm;
PetscInt n = 20;
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscInitialize(&argc,&argv,0,0); CHKERRQ(ierr);
comm = PETSC_COMM_WORLD;
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL); CHKERRQ(ierr);
printf("n=%d\n",n);
ierr = PetscPrintf(comm,"Input parameter: %d\n",n); CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);
PetscFunctionReturn(0);

}

Just about the only lines of MPI that you need to know when programming PETSc are:

MPI_Comm_size(comm,&ntids);
MPI_Comm_rank(comm,&mytid);

The first line gives the size of the communicator, meaning how many processes there are; the second one
gives the rank of the current process as a number from zero to the number of processes minus one.

Exercise 2.1. Add these two lines to your program. Look up the routine PetscSynchronizedPrintf
in the documentation and use it to let each process print out a line like Process 3
out of 7. You may also need to use PetscSynchronizedFlush.

B.6.1.3.2 Vectors Next we start making PETSc objects, first a vector.

vec.c

#include "petsc.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **argv)
{

MPI_Comm comm;
int ntids,mytid,myfirst,mylast,i;
Vec x;
PetscInt n = 20;
PetscReal one = 1.0;
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscInitialize(&argc,&argv,0,0); CHKERRQ(ierr);
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comm = PETSC_COMM_WORLD;
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);

CHKERRQ(ierr);

MPI_Comm_size(comm,&ntids); MPI_Comm_rank(comm,&mytid);

ierr = VecCreate(comm,&x);CHKERRQ(ierr);
ierr = VecSetSizes(x,PETSC_DECIDE,n); CHKERRQ(ierr);
ierr = VecSetType(x,VECMPI); CHKERRQ(ierr);

ierr = VecGetOwnershipRange(x,&myfirst,&mylast); CHKERRQ(ierr);
ierr = PetscSynchronizedPrintf(comm,"Proc %d, range %d--%d\n",

mytid,myfirst,mylast); CHKERRQ(ierr);

ierr = VecSet(x,&one); CHKERRQ(ierr);
ierr = VecAssemblyBegin(x); CHKERRQ(ierr);
ierr = VecAssemblyEnd(x); CHKERRQ(ierr);
ierr = VecView(x,0); CHKERRQ(ierr);

ierr = VecDestroy(x); CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);
PetscFunctionReturn(0);

}

Note how it takes several calls to fully create the vector object:

• The type VECMPI means that the vector will be distributed.
• The routine setting the size has two size parameters; the second specifies that the global size is n,

and the first one says that you leave the distribution for PETSc to decide.

At the end of the program there is a to VecDestroy, which deallocates the memory for the vector. While
this is strictly speaking not necessary for the functioning of the program, it is a good idea to issue Destroy
calls for each Create call, since it can prevent potential memory leaks .

Exercise 2.2. Comment out the VecDestroy call, and run the program with the option -malloc_dump.
PETSc will now report on all memory that had not been freed at the time of the
PetscFinalize call.

If you run the program in parallel the vector will be created distributed over the processors. The program
contains a call to VecGetOwnershipRange to discover what part of the vector lives on what processor.
You see that the VecView calls display for each processor precisely that part of the vector.

Exercise 2.3. The listing has a call to VecSet to set the vector elements to a constant value.
Remove this line. Use the myfirst,mylast variables and the PETSc routine VecSetValue
to let every process set its local vector elements to the processor number. (The last
argument of VecSetValue should be INSERT_VALUES.) That is, if the vector
is six elements long and there are three processors, the resulting vector should be
(0, 0, 1, 1, 2, 2).
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Exercise 2.4. Change the code from the previous exercise. Now every vector element should
be the sum of the processor number and the previous processor numbers; in the above
example the result should be (0, 0, 1, 1, 3, 3). Read the man page for VecSetValue!

Run the code from the previous two exercises again, adding a commandline argument -log_summary.
Observe that the first code has no messages in the VecScatterBegin/End calls, but the second one
does.

B.6.1.3.3 Matrices Let’s move up to matrices. Creating a matrix is similar to creating a vector. In this
case the type is MPIAIJ which stands for a distributed sparse matrix.

mat.c

#include "petsc.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **argv)
{

MPI_Comm comm;
int ntids,mytid,localsize,myfirst,mylast,i;
Mat A;
PetscInt n = 20;
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscInitialize(&argc,&argv,0,0); CHKERRQ(ierr);
comm = PETSC_COMM_WORLD;
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);

CHKERRQ(ierr);

MPI_Comm_size(comm,&ntids); MPI_Comm_rank(comm,&mytid);
localsize = PETSC_DECIDE;
ierr = PetscSplitOwnership(comm,&localsize,&n); CHKERRQ(ierr);

ierr = MatCreate(comm,&A); CHKERRQ(ierr);
ierr = MatSetType(A,MATMPIAIJ); CHKERRQ(ierr);
ierr = MatSetSizes(A,localsize,localsize,

PETSC_DECIDE,PETSC_DECIDE); CHKERRQ(ierr);
ierr = MatGetOwnershipRange(A,&myfirst,&mylast); CHKERRQ(ierr);

for (i=myfirst; i<mylast; i++) {
PetscReal v=1.0*mytid;
ierr = MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES); CHKERRQ(ierr);

}
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatView(A,0); CHKERRQ(ierr);
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ierr = MatDestroy(A); CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);
PetscFunctionReturn(0);

}

In this example a diagonal matrix is constructed, with each processor setting only its locally stored elements.
Exercise 2.5. In addition to setting the diagonal, also set the first subdiagonal and the first

superdiagonal, that is, the elements (i, i − 1) and (i, i + 1). To set all three elements
in a row with one call you can do this:

for (i=myfirst; i<mylast; i++) {
PetscInt j[3]; PetscReal v[3];
j[0] = i-1; j[1] = i; j[2] = i+1;
v[0] = -1; v[1] = 1.0*mytid; v[2] = +1;
ierr = MatSetValues(A,1,&i,3,j,v,INSERT_VALUES); CHKERRQ(ierr);

}

However, this code is not entirely correct. Edit the program using this fragment and
run it. Diagnose the problem and fix it.

B.6.1.3.4 Matrix-vector operations Next we will merge the files set.c and mat.c and multiply the
matrix and the vector. Do so, making sure that the size declarations of the matrix and the vector are com-
patible. You also need a second vector to store the result of the multiplication. This is easiest done by

ierr = VecDuplicate(x,&y); CHKERRQ(ierr);

Exercise 2.6. Look up the MatMult routine in the documentation and use it your program. Use
VecView to inspect the result. Note that no size parameters or anything pertaining to
parallelism appears in the calling sequence.

To solve a linear system you need to create a solver object and give it the matrix as operator:
ierr = KSPCreate(comm,&solver); CHKERRQ(ierr);
ierr = KSPSetOperators(solver,A,A,0); CHKERRQ(ierr);
ierr = KSPSolve(solver,x,y); CHKERRQ(ierr);
ierr = VecView(y,0); CHKERRQ(ierr);

You have just used the default linear system solver. Run the program again, but with the option -ksp_view.
This will tell you all the details of what solver was used.

Solving the linear system is a one line call to KSPSolve. The story would end there if it weren’t for some
complications:

• Iterative methods can fail, and the solve call does not tell us whether that happened.
• If the system was solved successfully, we would like to know in how many iterations.
• There can be other reason for the iterative method to halt, such as reaching its maximum number

of iterations without converging.
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Exercise 2.7. Use the routine KSPGetConvergedReason to inspect the status of the solu-
tion vector. Use KSPGetIterationNumber to see how many iterations it took.

The workings of a PETSc program can be customized to a great degree through the use of commandline
options. This includes setting the type of the solver. In order for such options to be obeyed, you first need
to put a command KSPSetFromOptions before the KSPSolve call.

Exercise 2.8. The -ksp_view option told you what solver and preconditioner were used.
Look up the routines KSPSetType and PCSetType and use those to change the
iterative method to CG and the preconditioner to Jacobi. Do this first by using com-
mandline options, and then by editing the code.

B.6.1.4 A realistic program

This section will give you some further help towards solving a realistic PDE problem.

B.6.1.4.1 Construction of the coefficient matrix In the examples above you used a commandline argu-
ment to determine the matrix size directly. Here we construct the matrix of 5-point stencil for the Poisson
operator (see section 4.2.2.2 and in particular figure 4.1). Determining its size takes two steps: you need to
read the domain size n = 1/h− 1 and compute the matrix size from it.

C:

int domain_size,matrix_size;
PetscOptionsGetInt

(PETSC_NULL,"-n",&domain_size,&flag);
matrix_size = domain_size*domain_size;

Fortran:

integer :: domain_size,matrix_size
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,

> "-n",domain_size,flag)
matrix_size = domain_size*domain_size;

Now you use the matrix_size parameter for constructing the matrix.

B.6.1.4.2 Filling in matrix elements Just like in the examples above, you want each processor to set
only its local rows. The easiest way to iterate over those is to iterate over all variables / matrix rows and
select only the local ones.

We will now set matrix elements (refer to the full domain, but only inserting those elements that are in its
matrix block row.

C:
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MatGetOwnershipRange(A,&myfirst,&mylast);
for ( i=0; i<domain_size; i++ ) {

for ( j=0; j<domain_size; j++ ) {
I = j + matrix_size*i;
if (I>=myfirst && I<mylast) {
J = I; // for the diagonal element
MatSetValues

(A,1,&I,1,&J,&v,INSERT_VALUES);
J = .... // for the other points
J = ....

}
}

}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

Fortran:

call MatGetOwnershipRange(A,myfirst,mylast)
do i=0,matrix_size-1

do j=0,domain_size-1
ii = j + domain_size*i
if (ii>=myfirst .and. ii<mylast) then

jj = ii ; for the diagonal element
call MatSetValues

> (A,1,ii,1,jj,v,INSERT_VALUES)
jj = ii... ; for the other elements
jj = ii...

end if
end do

end do
call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY)
call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY)

Exercise 2.9. Construct the matrix from equation (4.14) in section 4.2.2.2. Compute and output
the product with the identity vector (meaning that all elements are 1), and check that
the result is correct. Make sure to test your program in parallel.

B.6.1.4.3 Finite Element Matrix assembly PETSc’s versatility in dealing with Finite Element matrices
(see sections 4.2.2.4 and 6.5.2), where elements are constructed by adding together contributions, some-
times from different processors. This is no problem in PETSc: any processor can set (or add to) any matrix
element. The assembly calls will move data to their eventual location on the correct processors.

for (e=myfirstelement; e<mylastelement; e++) {
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for (i=0; i<nlocalnodes; i++) {
I = localtoglobal(e,i);
for (j=0; j<nlocalnodes; j++) {

J = localtoglobal(e,j);
v = integration(e,i,j);
MatSetValues

(mat,1,&I,1,&J,&v,ADD_VALUES);
....

}
}

}
MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);

B.6.1.4.4 Linear system solver We have covered the basics of setting up the solver and solving the
system above.

As an illustration of the toolbox nature of PETSc, you can now use routines you have already seen to
compute the residual and its norm.

Exercise 2.10. Create a new vector z (use VecDuplicate) and store the product of A and
the computed solution y (use MatMult) in it. If you solved the system accurately,
z should now be equal to x. To see how close it is, use

PetscReal norm;
VecAXPY(z,-1,x);
VecNorm(z,NORM_2,&norm);

to subtract x from z and compute the norm of the result.

B.6.1.5 Quick experimentation

Reading a parameter from the commandline above is actually a special case of a general mechanism for
influencing PETSc’s workings through commandline options.

Here is an example of setting the iterative solver and preconditioner from the commandline:

yourprog -ksp_type gmres -ksp_gmres_restart 25
-pc_type ilu -pc_factor_levels 3

In order for this to work, your code needs to call

KSPSetFromOptions(solver);

before the system solution. This mechanism is very powerful, and it obviates the need for much code
recompilation.
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B.6.2 Libraries for dense linear algebra: Lapack and Scalapack

Dense linear algebra, that is linear algebra on matrices that are stored as two-dimensional arrays (as op-
posed to sparse linear algebra; see section 5.4, as well as the tutorial on PETSc B.6) has been standard-
ized for a considerable time. The basic operations are defined by the three levels of Basic Linear Algebra
Subprograms (BLAS):

• Level 1 defines vector operations that are characterized by a single loop [89].
• Level 2 defines matrix vector operations, both explicit such as the matrix-vector product, and

implicit such as the solution of triangular systems [35].
• Level 3 defines matrix-matrix operations, most notably the matrix-matrix product [34].

The name ‘BLAS’ suggests a certain amount of generality, but the original authors were clear [89] that
these subprograms only covered dense linear algebra. Attempts to standardize sparse operations have never
met with equal success.

Based on these building blocks libraries have been built that tackle the more sophisticated problems such as
solving linear systems, or computing eigenvalues or singular values. Linpack 7 and Eispack were the first to
formalize these operations involved, using Blas Level 1 and Blas Level 2 respectively. A later development,
Lapack uses the blocked operations of Blas Level 3. As you saw in section 1.5.1, this is needed to get high
performance on cache-based CPUs. (Note: the reference implementation of the BLAS [10] will not give
good performance with any compiler; most platforms have vendor-optimized implementations, such as the
MKL library from Intel.)

With the advent of parallel computers, several projects arose that extended the Lapack functionality to
distributed computing, most notably Scalapack [19] and PLapack [128, 127]. These packages are consid-
erably harder to use than Lapack8 because of the need for the two-dimensional block cyclic distribution;
sections 6.2 and 6.3. We will not go into the details here.

B.6.2.1 BLAS matrix storage

There are a few points to bear in mind about the way matrices are stored in the BLAS and LAPACK9:

B.6.2.1.1 Array indexing Since these libraries originated in a Fortran environment, they use 1-based
indexing. Users of languages such as C/C++ are only affected by this when routines use index arrays, such
as the location of pivots in LU factorizations.

B.6.2.1.2 Fortran column-major ordering Since computer memory is one-dimensional, some conver-
sion is needed from two-dimensional matrix coordinates to memory locations. The Fortran language uses
column-major storage, that is, elements in a column are stored consecutively; see figure B.1. This is also
described informally as ‘the leftmost index varies quickest’.

7. The linear system solver from this package later became the Linpack benchmark ; see section 2.10.5.
8. PLapack is probably the easier to use of the two.
9. We are not going into band storage here.
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Figure B.1: Column-major storage of an array in Fortran

B.6.2.1.3 Submatrices and the LDA parameter Using the storage scheme described above, it is clear
how to store an m × n matrix in mn memory locations. However, there are many cases where software
needs access to a matrix that is a subblock of another, larger, matrix. As you see in figure B.2 such a

Figure B.2: A subblock out of a larger matrix

subblock is no longer contiguous in memory. The way to describe this is by introducing a third parameter
in addition to M,N: we let LDA be the ‘leading dimension of A’, that is, the allocated first dimension of the
surrounding array. This is illustrated in figure B.3.
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Figure B.3: A subblock out of a larger matrix, using LDA

B.6.2.2 Organisation of routines

Lapack is organized with three levels of routines:

• Drivers. These are powerful top level routine for problems such as solving linear systems or
computing an SVD. There are simple and expert drivers; the expert ones have more numerical
sophistication.
• Computational routines. These are the routines that drivers are built up out of10. A user may have

occasion to call them by themselves.
• Auxiliary routines.

Routines conform to a general naming scheme: XYYZZZ where

X precision: S,D,C,Z stand for single and double, single complex and double complex, respectively.
YY storage scheme: general rectangular, triangular, banded.
ZZZ operation. See the manual for a list.

Expert driver names end on ’X’.

B.6.2.2.1 Lapack data formats Lapack and Blas use a number of data formats, including

GE General matrix: stored two-dimensionally as A(LDA,*)
SY/HE Symmetric/Hermitian: general storage; UPLO parameter to indicate upper or lower (e.g. SPOTRF)
GB/SB/HB General/symmetric/Hermitian band; these formats use column-major storage; in SGBTRF over-

allocation needed because of pivoting
PB Symmetric of Hermitian positive definite band; no overallocation in SPDTRF

10. Ha! Take that, Winston.
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B.6.2.2.2 Lapack operations
• Linear system solving. Simple drivers: -SV (e.g., DGESV) SolveAX = B, overwrite A with LU

(with pivoting), overwrite B with X.
Expert driver: -SVX Also transpose solve, condition estimation, refinement, equilibration
• Least squares problems. Drivers:
xGELS using QR or LQ under full-rank assumption
xGELSY ”complete orthogonal factorisation”
xGELSS using SVD
xGELSD using divide-conquer SVD (faster, but more workspace than xGELSS)
Also: LSE & GLM linear equality constraint & general linear model
• Eigenvalue routines. Symmetric/Hermitian: xSY or xHE (also SP, SB, ST) simple driver -EV

expert driver -EVX divide and conquer -EVD relative robust representation -EVR
General (only xGE) Schur decomposition -ES and -ESX eigenvalues -EV and -EVX
SVD (only xGE) simple driver -SVD divide and conquer SDD
Generalized symmetric (SY and HE; SP, SB) simple driver GV expert GVX divide-conquer GVD
Nonsymmetric Schur: simple GGES, expert GGESX eigen: simple GGEV, expert GGEVX
svd: GGSVD
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B.7 Plotting with GNUplot

The gnuplot utility is a simple program for plotting sets of points or curves. This very short tutorial will
show you some of the basics. For more commands and options, see the manual http://www.gnuplot.
info/docs/gnuplot.html.

B.7.1 Usage modes

The two modes for running gnuplot are interactive and from file. In interactive mode, you call gnuplot
from the command line, type commands, and watch output appear; you terminate an interactive session with
quit. If you want to save the results of an interactive session, do save "name.plt". This file can be
edited, and loaded with load "name.plt".

Plotting non-interactively, you call gnuplot <your file>.

The output of gnuplot can be a picture on your screen, or drawing instructions in a file. Where the
output goes depends on the setting of the terminal. By default, gnuplot will try to draw a picture. This is
equivalent to declaring

set terminal x11

or aqua, windows, or any choice of graphics hardware.

For output to file, declare

set terminal pdf

or fig, latex, pbm, et cetera. Note that this will only cause the pdf commands to be written to your
screen: you need to direct them to file with

set output "myplot.pdf"

or capture them with

gnuplot my.plt > myplot.pdf

B.7.2 Plotting

The basic plot commands are plot for 2D, and splot (‘surface plot’) for 3D plotting.

B.7.2.1 Plotting curves

By specifying

plot x**2

you get a plot of f(x) = x2; gnuplot will decide on the range for x. With

Victor Eijkhout 353

http://www.gnuplot.info/docs/gnuplot.html
http://www.gnuplot.info/docs/gnuplot.html


B. Practical tutorials

set xrange [0:1]
plot 1-x title "down", x**2 title "up"

you get two graphs in one plot, with the x range limited to [0, 1], and the appropriate legends for the graphs.
The variable x is the default for plotting functions.

Plotting one function against another – or equivalently, plotting a parametric curve – goes like this:

set parametric
plot [t=0:1.57] cos(t),sin(t)

which gives a quarter circle.

To get more than one graph in a plot, use the command set multiplot.

B.7.2.2 Plotting data points

It is also possible to plot curves based on data points. The basic syntax is plot ’datafile’, which
takes two columns from the data file and interprets them as (x, y) coordinates. Since data files can often
have multiple columns of data, the common syntax is plot ’datafile’ using 3:6 for columns 3
and 6. Further qualifiers like with lines indicate how points are to be connected.

Similarly, splot "datafile3d.dat" 2:5:7 will interpret three columns as specifying (x, y, z) co-
ordinates for a 3D plot.

If a data file is to be interpreted as level or height values on a rectangular grid, do splot "matrix.dat"
matrix for data points; connect them with

split "matrix.dat" matrix with lines

B.7.2.3 Customization

Plots can be customized in many ways. Some of these customizations use the set command. For instance,

set xlabel "time"
set ylabel "output"
set title "Power curve"

You can also change the default drawing style with

set style function dots

(dots, lines, dots, points, et cetera), or change on a single plot with

plot f(x) with points
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B.7.3 Workflow

Imagine that your code produces a dataset that you want to plot, and you run your code for a number of
inputs. It would be nice if the plotting can be automated. Gnuplot itself does not have the facilities for this,
but with a little help from shell programming this is not hard to do.

Suppose you have data files

data1.dat data2.dat data3.dat

and you want to plot them with the same gnuplot commands. You could make a file plot.template:

set term pdf
set output "FILENAME.pdf"
plot "FILENAME.dat"

The string FILENAME can be replaced by the actual file names using, for instance sed:

for d in data1 data2 data3 ; do
cat plot.template | sed s/FILENAME/$d/ > plot.cmd
gnuplot plot.cmd

done

Variations on this basic idea are many.
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B.8 Good coding practices

Sooner or later, and probably sooner than later, every programmer is confronted with code not behaving as
intended. In this section you will learn some techniques of dealing with this problem. At first we will see
a number of techniques for preventing errors; after that we will discuss debugging, the process of finding
the, inevitable, errors in a program once they have occurred.

B.8.1 Defensive programming

In this section we will discuss a number of techniques that are aimed at preventing the likelihood of pro-
gramming errors, or increasing the likelikhood of them being found at runtime. We call this defensive
programming .

Scientific codes are often large and involved, so it is a good practice to code knowing that you are going to
make mistakes and prepare for them. Another good coding practice is the use of tools: there is no point in
reinventing the wheel if someone has already done it for you. Some of these tools are be described in other
sections:

• Build systems, such as Make, Scons, Bjam; see section B.3.
• Source code management with SVN, Git; see section B.4.
• Regression testing and designing with testing in mind (unit testing)

First we will have a look at runtime sanity checks, where you test for things that can not or should not
happen.

Example 1: if a subprogram has an array argument, it is a good idea to test whether the actual argument is
a null pointer.

Example 2: if you calculate a numerical result for which certain mathematical properties hold, for instance
you are writing a sine function, for which the result has to be in [−1, 1], you should test whether this
property indeed holds for the result.

There are various ways to handle the case where the impossible happens.

B.8.1.1 The assert macro

The C standard library has a file assert.hwhich provides an assert()macro. Inserting assert(foo)
has the following effect: if foo is zero (false), a diagnostic message is printed on standard error:

Assertion failed: foo, file filename, line line-number

which includes the literal text of the expression, the file name, and line number; and the program is subse-
quently aborted. Here is an example:

#include<assert.h>

void open_record(char *record_name)
{

assert(record_name!=NULL);
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/* Rest of code */
}

int main(void)
{
open_record(NULL);

}

The assert macro can be disabled by defining the NDEBUG macro.

B.8.1.1.1 An assert macro for Fortran (Thanks to Robert Mclay for this code.)
#if (defined( GFORTRAN ) || defined( G95 ) || defined ( PGI) )
# define MKSTR(x) "x"
#else
# define MKSTR(x) #x
#endif
#ifndef NDEBUG
# define ASSERT(x, msg) if (.not. (x) ) \

call assert( FILE , LINE ,MKSTR(x),msg)
#else
# define ASSERT(x, msg)
#endif
subroutine assert(file, ln, testStr, msgIn)
implicit none
character(*) :: file, testStr, msgIn
integer :: ln
print *, "Assert: ",trim(testStr)," Failed at ",trim(file),":",ln
print *, "Msg:", trim(msgIn)
stop
end subroutine assert

which is used as
ASSERT(nItemsSet.gt.arraySize,"Too many elements set")

B.8.1.2 Use of error codes

In some software libraries (for instance MPI or PETSc) every subprogram returns a result, either the func-
tion value or a parameter, to indicate success or failure of the routine. It is good programming practice to
check these error parameters, even if you think that nothing can possibly go wrong.

It is also a good idea to write your own subprograms in such a way that they always have an error parameter.
Let us consider the case of a function that performs some numerical computation.
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float compute(float val)
{

float result;
result = ... /* some computation */
return result;

}

float value,result;
result = compute(value);

Looks good? What if the computation can fail, for instance:

result = ... sqrt(val) ... /* some computation */

How do we handle the case where the user passes a negative number?

float compute(float val)
{
float result;
if (val<0) { /* then what? */
} else

result = ... sqrt(val) ... /* some computation */
return result;

}

We could print an error message and deliver some result, but the message may go unnoticed, and the calling
environment does not really receive any notification that something has gone wrong.

The following approach is more flexible:

int compute(float val,float *result)
{

float result;
if (val<0) {

return -1;
} else {

*result = ... sqrt(val) ... /* some computation */
}
return 0;

}

float value,result; int ierr;
ierr = compute(value,&result);
if (ierr!=0) { /* take appropriate action */
}
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You can save yourself a lot of typing by writing

#define CHECK_FOR_ERROR(ierr) \
if (ierr!=0) { \

printf("Error %d detected\n",ierr); \
return -1 ; }

....
ierr = compute(value,&result); CHECK_FOR_ERROR(ierr);

Using some cpp macros you can even define

#define CHECK_FOR_ERROR(ierr) \
if (ierr!=0) { \

printf("Error %d detected in line %d of file %s\n",\
ierr,__LINE__,__FILE__); \

return -1 ; }

Note that this macro not only prints an error message, but also does a further return. This means that, if
you adopt this use of error codes systematically, you will get a full backtrace of the calling tree if an error
occurs. (In the Python language this is precisely the wrong approach since the backtrace is built-in.)

B.8.2 Guarding against memory errors

In scientific computing it goes pretty much without saying that you will be working with large amounts of
data. Some programming languages make managing data easy, others, one might say, make making errors
with data easy.

The following are some examples of memory violations .

• Writing outside array bounds. If the address is outside the user memory, your code may abort
with an error such as segmentation violation , and the error is reasonably easy to find. If the
address is just outside an array, it will corrupt data but not crash the program; such an error may
go undetected for a long time, as it can have no effect, or only introduce subtly wrong values in
your computation.
• Reading outside array bounds can be harder to find than errors in writing, as it will often not

abort your code, but only introduce wrong values.
• The use of uninitialized memory is similar to reading outside array bounds, and can go undetected

for a long time. One variant of this is through attaching memory to an unallocated pointer.
This particular kind of error can manifest itself in interesting behaviour. Let’s say you notice
that your program misbehaves, you recompile it with debug mode to find the error, and now
the error no longer occurs. This is probably due to the effect that, with low optimization levels,
all allocated arrays are filled with zeros. Therefore, your code was originally reading a random
value, but is now getting a zero.

This section contains some techniques to prevent errors in dealing with memory that you have reserved for
your data.
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B.8.2.1 Array bound checking and other memory techniques

In parallel codes, memory errors will often show up by a crash in an MPI routine. This is hardly ever an
MPI problem or a problem with your cluster.

Compilers for Fortran often have support for array bound checking. Since this makes your code much
slower, you would only enable it during the development phase of your code.

B.8.2.2 Memory leaks

We say that a program has a memory leak , if it allocates memory, and subsequently loses track of that
memory. The operating system then thinks the memory is in use, while it is not, and as a result the computer
memory can get filled up with allocated memory that serves no useful purpose.

In this example data is allocated inside a lexical scope:

for (i=.... ) {
real *block = malloc( /* large number of bytes */ )
/* do something with that block of memory */
/* and forget to call "free" on that block */

}

The block of memory is allocated in each iteration, but the allocation of one iteration is no longer available
in the next. A similar example can be made with allocating inside a conditional.

It should be noted that this problem is far less serious in Fortran, where memory is deallocated automatically
as a variable goes out of scope.

There are various tools for detecting memory errors: Valgrind, DMALLOC, Electric Fence. For valgrind,
see section B.9.3.

B.8.2.3 Roll-your-own malloc

Many programming errors arise from improper use of dynamically allocated memory: the program writes
beyond the bounds, or writes to memory that has not been allocated yet, or has already been freed. While
some compilers can do bound checking at runtime, this slows down your program. A better strategy is to
write your own memory management. Some libraries such as PETSc already supply an enhanced malloc;
if this is available you should certainly make use of it.

If you write in C, you will probably know the malloc and free calls:

int *ip;
ip = (int*) malloc(500*sizeof(int));
if (ip==0) {/* could not allocate memory */}
..... do stuff with ip .....
free(ip);

You can save yourself some typing by

360 Introduction to High Performance Scientific Computing



B.8. Good coding practices

#define MYMALLOC(a,b,c) \
a = (c*)malloc(b*sizeof(c)); \
if (a==0) {/* error message and appropriate action */}

int *ip;
MYMALLOC(ip,500,int);

Runtime checks on memory usage (either by compiler-generated bounds checking, or through tools like
valgrind or Rational Purify) are expensive, but you can catch many problems by adding some functionality
to your malloc. What we will do here is to detect memory corruption after the fact.

We allocate a few integers to the left and right of the allocated object (line 1 in the code below), and put
a recognizable value in them (line 2 and 3), as well as the size of the object (line 2). We then return the
pointer to the actually requested memory area (line 4).

#define MEMCOOKIE 137
#define MYMALLOC(a,b,c) { \

char *aa; int *ii; \
aa = malloc(b*sizeof(c)+3*sizeof(int)); /* 1 */ \
ii = (int*)aa; ii[0] = b*sizeof(c); \

ii[1] = MEMCOOKIE; /* 2 */ \
aa = (char*)(ii+2); a = (c*)aa ; /* 4 */ \
aa = aa+b*sizesof(c); ii = (int*)aa; \

ii[0] = MEMCOOKIE; /* 3 */ \
}

Now you can write your own free, which tests whether the bounds of the object have not been written
over.

#define MYFREE(a) { \
char *aa; int *ii,; ii = (int*)a; \
if (*(--ii)!=MEMCOOKIE) printf("object corrupted\n"); \
n = *(--ii); aa = a+n; ii = (int*)aa; \
if (*ii!=MEMCOOKIE) printf("object corrupted\n"); \
}

You can extend this idea: in every allocated object, also store two pointers, so that the allocated memory
areas become a doubly linked list. You can then write a macro CHECKMEMORYwhich tests all your allocated
objects for corruption.

Such solutions to the memory corruption problem are fairly easy to write, and they carry little overhead.
There is a memory overhead of at most 5 integers per object, and there is practically no performance penalty.

(Instead of writing a wrapper for malloc, on some systems you can influence the behaviour of the system
routine. On linux, malloc calls hooks that can be replaced with your own routines; see http://www.
gnu.org/s/libc/manual/html_node/Hooks-for-Malloc.html.)

Victor Eijkhout 361

http://www.gnu.org/s/libc/manual/html_node/Hooks-for-Malloc.html
http://www.gnu.org/s/libc/manual/html_node/Hooks-for-Malloc.html


B. Practical tutorials

B.8.2.4 Specific techniques: Fortran

Use Implicit none.

Put all subprograms in modules so that the compiler can check for missing arguments and type mismatches.
It also allows for automatic dependency building with fdepend.

Use the C preprocessor for conditional compilation and such.

B.8.3 Testing

There are various philosophies for testing the correctness of a code.

• Correctness proving: the programmer draws up predicates that describe the intended behaviour
of code fragments and proves by mathematical techniques that these predicates hold [72, 31].
• Unit testing: each routine is tested separately for correctness. This approach is often hard to do

for numerical codes, since with floating point numbers there is essentially an infinity of possible
inputs, and it is not easy to decide what would constitute a sufficient set of inputs.
• Integration testing: test subsystems
• System testing: test the whole code. This is often appropriate for numerical codes, since we often

have model problems with known solutions, or there are properties such as bounds that need to
hold on the global solution.
• Test-driven design: the program development process is driven by the requirement that testing is

possible at all times.

With parallel codes we run into a new category of difficulties with testing. Many algorithms, when executed
in parallel, will execute operations in a slightly different order, leading to different roundoff behaviour. For
instance, the parallel computation of a vector sum will use partial sums. Some algorithms have an inherent
damping of numerical errors, for instance stationary iterative methods (section 5.5.1), but others have no
such built-in error correction (nonstationary methods; section 5.5.7). As a result, the same iterative process
can take different numbers of iterations depending on how many processors are used.

B.8.3.1 Test-driven design and development

In test-driven design there is a strong emphasis on the code always being testable. The basic ideas are as
follows.

• Both the whole code and its parts should always be testable.
• When extending the code, make only the smallest change that allows for testing.
• With every change, test before and after.
• Assure correctness before adding new features.
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B.9 Debugging

When a program misbehaves, debugging is the process of finding out why. There are various strategies of
finding errors in a program. The crudest one is debugging by print statements. If you have a notion of where
in your code the error arises, you can edit your code to insert print statements, recompile, rerun, and see if
the output gives you any suggestions. There are several problems with this:

• The edit/compile/run cycle is time consuming, especially since
• often the error will be caused by an earlier section of code, requiring you to edit, compile, and

rerun repeatedly. Furthermore,
• the amount of data produced by your program can be too large to display and inspect effectively,

and
• if your program is parallel, you probably need to print out data from all proccessors, making the

inspection process very tedious.

For these reasons, the best way to debug is by the use of an interactive debugger , a program that allows
you to monitor and control the behaviour of a running program. In this section you will familiarize yourself
with gdb , which is the open source debugger of the GNU project. Other debuggers are proprietary, and
typically come with a compiler suite. Another distinction is that gdb is a commandline debugger; there are
graphical debuggers such as ddd (a frontend to gdb) or DDT and TotalView (debuggers for parallel codes).
We limit ourselves to gdb, since it incorporates the basic concepts common to all debuggers.

In this tutorial you will debug a number of simple programs with gdb and valgrind. The files can be down-
loaded from http://tinyurl.com/ISTC-debug-tutorial.

B.9.1 Invoking gdb

There are three ways of using gdb: using it to start a program, attaching it to an already running program,
or using it to inspect a core dump . We will only consider the first possibility.

Here is an exaple of how to start gdb with program that has no arguments (Fortran users, use hello.F):

tutorials/gdb/c/hello.c

#include <stdlib.h>
#include <stdio.h>
int main() {

printf("hello world\n");
return 0;

}

%% cc -g -o hello hello.c
# regular invocation:
%% ./hello
hello world
# invocation from gdb:
%% gdb hello
GNU gdb 6.3.50-20050815 # ..... version info
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Copyright 2004 Free Software Foundation, Inc. .... copyright info ....
(gdb) run
Starting program: /home/eijkhout/tutorials/gdb/hello
Reading symbols for shared libraries +. done
hello world

Program exited normally.
(gdb) quit
%%

Important note: the program was compiled with the debug flag -g. This causes the symbol table (that is,
the translation from machine address to program variables) and other debug information to be included in
the binary. This will make your binary larger than strictly necessary, but it will also make it slower, for
instance because the compiler will not perform certain optimizations11.

To illustrate the presence of the symbol table do

%% cc -g -o hello hello.c
%% gdb hello
GNU gdb 6.3.50-20050815 # ..... version info
(gdb) list

and compare it with leaving out the -g flag:

%% cc -o hello hello.c
%% gdb hello
GNU gdb 6.3.50-20050815 # ..... version info
(gdb) list

For a program with commandline input we give the arguments to the run command (Fortran users use
say.F):

tutorials/gdb/c/say.c

#include <stdlib.h>
#include <stdio.h>
int main(int argc,char **argv) {
int i;
for (i=0; i<atoi(argv[1]); i++)

printf("hello world\n");
return 0;

}

11. Compiler optimizations are not supposed to change the semantics of a program, but sometimes do. This can lead to the
nightmare scenario where a program crashes or gives incorrect results, but magically works correctly with compiled with debug
and run in a debugger.
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%% cc -o say -g say.c
%% ./say 2
hello world
hello world
%% gdb say
.... the usual messages ...
(gdb) run 2
Starting program: /home/eijkhout/tutorials/gdb/c/say 2
Reading symbols for shared libraries +. done
hello world
hello world

Program exited normally.

B.9.2 Finding errors

Let us now consider some programs with errors.

B.9.2.1 C programs

tutorials/gdb/c/square.c

#include <stdlib.h>
#include <stdio.h>
int main(int argc,char **argv) {
int nmax,i;
float *squares,sum;

fscanf(stdin,"%d",nmax);
for (i=1; i<=nmax; i++) {

squares[i] = 1./(i*i); sum += squares[i];
}
printf("Sum: %e\n",sum);

return 0;
}

%% cc -g -o square square.c
%% ./square
5000
Segmentation fault

The segmentation fault (other messages are possible too) indicates that we are accessing memory that we
are not allowed to, making the program abort. A debugger will quickly tell us where this happens:
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%% gdb square
(gdb) run
50000

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x000000000000eb4a
0x00007fff824295ca in __svfscanf_l ()

Apparently the error occurred in a function __svfscanf_l, which is not one of ours, but a system
function. Using the backtrace (or bt, also where or w) command we quickly find out how this came
to be called:

(gdb) backtrace
#0 0x00007fff824295ca in __svfscanf_l ()
#1 0x00007fff8244011b in fscanf ()
#2 0x0000000100000e89 in main (argc=1, argv=0x7fff5fbfc7c0) at square.c:7

We take a close look at line 7, and see that we need to change nmax to &nmax.

There is still an error in our program:

(gdb) run
50000

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x000000010000f000
0x0000000100000ebe in main (argc=2, argv=0x7fff5fbfc7a8) at square1.c:9
9 squares[i] = 1./(i*i); sum += squares[i];

We investigate further:

(gdb) print i
$1 = 11237
(gdb) print squares[i]
Cannot access memory at address 0x10000f000

and we quickly see that we forgot to allocate squares.

By the way, we were lucky here: this sort of memory errors is not always detected. Starting our programm
with a smaller input does not lead to an error:

(gdb) run
50
Sum: 1.625133e+00

Program exited normally.
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B.9.2.2 Fortran programs

Compile and run the following program:

tutorials/gdb/f/square.F

Program square
real squares(1)
integer i

do i=1,100
squares(i) = sqrt(1.*i)
sum = sum + squares(i)

end do
print *,"Sum:",sum

End

It should abort with a message such as ‘Illegal instruction’. Running the program in gdb quickly tells you
where the problem lies:

(gdb) run
Starting program: tutorials/gdb//fsquare
Reading symbols for shared libraries ++++. done

Program received signal EXC_BAD_INSTRUCTION, Illegal instruction/operand.
0x0000000100000da3 in square () at square.F:7
7 sum = sum + squares(i)

We take a close look at the code and see that we did not allocate squares properly.

B.9.3 Memory debugging with Valgrind

Insert the following allocation of squares in your program:

squares = (float *) malloc( nmax*sizeof(float) );

Compile and run your program. The output will likely be correct, although the program is not. Can you see
the problem?

To find such subtle memory errors you need a different tool: a memory debugging tool. A popular (because
open source) one is valgrind ; a common commercial tool is purify.

tutorials/gdb/c/square1.c

#include <stdlib.h>
#include <stdio.h>
int main(int argc,char **argv) {
int nmax,i;
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float *squares,sum;

fscanf(stdin,"%d",&nmax);
squares = (float*) malloc(nmax*sizeof(float));
for (i=1; i<=nmax; i++) {

squares[i] = 1./(i*i);
sum += squares[i];

}
printf("Sum: %e\n",sum);

return 0;
}

Compile this program with cc -o square1 square1.c and run it with valgrind square1 (you
need to type the input value). You will lots of output, starting with:

%% valgrind square1
==53695== Memcheck, a memory error detector
==53695== Copyright (C) 2002-2010, and GNU GPL’d, by Julian Seward et al.
==53695== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==53695== Command: a.out
==53695==
10
==53695== Invalid write of size 4
==53695== at 0x100000EB0: main (square1.c:10)
==53695== Address 0x10027e148 is 0 bytes after a block of size 40 alloc’d
==53695== at 0x1000101EF: malloc (vg_replace_malloc.c:236)
==53695== by 0x100000E77: main (square1.c:8)
==53695==
==53695== Invalid read of size 4
==53695== at 0x100000EC1: main (square1.c:11)
==53695== Address 0x10027e148 is 0 bytes after a block of size 40 alloc’d
==53695== at 0x1000101EF: malloc (vg_replace_malloc.c:236)
==53695== by 0x100000E77: main (square1.c:8)

Valgrind is informative but cryptic, since it works on the bare memory, not on variables. Thus, these error
messages take some exegesis. They state that a line 10 writes a 4-byte object immediately after a block of
40 bytes that was allocated. In other words: the code is writing outside the bounds of an allocated array. Do
you see what the problem in the code is?

Note that valgrind also reports at the end of the program run how much memory is still in use, meaning not
properly freed.

If you fix the array bounds and recompile and rerun the program, valgrind still complains:
==53785== Conditional jump or move depends on uninitialised value(s)
==53785== at 0x10006FC68: __dtoa (in /usr/lib/libSystem.B.dylib)
==53785== by 0x10003199F: __vfprintf (in /usr/lib/libSystem.B.dylib)
==53785== by 0x1000738AA: vfprintf_l (in /usr/lib/libSystem.B.dylib)
==53785== by 0x1000A1006: printf (in /usr/lib/libSystem.B.dylib)
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==53785== by 0x100000EF3: main (in ./square2)

Although no line number is given, the mention of printf gives an indication where the problem lies.
The reference to an ‘uninitialized value’ is again cryptic: the only value being output is sum, and that is
not uninitialized: it has been added to several times. Do you see why valgrind calls is uninitialized all the
same?

B.9.4 Stepping through a program

Often the error in a program is sufficiently obscure that you need to investigate the program run in detail.
Compile the following program

tutorials/gdb/c/roots.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

float root(int n)
{

float r;
r = sqrt(n);
return r;

}

int main() {
int i;
float x=0;
for (i=100; i>-100; i--)

x += root(i+5);
printf("sum: %e\n",x);
return 0;

}

and run it:

%% ./roots
sum: nan

Start it in gdb as follows:

%% gdb roots
GNU gdb 6.3.50-20050815 (Apple version gdb-1469) (Wed May 5 04:36:56 UTC 2010)
Copyright 2004 Free Software Foundation, Inc.
....
(gdb) break main
Breakpoint 1 at 0x100000ea6: file root.c, line 14.
(gdb) run
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Starting program: tutorials/gdb/c/roots
Reading symbols for shared libraries +. done

Breakpoint 1, main () at roots.c:14
14 float x=0;

Here you have done the following:
• Before calling run you set a breakpoint at the main program, meaning that the execution will

stop when it reaches the main program.
• You then call run and the program execution starts;
• The execution stops at the first instruction in main.

If execution is stopped at a breakpoint, you can do various things, such as issuing the step command:
Breakpoint 1, main () at roots.c:14
14 float x=0;
(gdb) step
15 for (i=100; i>-100; i--)
(gdb)
16 x += root(i);
(gdb)

(if you just hit return, the previously issued command is repeated). Do a number of steps in a row by
hitting return. What do you notice about the function and the loop?

Switch from doing step to doing next. Now what do you notice about the loop and the function?

Set another breakpoint: break 17 and do cont. What happens?

Rerun the program after you set a breakpoint on the line with the sqrt call. When the execution stops
there do where and list.

• If you set many breakpoints, you can find out what they are with info breakpoints.
• You can remove breakpoints with delete n where n is the number of the breakpoint.
• If you restart your program with run without leaving gdb, the breakpoints stay in effect.
• If you leave gdb, the breakpoints are cleared but you can save them: save breakpoints
<file>. Use source <file> to read them in on the next gdb run.

B.9.5 Inspecting values

Run the previous program again in gdb: set a breakpoint at the line that does the sqrt call before you
actually call run. When the program gets to line 8 you can do print n. Do cont. Where does the
program stop?

If you want to repair a variable, you can do set var=value. Change the variable n and confirm that the
square root of the new value is computed. Which commands do you do?

If a problem occurs in a loop, it can be tedious keep typing cont and inspecting the variable with print.
Instead you can add a condition to an existing breakpoint: the following:
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condition 1 if (n<0)

or set the condition when you define the breakpoint:

break 8 if (n<0)

Another possibility is to use ignore 1 50, which will not stop at breakpoint 1 the next 50 times.

Remove the existing breakpoint, redefine it with the condition n<0 and rerun your program. When the
program breaks, find for what value of the loop variable it happened. What is the sequence of commands
you use?

B.9.6 Further reading

A good tutorial: http://www.dirac.org/linux/gdb/.

Reference manual: http://www.ofb.net/gnu/gdb/gdb_toc.html.
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B.10 C/Fortran interoperability

Most of the time, a program is written is written in a single language, but in some circumstances it is
necessary or desirable to mix sources in more than one language for a single executable. One such case
is when a library is written in one language, but used by a program in another. In such a case, the library
writer will probably have made it easy for you to use the library; this section is for the case that you find
yourself in the place of the library writer. We will focus on the common case of interfacing between C/C++
and Fortran.

B.10.1 Arrays

C and Fortran have different conventions for storing multi-dimensional arrays. You need to be aware of this
when you pass an array between routines written in different languages.

Fortran stores multi-dimensional arrays in column-major order. For two dimensional arrays (A(i,j))
this means that the elements in each column are stored contiguously: a 2 × 2 array is stored as A(1,1),
A(2,1), A(1,2), A(2,2). Three and higher dimensional arrays are an obvious extension: it is some-
times said that ‘the left index varies quickest’.

C arrays are stored in row-major order: elements in each row are stored contiguous, and columns are
then placed sequentially in memory. A 2 × 2 array A[2][2] is then stored as A[1][1], A[1][2],
A[2][1], A[2][2].

A number of remarks about arrays in C.
• C (before the C99 standard) has multi-dimensional arrays only in a limited sense. You can declare

them, but if you pass them to another C function, they no longer look multi-dimensional: they
have become plain float* (or whatever type) arrays. That brings us to the next point.
• Multi-dimensional arrays in C look as if they have type float**, that is, an array of pointers

that point to (separately allocated) arrays for the rows. While you could certainly implement this:
float **A;
A = (float**)malloc(m*sizeof(float*));
for (i=0; i<n; i++)

A[i] = (float*)malloc(n*sizeof(float));

careful reading of the standard reveals that a multi-dimensional array is in fact a single block of
memory, no further pointers involved.

Given the above limitation on passing multi-dimensional arrays, and the fact that a C routine can not tell
whether it’s called from Fortran or C, it is best not to bother with multi-dimensional arrays in C, and to
emulate them:

float *A;
A = (float*)malloc(m*n*sizeof(float));
#define SUB(i,j,m,n) i+j*m
for (i=0; i<m; i++)

for (j=0; j<n; j++)
.... A[SUB(i,j,m,n)] ....

372 Introduction to High Performance Scientific Computing



B.10. C/Fortran interoperability

where for interoperability we store the elements in column-major fashion.

B.10.2 Strings

Programming languages differ widely in how they handle strings.

• In C, a string is an array of characters; the end of the string is indicated by a null character, that
is the ascii character zero, which has an all zero bit pattern. This is called null termination .
• In Fortran, a string is an array of characters. The length is maintained in a internal variable, which

is passed as a hidden parameter to subroutines.
• In Pascal, a string is an array with an integer denoting the length in the first position. Since only

one byte is used for this, strings can not be longer than 255 characters in Pascal.

As you can see, passing strings between different languages is fraught with peril. This situation is made
even worse by the fact that passing strings as subroutine arguments is not standard.

Unless you are writing a text processor, it is therefore best not to use strings in your program. The next best
solution is to use null-terminated strings throughout; some compilers support extensions to facilitate this,
for instance writing

DATA forstring /’This is a null-terminated string.’C/

Recently, the ‘C/Fortran interoperability standard’ has provided a systematic solution to this.

B.10.3 Subprogram arguments

In C, you pass a float argument to a function if the function needs its value, and float* if the function
has to modify the value of the variable in the calling environment. Fortran has no such distinction: every
variable is passed by reference . This has some strange consequences: if you pass a literal value (37.5) to a
subroutine, the compiler will allocate a nameless variable with that value, and pass the address of it, rather
than the value12.

For interfacing Fortran and C routines, this means that a Fortran routine looks to a C program like all its
argument are ‘star’ arguments. Conversely, if you want a C subprogram to be callable from Fortran, all its
arguments have to be star-this or that. This means on the one hand that you will sometimes pass a variable
by reference that you would like to pass by value.

Worse, it means that C subprograms like

void mysub(int **iarray) {

*iarray = (int*)malloc(8*sizeof(int));
return;
}

can not be called from Fortran. There is a hack to get around this (check out the Fortran77 interface to the
Petsc routine VecGetValues) and with more cleverness you can use POINTER variables for this.

12. With a bit of cleverness and the right compiler, you can have a program that says print *,7 and prints 8 because of this.
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B.10.4 Linker conventions

As explained above, a compiler turns a source file into a binary, which no longer has any trace of the
source language: it contains in effect functions in machine language. The linker will then match up calls
and definitions, which can be in different files. The problem with using multiple languages is then that
compilers have different notions of how to translate function names from the source file to the binary file.

The most common case of language interoperability is between C and Fortran. The problems are platform
dependent, but commonly

• The Fortran compiler attaches a trailing underscore to function names in the object file.
• The C compiler takes the function name as it is in the source.

Since C is a popular language to write libraries in, this means we can solve the problem by either

• Appending an underscore to all C function names; or
• Include a simple wrapper call:

int SomeCFunction(int i,float f)
{

.....
}
int SomeCFunction_(int i,float f)
{

return SomeCFunction(i,f);
}

With the latest Fortran standard it is possible to declare the external name of variables and routines:

%% cat t.f
module operator
real, bind(C) :: x

contains
subroutine s(), bind(C,name=’_s’)
return
end subroutine
...

end module
%% ifort -c t.f
%% nm t.o
.... T _s
.... C _x

It is also possible to declare data types to be C-compatible:

type, bind(C) :: c_comp
real (c_float) :: data
integer (c_int) :: i
type (c_ptr) :: ptr
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end type

B.10.5 Input/output

Both languages have their own system for handling input/output, and it is not really possible to meet in the
middle. Basically, if Fortran routines do I/O, the main program has to be in Fortran. Consequently, it is best
to isolate I/O as much as possible, and use C for I/O in mixed language programming.

B.10.6 Fortran/C interoperability in Fortran2003

The latest version of Fortran, unsupported by many compilers at this time, has mechanisms for interfacing
to C.

• There is a module that contains named kinds, so that one can declare
INTEGER,KIND(C_SHORT) :: i

• Fortran pointers are more complicated objects, so passing them to C is hard; Fortran2003 has a
mechanism to deal with C pointers, which are just addresses.
• Fortran derived types can be made compatible with C structures.
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B.11 LATEX for scientific documentation

B.11.1 The idea behind LATEX, some history

TEX is a typesetting system that dates back to the late 1970s. In those days, graphics terminals were you
could design a document layout and immediately view it, the way you can with Microsoft Word, were rare.
Instead, TEX uses a two-step workflow, where you first type in your document with formatting instructions
in an ascii document, using your favourite text editor. Next, you would invoke the latex program, as a
sort of compiler, to translate this document to a form that can be printed or viewed.

%% edit mydocument.tex
%% latex mydocument
%% # print or view the resulting output

The process is comparable to making web pages by typing HTML commands.

This way of working may seem clumsy, but it has some advantages. For instance, the TEX input files are
plain ascii, so they can easily be generated automatically, for instance from a database. Also, you can edit
them with whatever your favourite editor happens to be.

Another point in favour of TEX is the fact that the layout is specified by commands that are written in a sort
of programming language. This has some important consequences:

• Separation of concerns: when you are writing your document, you do not have to think about lay-
out. You give the ‘chapter’ command, and the implementation of that command will be decided
independently, for instance by you choosing a document style.
• Changing the layout of a finished document is easily done by choosing a different realization of

the layout commands in the input file: the same ‘chapter’ command is used, but by choosing a
different style the resulting layout is different. This sort of change can be as simple as a one-line
change to the document style declaration.
• If you have unusual typesetting needs, it is possible to write new TEX commands for this. For

many needs such extensions have in fact already been written; see section B.11.4.

The commands in TEX are fairly low level. For this reason, a number of people have written systems on top
of TEX that offer powerful features, such as automatic cross-referencing, or generation of a table of contents.
The most popular of these systems is LATEX. Since TEX is an interpreted system, all of its mechanisms are
still available to the user, even though LATEX is loaded on top of it.

B.11.1.1 Installing LATEX

The easiest way to install LATEX on your system is by downloading the TEXlive distribution from http:
//tug.org/texlive. Apple users can also use fink or macports. Various front-ends to TEX exist,
such as TEXshop on the Mac.

B.11.1.2 Running LATEX

Purpose. In this section you will run the LATEX compiler
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Originally, the latex compiler would output a device independent file format, named dvi, which could
then be translated to PostScript or PDF, or directly printed. These days, many people use the pdflatex
program which directly translates .tex files to .pdf files. This has the big advantage that the generated
PDF files have automatic cross linking and a side panel with table of contents. An illustration is found
below.

Let us do a simple example.

\documentclass{article}
\begin{document}
Hello world!
\end{document}

Figure B.4: A minimal LATEX document

Exercise. Create a text file minimal.texwith the content as in figure B.4. Try the command pdflatex
minimal or latex minimal. Did you get a file minimal.pdf in the first case or minimal.dvi in
the second case? Use a pdf viewer, such as Adobe Reader, or dvips respectively to view the output.

Caveats. If you make a typo, TEX can be somewhat unfriendly. If you get an error message and TEX is asking
for input, typing x usually gets you out, or Ctrl-C. Some systems allow you to type e to go directly into
the editor to correct the typo.

B.11.2 A gentle introduction to LaTeX

Here you will get a very brief run-through of LATEX features. There are various more in-depth tutorials
available, such as the one by Oetiker [102].

B.11.2.1 Document structure

Each LATEX document needs the following lines:

\documentclass{ .... } % the dots will be replaced

\begin{document}

\end{document}

The ‘documentclass’ line needs a class name in between the braces; typical values are ‘article’ or ‘book’.
Some organizations have their own styles, for instance ‘ieeeproc’ is for proceedings of the IEEE.

All document text goes between the \begin{document} and \end{document} lines. (Matched ‘be-
gin’ and ‘end’ lines are said to denote an ‘environment’, in this case the document environment.)
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The part before \begin{document} is called the ‘preamble’. It contains customizations for this par-
ticular document. For instance, a command to make the whole document double spaced would go in the
preamble. If you are using pdflatex to format your document, you want a line

\usepackage{hyperref}

here.

Have you noticed the following?
• The backslash character is special: it starts a LATEX command.
• The braces are also special: they have various functions, such as indicating the argument of a

command.
• The percent character indicates that everything to the end of the line is a comment.

B.11.2.2 Some simple text

Purpose. In this section you will learn some basics of text formatting.

Exercise. Create a file first.tex with the content of figure B.4 in it. Type some text in the preamble,
that is, before the \begin{document} line and run pdflatex on your file.

Expected outcome. You should get an error message because you are not allowed to have text in the pream-
ble. Only commands are allowed there; all text has to go after \begin{document}.

Exercise. Edit your document: put some text in between the \begin{document} and \end{document}
lines. Let your text have both some long lines that go on for a while, and some short ones. Put superfluous
spaces between words, and at the beginning or end of lines. Run pdflatex on your document and view
the output.

Expected outcome. You notice that the white space in your input has been collapsed in the output. TEX has
its own notions about what space should look like, and you do not have to concern yourself with this matter.

Exercise. Edit your document again, cutting and pasting the paragraph, but leaving a blank line between
the two copies. Paste it a third time, leaving several blank lines. Format, and view the output.

Expected outcome. TEX interprets one or more blank lines as the separation between paragraphs.

Exercise. Add \usepackage{pslatex} to the preamble and rerun pdflatex on your document.
What changed in the output?

Expected outcome. This should have the effect of changing the typeface from the default to Times Roman.

Caveats. Typefaces are notoriously unstandardized. Attempts to use different typefaces may or may not
work. Little can be said about this in general.

Add the following line before the first paragraph:
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\section{This is a section}

and a similar line before the second. Format. You see that LATEX automatically numbers the sections, and
that it handles indentation different for the first paragraph after a heading.

Exercise. Replace article by artikel3 in the documentclass declaration line and reformat your doc-
ument. What changed?

Expected outcome. There are many documentclasses that implement the same commands as article (or
another standard style), but that have their own layout. Your document should format without any problem,
but get a better looking layout.

Caveats. The artikel3 class is part of most distributions these days, but you can get an error mes-
sage about an unknown documentclass if it is missing or if your environment is not set up correctly.
This depends on your installation. If the file seems missing, download the files from http://tug.
org/texmf-dist/tex/latex/ntgclass/ and put them in your current directory; see also sec-
tion B.11.2.8.

B.11.2.3 Math

Purpose. In this section you will learn the basics of math typesetting

One of the goals of the original TEX system was to facilitate the setting of mathematics. There are two ways
to have math in your document:

• Inline math is part of a paragraph, and is delimited by dollar signs.
• Display math is, as the name implies, displayed by itself.

Exercise. Put $x+y$ somewhere in a paragraph and format your document. Put \[x+y\] somewhere in
a paragraph and format.

Expected outcome. Formulas between single dollars are included in the paragraph where you declare them.
Formulas between \[...\] are typeset in a display.

For display equations with a number, use an equation environment. Try this.

Here are some common things to do in math. Make sure to try them out.

• Subscripts and superscripts: $x_iˆ2$. If the sub or superscript is more than a single symbol, it
needs to be grouped: $x_{i+1}ˆ{2n}$. If you need a brace in a formula, use $\{ \}$.
• Greek letters and other symbols: $\alpha\otimes\beta_i$.
• Combinations of all these $\int_{t=0}ˆ\infty tdt$.

Exercise. Take the last example and typeset it as display math. Do you see a difference with inline math?

Expected outcome. TEX tries not to include the distance between text lines, even if there is math in a
paragraph. For this reason it typesets the bounds on an integral sign differently from display math.
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B.11.2.4 Referencing

Purpose. In this section you will see TEX’s cross referencing mechanism in action.

So far you have not seen LATEX do much that would save you any work. The cross referencing mechanism
of LATEX will definitely save you work: any counter that LATEX inserts (such as section numbers) can be
referenced by a label. As a result, the reference will always be correct.

Start with an example document that has at least two section headings. After your first section heading, put
the command \label{sec:first}, and put \label{sec:other} after the second section heading.
These label commands can go on the same line as the section command, or on the next. Now put

As we will see in section˜\ref{sec:other}.

in the paragraph before the second section. (The tilde character denotes a non-breaking space.)

Exercise. Make these edits and format the document. Do you see the warning about an undefined reference?
Take a look at the output file. Format the document again, and check the output again. Do you have any
new files in your directory?

Expected outcome. On a first pass through a document, the TEX compiler will gather all labels with their
values in a .aux file. The document will display a double question mark for any references that are un-
known. In the second pass the correct values will be filled in.

Caveats. If after the second pass there are still undefined references, you probably made a typo. If you
use the bibtex utility for literature references, you will regularly need three passes to get all references
resolved correctly.

Above you saw that the equation environment gives displayed math with an equation number. You can
add a label to this environment to refer to the equation number.

Exercise. Write a formula in an equation environment, and add a label. Refer to this label anywhere in
the text. Format (twice) and check the output.

Expected outcome. The \label and \ref command are used in the same way for formulas as for section
numbers. Note that you must use \begin/end{equation} rather than \[...\] for the formula.

B.11.2.5 Lists

Purpose. In this section you will see the basics of lists.

Bulleted and numbered lists are provided through an environment.

\begin{itemize}
\item This is an item;
\item this is one too.
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\end{itemize}
\begin{enumerate}
\item This item is numbered;
\item this one is two.
\end{enumerate}

Exercise. Add some lists to your document, including nested lists. Inspect the output.

Expected outcome. Nested lists will be indented further and the labeling and numbering style changes with
the list depth.

Exercise. Add a label to an item in an enumerate list and refer to it.

Expected outcome. Again, the \label and \ref commands work as before.

B.11.2.6 Graphics

Since you can not immediately see the output of what you are typing, sometimes the output may come as
a surprise. That is especially so with graphics. LATEX has no standard way of dealing with graphics, but the
following is a common set of commands:

\usepackage{graphicx} % this line in the preamble

\includegraphics{myfigure} % in the body of the document

The figure can be in any of a number of formats, except that PostScript figures (with extension .ps or
.eps) can not be used if you use pdflatex.

Since your figure is often not the right size, the include line will usually have something like:

\includegraphics[scale=.5]{myfigure}

A bigger problem is that figures can be too big to fit on the page if they are placed where you declare them.
For this reason, they are usually treated as ‘floating material’. Here is a typical declaration of a figure:

\begin{figure}[ht]
\includegraphics{myfigure}
\caption{This is a figure}
\label{fig:first}

\end{figure}

It contains the following elements:

• The figure environment is for ‘floating’ figures; they can be placed right at the location where
they are declared, at the top or bottom of the next page, at the end of the chapter, et cetera.
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• The [ht] argument of the \begin{figure} line states that your figure should be attempted
to be placed here; it that does not work, it should go top of the next page. The remaining possible
specifications are b for placement at the bottom of a page, or p for placement on a page by itself.
For example

\begin{figure}[hbp]

declares that the figure has to be placed here if possible, at the bottom of the page if that’s not
possible, and on a page of its own if it is too big to fit on a page with text.
• A caption to be put under the figure, including a figure number;
• A label so that you can refer to the figure number by its label: figure˜\ref{fig:first}.
• And of course the figure material. There are various ways to fine-tune the figure placement. For

instance
\begin{center}

\includegraphics{myfigure}
\end{center}

gives a centered figure.

B.11.2.7 Bibliography references

The mechanism for citing papers and books in your document is a bit like that for cross referencing. There
are labels involved, and there is a \cite{thatbook} command that inserts a reference, usually numeric.
However, since you are likely to refer to a paper or book in more than one document your write, LATEX allows
you to have a database of literature references in a file by itself, rather than somewhere in your document.

Make a file mybibliography.bib with the following content:
@article{JoeDoe1985,
author = {Joe Doe},
title = {A framework for bibliography references},
journal = {American Library Assoc. Mag.},
year = {1985}
}

In your document mydocument.tex, put
For details, refer to Doe˜\cite{JoeDoe1985} % somewhere in the text

\bibliography{mybibliography} % at the end of the document
\bibliographystyle{plain}

Format your document, then type on the commandline
bibtex mydocument

and format your document two more times. There should now be a bibliography in it, and a correct citation.
You will also see that files mydocument.bbl and mydocument.blg have been created.
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B.11.2.8 Styles and other customizations

On Unix systems, TEX investigates the TEXINPUTS environment variable when it tries to find an include
file. Consequently, you can create a directory for your styles and other downloaded include files, and set
this variable to the location of that directory.

B.11.3 A worked out example

The following example demo.tex contains many of the elements discussed above.
\documentclass{artikel3}

\usepackage{pslatex,graphicx,amsmath,amssymb}
\usepackage{pdflatex}

\newtheorem{theorem}{Theorem}

\newcounter{excounter}
\newenvironment{exercise}

{\refstepcounter{excounter}
\begin{quotation}\textbf{Exercise \arabic{excounter}.} }

{\end{quotation}}

\begin{document}
\title{SSC 335: demo}
\author{Victor Eijkhout}
\date{today}
\maketitle

\section{This is a section}
\label{sec:intro}

This is a test document, used in˜\cite{latexdemo}. It contains a
discussion in section˜\ref{sec:discussion}.

\begin{exercise}\label{easy-ex}
Left to the reader.

\end{exercise}
\begin{exercise}

Also left to the reader, just like in exercise˜\ref{easy-ex}
\end{exercise}

\begin{theorem}
This is cool.

\end{theorem}
This is a formula: $a\Leftarrow b$.
\begin{equation}

\label{eq:one}
x_i\leftarrow y_{ij}\cdot xˆ{(k)}_j

\end{equation}
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Text: $\int_0ˆ1 \sqrt x\,dx$
\[

\int_0ˆ1 \sqrt x\,dx
\]
\section{This is another section}
\label{sec:discussion}

\begin{table}[ht]
\centering
\begin{tabular}{|rl|}

\hline one&value \\ \hline another&values \\ \hline
\end{tabular}
\caption{This is the only table in my demo}
\label{tab:thetable}

\end{table}
\begin{figure}[ht]

\centering
\includegraphics{graphics/caches}
\caption{this is the only figure}
\label{fig:thefigure}

\end{figure}
As I showed in the introductory section˜\ref{sec:intro}, in the
paper˜\cite{AdJo:colorblind}, it was shown that
equation˜\eqref{eq:one}
\begin{itemize}
\item There is an item.
\item There is another item

\begin{itemize}
\item sub one
\item sub two
\end{itemize}

\end{itemize}
\begin{enumerate}
\item item one
\item item two

\begin{enumerate}
\item sub one
\item sub two
\end{enumerate}

\end{enumerate}

\tableofcontents
\listoffigures

\bibliography{math}
\bibliographystyle{plain}

\end{document}
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You also need the file math.bib:

@article{AdJo:colorblind,
author = {Loyce M. Adams and Harry F. Jordan},
title = {Is {SOR} color-blind?},
journal = {SIAM J. Sci. Stat. Comput.},
year = {1986},
volume = {7},
pages = {490--506},
abstract = {For what stencils do ordinary and multi-colour SOR have
the same eigenvalues.},
keywords = {SOR, colouring}
}

@misc{latexdemo,
author = {Victor Eijkhout},
title = {Short {\LaTeX}\ demo},
note = {SSC 335, oct 1, 2008}
}

The following sequence of commands

pdflatex demo
bibtex demo
pdflatex demo
pdflatex demo

gives
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SSC 335: demo

Victor Eijkhout

today

1 This is a section
This is a test document, used in [2]. It contains a discussion in section 2.

Exercise 1. Left to the reader.
Exercise 2. Also left to the reader, just like in exercise 1

Theorem 1 This is cool.

This is a formula: a⇐ b.
xi← yi j · x(k)

j (1)

Text:
R 1

0
√

xdx Z 1

0

√
xdx

2 This is another section

one value
another values

Table 1: This is the only table in my demo

Figure 1: this is the only figure

As I showed in the introductory section 1, in the paper [1], it was shown that equation (1)
• There is an item.

1
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• There is another item
– sub one
– sub two

1. item one
2. item two

(a) sub one
(b) sub two

Contents
1 This is a section 1
2 This is another section 1

List of Figures
1 this is the only figure 1

References
[1] Loyce M. Adams and Harry F. Jordan. Is SOR color-blind? SIAM J. Sci. Stat. Comput.,

7:490–506, 1986.
[2] Victor Eijkhout. Short LATEX demo. SSC 335, oct 1, 2008.
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B.11.4 Where to take it from here

This tutorial touched only briefly on some essentials of TEX and LATEX. You can find longer intros on-
line [102], or read a book [84, 81, 101]. Macro packages and other software can be found on the Comprehen-
sive TEX Archive http://www.ctan.org. For questions you can go to the newsgroup comp.text.tex,
but the most common ones can often already be found on web sites [124].
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Class projects

C.1 Cache simulation and analysis

In this project you will build a cache simulator and analyze the cache hit/miss behaviour of code, either real
or simulated.

C.1.1 Cache simulation

A simulated cache is a simple data structure that records for each cache address what memory address it
contains, and how long the data has been present. Design this data structure and write the access routines.
(Use of an object oriented language is recommended.)

Write your code so that your cache can have various levels of associativity, and different replacement
policies.

For simplicity, do not distinguish between read and write access. Therefore, the execution of a program
becomes a stream of

cache.access_address( 123456 );
cache.access_address( 70543 );
cache.access_address( 12338383 );
.....

calls where the argument is the memory address. Your code will record whether the request can be satisfied
from cache, or whether the data needs to be loaded from memory.

C.1.2 Code simulation

Find some example codes, for instance from a scientific project you are involved in, and translate the code
to a sequence of memory address.

You can also simulate codes by generating a stream of access instructions as above:

• Some access will be to random locations, corresponding to use of scalar variables;
• At other times access will be to regularly space addresses, corresponding to the use of an array;
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• Array operations with indirect addressing will cause prolonged episodes of random address ac-
cess.

Try out various mixes of the above instruction types. For the array operations, try smaller and larger arrays
with various degrees of reuse.

Does your simulated code behave like a real code?

C.1.3 Investigation

First implement a single cache level and investigate the behaviour of cache hits and misses. Explore differ-
ent associativity amounts and different replacement policies.

C.1.4 Analysis

Do a statistical analysis of the cache hit/miss behaviour. You can start with [114]1. Hartstein [65] found a
power law behaviour. Are you finding the same?

1. Strictly speaking that paper is about page swapping out of virtual memory (section 1.3.8), but everything translates to
cacheline swapping out of main memory.
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C.2 Heat equation

In this project you will combine some of the theory and practical skills you learned in class to solve a real
world problem. In addition to writing code that solves the program, you will use the following software
practices:

• use source code control,
• give the program checkpoint/restart capability, and
• use basic profiling and visualization of the results.

The Heat Equation (see section 4.3) is given by

∂T (x, t)

∂t
=


α∂

2T (x,y)
∂x2

+ q(x, t) 1D

α∂
2T (x,y)
∂x2

+ α∂
2T (x,y)
∂y2

+ q(x, t) 2D

. . . 3D

where t ≥ 0 and x ∈ [0, 1], subject to boundary conditions

T (x, 0) = T0(x), for x ∈ [0, 1],

and similar in higher dimensions, and

T (0, t) = Ta(t), T (1, t) = Tb(t), for t > 0.

You will solve this problem using the explicit and implicit Euler methods.

C.2.1 Software

Write your software using the PETSc library (see tutorial B.6. In particular, use the MatMult routine for
matrix-vector multiplication and KSPSolve for linear system solution. Exception: code the Euler methods
yourself.

Be sure to use a Makefile for building your project (tutorial B.3).

Add your source files, Makefile, and job scripts to an svn repository (tutorial B.4); do not add binaries or
output files. Make sure that there is a README file with instructions on how to build and run your code.

Implement a checkpoint/restart facility by writing vector data, size of the time step, and other necessary
items, to an hdf5 file (tutorial B.5). Your program should be able to read this file and resume execution.

C.2.2 Tests

Do the following tests on a single core.
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Method stability

Run your program for the 1D case with
q = sin `πx

T0(x) = ex

Ta(t) = Tb(t) = 0

α = 1

Take a space discretization at least h = 10−2 but especially in parallel do not be afraid to try large problem
sizes. Try various time steps and show that the explicit method can diverge. What is the maximum time step
for which it is stable?

For the implicit method, at first use a direct method to solve the system. This corresponds to PETSc options
KSPPREONLY and PCLU (see section 5.5.10 and the PETSc tutorial, B.6).

Now use an iterative method (for instance KSPCG and PCJACOBI); is the method still stable? Explore
using a low convergence tolerance and large time steps.

Since the forcing function q and the boundary conditions have no time dependence, the solution u(·, t) will
converge to a steady state solution u∞(x) as t → ∞. What is the influence of the time step on the speed
with which implicit method converges to this steady state?

Hint: the steady state is described by ut ≡ 0. Substitute this in the PDE. Can you find explicitly what the
steady state is?

Run these tests with various values for `.

Timing

If you run your code with the commandline option -log_summary, you will get a table of timings of the
various PETSc routines. Use that to do the following timing experiments. Make sure you use a version of
PETSc that was not compiled with debug mode.

Construct your coefficient matrix as a dense matrix, rather than sparse. Report on the difference in total
memory, and the runtime and flop rate of doing one time step. Do this for both the explicit and implicit
method and explain the results.

With a sparse coefficient matrix, report on the timing of a single time step. Discuss the respective flop
counts and the resulting performance.

Restart

Implement a restart facility: every 10 iterations write out the values of the current iterate, together with
values of ∆x, ∆t, and `. Add a flag -restart to your program that causes it to read the restart file and
resume execution, reading all parameters from the restart file.

Run your program for 25 iterations, and restart, causing it to run again from iteration 20. Check that the
values in iterations 20 . . . 25 match.
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C.2.3 Parallelism

Do the following tests to determine the parallel scaling of your code.

At first test the explicit method, which should be perfectly parallel. Report on actual speedup attained. Try
larger and smaller problem sizes and report on the influence of the problem size.

The above settings for the implicit method (KSPPREONLY and PCLU) lead to a runtime error. One way out
is to let the system be solved by an iterative method. Read the PETSc manual and web pages to find out
some choices of iterative method and preconditioner and try them. Report on their efficacy.

C.2.4 Comparison of solvers

In the implicit timestepping method you need to solve linear systems. In the 2D (or 3D) case it can make a
big difference whether you use a direct solver or an iterative one.

Set up your code to run with q ≡ 0 and zero boundary conditions everywhere; start with a nonzero initial
solution. You should now get convergence to a zero steady state, thus the norm of the current solution is the
norm of the iterate.

Now do the following comparison; take several values for the time step.

Direct solver

If your PETSc installation includes direct solvers such as MUMPS , you can invoke them with

myprog -pc_type lu -ksp_type preonly \
-pc_factor_mat_solver_package mumps

Run your code with a direct solver, both sequentially and in parallel, and record how long it takes for the
error to get down to 10−6.

Iterative Solver

Use an iterative solver, for instance KSPCG and KSPBCGS. Experiment with the convergence tolerance:
how many timesteps does it take to get a 10−6 error if you set the iterative method tolerance to 10−12, how
much if you take a lesser tolerance?

Compare timings between direct and iterative method.

C.2.5 Reporting

Write your report using LATEX (tutorial B.11). Use both tables and graphs to report numerical results. Use
gnuplot (tutorial B.7) or a related utility for graphs.
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Codes

This section contains several simple codes that illustrate various issues relating to the performance of a
single CPU. The explanations can be found in section 1.6.

D.1 Hardware event counting

The codes in this chapter make calls to a library named PAPI for ‘Performance Application Programming
Interface’ [13, 109]. This is a portable set of calls to query the hardware counters that are built into most
processors. Since these counters are part of the processor hardware, they can measure detailed events such
as cache misses without this measurement process disturbing the phenomenon it is supposed to observe.

While using hardware counters is fairly straightforward, the question of whether what they are reporting
is what you actually meant to measure is another matter altogether. For instance, the presence of hardware
prefetch streams (section 1.3.5) implies that data can be loaded into cache without this load being triggered
by a cache miss. Thus, the counters may report numbers that seem off, or even impossible, under a naive
interpretation.

D.2 Cache size

This code demonstrates the fact that operations are more efficient if data is found in L1 cache, than in L2,
L3, or main memory. To make sure we do not measure any unintended data movement, we perform one
iteration to bring data in the cache before we start the timers.

/*
* File: size.c

* Author: Victor Eijkhout <eijkhout@tacc.utexas.edu>

*
* Usage: size

*/

#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */
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#define PCHECK(e) \
if (e!=PAPI_OK) \

{printf("Problem in papi call, line %d\n",__LINE__); return 1;}
#define NEVENTS 3
#define NRUNS 200
#define L1WORDS 8096
#define L2WORDS 100000

int main(int argc, char **argv)
{

int events[NEVENTS] =
{

PAPI_TOT_CYC,/* total cycles */
PAPI_L1_DCM, /* stalls on L1 cache miss */
PAPI_L2_DCM, /* stalls on L2 cache miss */

};
long_long values[NEVENTS];
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int retval,event_code, m,n, i,j,size, arraysize;
const PAPI_substrate_info_t *s = NULL;
double *array;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
{

int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]) ; PCHECK(retval);
}

}

/* declare an array that is more than twice the L2 cache size */
arraysize=2*L2WORDS;
array = (double*) malloc(arraysize*sizeof(double));

for (size=L1WORDS/4; size<arraysize; size+=L1WORDS/4) {
printf("Run: data set size=%d\n",size);

/* clear the cache by dragging the whole array through it */
for (n=0; n<arraysize; n++) array[n] = 0.;
/* now load the data in the highest cache level that fits */
for (n=0; n<size; n++) array[n] = 0.;

retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
/* run the experiment */
for (i=0; i<NRUNS; i++) {
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for (j=0; j<size; j++) array[j] = 2.3*array[j]+1.2;
}
retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("size=%d\nTot cycles: %d\n",size,values[0]);
printf("cycles per array loc: %9.5f\n",size,values[0]/(1.*NRUNS*size));
printf("L1 misses:\t%d\nfraction of L1 lines missed:\t%9.5f\n",

values[1],values[1]/(size/8.));
printf("L2 misses:\t%d\nfraction of L2 lines missed:\t%9.5f\n",

values[2],values[2]/(size/8.));
printf("\n");

}
free(array);

return 0;
}

D.3 Cachelines

This code illustrates the need for small strides in vector code. The main loop operates on a vector, pro-
gressing by a constant stride. As the stride increases, runtime will increase, since the number of cachelines
transferred increases, and the bandwidth is the dominant cost of the computation.

There are some subtleties to this code: in order to prevent accidental reuse of data in cache, the computation
is preceded by a loop that accesses at least twice as much data as will fit in cache. As a result, the array is
guaranteed not to be in cache.

/*
* File: line.c

* Author: Victor Eijkhout <eijkhout@tacc.utexas.edu>

*
* Usage: line

*/

#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) \
if (e!=PAPI_OK) \

{printf("Problem in papi call, line %d\n",__LINE__); return 1;}
#define NEVENTS 4
#define MAXN 10000
#define L1WORDS 8096
#define MAXSTRIDE 16

int main(int argc, char **argv)
{

int events[NEVENTS] =
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{PAPI_L1_DCM,/* stalls on L1 cache miss */
PAPI_TOT_CYC,/* total cycles */
PAPI_L1_DCA, /* cache accesses */
1073872914 /* L1 refills */};

long_long values[NEVENTS];
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int retval,event_code, m,n, i,j,stride, arraysize;
const PAPI_substrate_info_t *s = NULL;
double *array;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
{

int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]) ; PCHECK(retval);
}

}

/* declare an array that is more than twice the cache size */
arraysize=2*L1WORDS*MAXSTRIDE;
array = (double*) malloc(arraysize*sizeof(double));

for (stride=1; stride<=MAXSTRIDE; stride++) {
printf("Run: stride=%d\n",stride);
/* clear the cache by dragging the whole array through it */
for (n=0; n<arraysize; n++) array[n] = 0.;

retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
/* run the experiment */
for (i=0,n=0; i<L1WORDS; i++,n+=stride) array[n] = 2.3*array[n]+1.2;
retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("stride=%d\nTot cycles: %d\n",stride,values[1]);
printf("L1 misses:\t%d\naccesses per miss:\t%9.5f\n",

values[0],(1.*L1WORDS)/values[0]);
printf("L1 refills:\t%d\naccesses per refill:\t%9.5f\n",

values[3],(1.*L1WORDS)/values[3]);
printf("L1 accesses:\t%d\naccesses per operation:\t%9.5f\n",

values[2],(1.*L1WORDS)/values[2]);
printf("\n");

}
free(array);

return 0;
}

Victor Eijkhout 397



D. Codes

Note that figure 1.10 in section 1.6.4 only plots up to stride 8, while the code computes to 16. In fact, at
stride 12 the prefetch behaviour of the Opteron changes, leading to peculiarities in the timing, as shown in
figure D.1.
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Figure D.1: Run time in kcycles and L1 reuse as a function of stride

D.4 Cache associativity

This code illustrates the effects of cache associativity;see sections 1.3.4.8 and 1.6.6 for a detailed expla-
nation. A number of vectors (dependent on the inner loop variable i) is traversed simultaneously. Their
lengths are chosen to induce cache conflicts. If the number of vectors is low enough, cache associativity
will resolve these conflicts; for higher values of m the runtime will quickly increase. By allocating the
vectors with a larger size, the cache conflicts go away.

/*
* File: assoc.c

* Author: Victor Eijkhout <eijkhout@tacc.utexas.edu>

*
* Usage: assoc m n

*/

#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) if (e!=PAPI_OK) {printf("Problem in papi call, line %d\n",__LINE__); return 1;}
#define NEVENTS 2
#define MAXN 20000
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/* we are assuming array storage in C row mode */
#if defined(SHIFT)
#define INDEX(i,j,m,n) (i)*(n+8)+(j)
#else
#define INDEX(i,j,m,n) (i)*(n)+(j)
#endif

int main(int argc, char **argv)
{

int events[NEVENTS] = {PAPI_L1_DCM,PAPI_TOT_CYC}; long_long values[NEVENTS];
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int retval,event_code, m,n, i,j;
const PAPI_substrate_info_t *s = NULL;
double *array;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
{

int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]); PCHECK(retval);
}

}
/*
if (argc<3) {

printf("Usage: assoc m n\n"); return 1;
} else {

m = atoi(argv[1]); n = atoi(argv[2]);
} printf("m,n = %d,%d\n",m,n);

*/

#if defined(SHIFT)
array = (double*) malloc(13*(MAXN+8)*sizeof(double));

#else
array = (double*) malloc(13*MAXN*sizeof(double));

#endif

/* clear the array and bring in cache if possible */
for (m=1; m<12; m++) {

for (n=2048; n<MAXN; n=2*n) {
printf("Run: %d,%d\n",m,n);

#if defined(SHIFT)
printf("shifted\n");

#endif
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for (i=0; i<=m; i++)
for (j=0; j<n; j++)

array[INDEX(i,j,m+1,n)] = 0.;

/* access the rows in a way to cause cache conflicts */
retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
for (j=0; j<n; j++)

for (i=1; i<=m; i++)
array[INDEX(0,j,m+1,n)] += array[INDEX(i,j,m+1,n)];

retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("m,n=%d,%d\n#elements:\t%d\nTot cycles: %d\nL1 misses:\t%d\nmisses per accumulation:\t%9.5f\n\n",

m,n,m*n,values[1],values[0],values[0]/(1.*n));

}
}
free(array);

return 0;
}

D.5 TLB

This code illustrates the behaviour of a TLB; see sections 1.3.8 and 1.6.5 for a thorough explanation. A two-
dimensional array is declared in column-major ordering (Fortran style). This means that striding through
the data by varying the i coordinate will have a high likelihood of TLB hits, since all elements on a page
are accessed consecutively. The number of TLB entries accessed equals the number of elements divided
by the page size. Striding through the array by the j coordinate will have each next element hitting a new
page, so TLB misses will ensue when the number of columns is larger than the number of TLB entries.

/*
* File: tlb.c

* Author: Victor Eijkhout <eijkhout@tacc.utexas.edu>

*/

#include "papi_test.h"
extern int TESTS_QUIET; /* Declared in test_utils.c */

#define PCHECK(e) if (e!=PAPI_OK) {printf("Problem in papi call, line %d\n",__LINE__); return 1;}
#define NEVENTS 2
/* we are assuming array storage in Fortran column mode */
#define INDEX(i,j,m,n) i+j*m

double *array;

void clear_right(int m,int n) {
int i,j;
for (j=0; j<n; j++)
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for (i=0; i<m; i++)
array[INDEX(i,j,m,n)] = 0;

return;
}

void clear_wrong(int m,int n) {
int i,j;
for (i=0; i<m; i++)

for (j=0; j<n; j++)
array[INDEX(i,j,m,n)] = 0;

return;
}

void do_operation_right(int m,int n) {
int i,j;
for (j=0; j<n; j++)

for (i=0; i<m; i++)
array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

return;
}

void do_operation_wrong(int m,int n) {
int i,j;
for (i=0; i<m; i++)

for (j=0; j<n; j++)
array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

return;
}

#define COL 1
#define ROW 2
int main(int argc, char **argv)
{

int events[NEVENTS] = {PAPI_TLB_DM,PAPI_TOT_CYC}; long_long values[NEVENTS];
int retval,order=COL;
PAPI_event_info_t info, info1;
const PAPI_hw_info_t *hwinfo = NULL;
int event_code;
const PAPI_substrate_info_t *s = NULL;

tests_quiet(argc, argv); /* Set TESTS_QUIET variable */
if (argc==2 && !strcmp(argv[1],"row")) {

printf("wrong way\n"); order=ROW;
} else printf("right way\n");

retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);
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{
int i;
for (i=0; i<NEVENTS; i++) {

retval = PAPI_query_event(events[i]); PCHECK(retval);
}

}

#define M 1000
#define N 2000

{
int m,n;
m = M;
array = (double*) malloc(M*N*sizeof(double));
for (n=10; n<N; n+=10) {

if (order==COL)
clear_right(m,n);

else
clear_wrong(m,n);

retval = PAPI_start_counters(events,NEVENTS); PCHECK(retval);
if (order==COL)

do_operation_right(m,n);
else

do_operation_wrong(m,n);
retval = PAPI_stop_counters(values,NEVENTS); PCHECK(retval);
printf("m,n=%d,%d\n#elements:\t%d\nTot cycles: %d\nTLB misses:\t%d\nmisses per column:\t%9.5f\n\n",
m,n,m*n,values[1],values[0],values[0]/(1.*n));

}
free(array);

}

return 0;
}
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Appendix E

Index and list of acronyms

AMR Adaptive Mesh Refinement
BEM Boundary Element Method
BSP Bulk Synchronous Parallel
BLAS Basic Linear Algebra Subprograms
BVP Boundary Value Problem
CAF Co-array Fortran
CCS Compressed Column Storage
CG Conjugate Gradients
CGS Classical Gram-Schmidt
COO Coordinate Storage
CRS Compressed Row Storage
DAG Directed Acyclic Graph
DSP Digital Signal Processing
FD Finite Difference
FDM Finite Difference Method
FEM Finite Element Method
FFT Fast Fourier Transform
FOM Full Orthogonalization Method
FPGA Field-Programmable Gate Array
FSA Finite State Automaton
FSB Front-Side Bus
GMRES Generalized Minimum Residual
GPGPU General Purpose Graphics Processing

Unit
GPU Graphics Processing Unit
GS Gram-Schmidt
HPC High Performance Computing
HPF High Performance Fortran
IBVP Initial Boundary Value Problem
ILP Instruction Level Parallelism
ILU Incomplete LU

IVP Initial Value Problem
LAN Local Area Network
LRU Least Recently Used
MGS Modified Gram-Schmidt
MIMD Multiple Instruction Multiple Data
MPI Message Passing Interface
MTA Multi-Threaded Architecture
NUMA Non-Uniform Memory Access
ODE Ordinary Diffential Equation
OS Operating System
PGAS Partitioned Global Address Space
PDE Partial Diffential Equation
PRAM Parallel Random Access Machine
RDMA Remote Direct Memory Access
SAN Storage Area Network
SAS Software as-a Service
SFC Space-Filling Curve
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
SMP Symmetric Multi Processor
SOR Successive Over-Relaxation
SP Streaming Processor
SPMD Single Program Multiple Data
SPD symmetric positive definite
SSE SIMD Streaming Extensions
TLB Translation Look-aside Buffer
UMA Uniform Memory Access
UPC Unified Parallel C
WAN Wide Area Network
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2’s complement, 120

active messages, 84
acyclic graph, 282
Adaptive Mesh Refinement (AMR), 258
adjacency graph, 173, 283
adjacency matrix, 283
affinity, 64–65
allgather, 203–204, 208
Alliant FX/8, 28
allreduce, 203
AMD, 53, 117

Barcelona, 23, 26
Opteron, 19, 26, 34, 38, 40

Amdahl’s law, 100–102
AMR, see Adaptive Mesh Refinement
Apple

iCloud, 113
archive utility, 308
array processors, 52
array syntax, 78
asynchronous communication, 57
atomic operation, 28, 63–64
atomicity, see atomic operation
autotuning, 45
axpy, 30

background process, 299
backwards stability, 131
banded matrix, 144

storage, 169–170
bandwidth, 15, 97, 105

aggregate, 87
of a matrix, see halfbandwidth
of a matrix, 169

bandwidth bound algorithm, 116
barrier, 85

base, 121
bash, 289
Basic Linear Algebra Subprograms (BLAS), 349
BBN

Butterfly, 92
BEM, see Boundary Element Method
benchmarking, 20
bidirectional exchange, 203
big endian, 338
big-endian, 330
binary-coded-decimal, 122
bisection bandwidth, 87
bisection width, 87
bits, 119
Bjam, 310
BLAS, see Basic Linear Algebra Subprograms
block Jacobi, 220–221, 235
block matrix, 146, 227
block tridiagonal, 147, 230
blocking communication, 68, 74
blocking for cache reuse, 37
Boundary Element Method (BEM), 214
Boundary Value Problem (BVP), 141–149
branch misprediction, 13
branch penalty, 13
breakpoint, 370
broadcast, 71, 202
BSP, see Bulk Synchronous Parallel
bubble sort, 258
buffering, 199
Bulk Synchronous Parallel (BSP), 85
bus, 14

speed, 15
width, 15

butterfly exchange, 92
BVP, see Boundary Value Problem
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by reference, 373
bytes, 119

cache, 14, 17–24
associative, 23
block, 20
blocking, 37, 42, 167
coherence, 19, 27–29, 34, 56, 238
hit, 19
line, 20–22, 32
mapping, 22
miss, 19, 24
replacement policies, 20
shared, 55

cacheline
boundary aligment, 21

CAF, see Co-array Fortran
capability computing, 113–114
capacity computing, 113–114
cartesian mesh, 88
cartesian product, 78
Cayley-Hamilton theorem, 187
ccNUMA, 56
CCS, see Compressed Column Storage
CDC

Cyber205, 54
Cell processor, 96
CG, see Conjugate Gradients
CGS, see Classical Gram-Schmidt
channel rate, 97
channel width, 97
Chapel, 78, 82
characteristic polynomial, 187
Charm++, 84
checkerboard ordering, 147
Cheeger’s

constant, 285
inequality, 285

chess, 61
Cholesky factorization, 162, 236
Cilk, 65
cleanup code, 36
clique, 283
clock speed, 12

Clos network, 96
cloud computing, 111–113
clusters, 54
Co-array Fortran (CAF), 81
co-processor, 96
coherence

cache, 76
collective communication, 71, 74, 201–204
collective operation, 72, 201–204
collectives, 74
colour number, 230, 283
colouring, 229
Columbia, 56
column-major, 349, 372
communication

blocking, 74
overlapping computation with, 57

communication overhead, 101
Compiler

directives, 81
compiler, 45, 59, 79, 80

flags, 132
optimization, 16
optimization levels, 125
parallelizing, 61

complexity, 276
computational, 166–167, 276
of iterative methods, 197
space, 176–178, 276

Compressed Column Storage (CCS), 172
Compressed Row Storage (CRS), 171–173, 215
concurrency, 65
condition number, 131

i, 271
conditionally stable, 139
congestion, 87
Conjugate Gradients (CG), 195
Connection Machine, 117
contention, 87
context switch, 103, 105
conveniently paralllel, 61
COO, see Coordinate Storage
coordinate storage, 172
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coordination language, 83
core, 27

vs processor, 27
core dump, 363
correct rounding, 126, 127
Courant-Friedrichs-Lewy condition, 142
cpu-bound, 9
CPU-bound algorithm, 116
Cramer’s rule, 156
Crank-Nicolson method, 154
Cray

Cray-1, 54
Cray-2, 54
T3E, 77
X/MP, 54
XE6, 56
XMT, 103
Y/MP, 54

Cray Inc., 103
Cray Research, 103
critical path, 238
critical section, 64
crossbar, 55, 92
CRS, see Compressed Row Storage
CUDA, 96, 104
cycle (in graph), 282
cyclic distribution, 211

DAG, see Directed Acyclic Graph
data decomposition, 198
data parallel, 103, 104, 106
data parallelism, 103
data reuse, 14, 29
ddd, 363
DDT, 363
deadlock, 65, 70, 74
debug flag, 364
debugger, 363
debugging, 363–371
DEC

Alpha, 54
defensive programming, 356
degree, 86, 281
Delauney mesh refinement, 59

Dennard scaling, 46
Dense linear algebra, 198–211
dependency, 12
diagonal dominance, 165
diagonal storage, 169–170, 171
diameter, 86, 281
die, 18
difference stencil, 148
differential operator, 142
direct mapping, 22
Directed Acyclic Graph (DAG), 237, 282
directories, 289
Dirichlet boundary condition, 141, 144
discretization, 138
distributed computing, 111–113
domain decomposition, 222
double precision, 105
DSP, see Digital Signal Processing

Earth Simulator, 117
ebook, 113
edges, 281
efficiency, 98
eigenvector

dominant, 274
Eispack, 349
Elliptic PDEs, 142
embarassingly parallel, 61, 98
embedding, 88
environment variable, 297
escape, 296, 304
ETA-10, 54
Euler

explicit, 137–139
implicit, 139–141

excess, 122
executable, 289
exponent, 121

Facebook, 261
false sharing, 29, 76
Fast Fourier Transform (FFT), 40
fast solvers, 184
fat tree, 92
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INDEX

fault tolerance, 115
FD, see Finite Difference
FDM, see Finite Difference Method
FEM, see Finite Element Method
FFT, see Fast Fourier Transform
Fiedler’s theorem, 285
field scaling, 46
files, 289
fill locations, 175
fill-in, 175
finite difference, 137
Finite Difference Method (FDM), 143
Finite Element Method (FEM), 149, 218
Finite State Automaton (FSA), 29, 287
finite volume method, 149
floating point pipeline, 35
flops, 12
flushed, 20
FOM, see Full Orthogonalization Method
foreground process, 299
Fortran, 349

declarations in, 132
Fortress, 82–83
FPGA, see Field-Programmable Gate Array
Front-Side Bus (FSB), 14
FSA, see Finite State Automaton
FSB, see Front-Side Bus
Full Orthogonalization Method (FOM), 190
fully associative, 23
fully connected, 86
functional programming, 114–115

gather, 71, 203
Gauss-Seidel, 183
GCC, 66
gdb, 363–371
General Purpose Graphics Processing Unit (GPGPU),

103
Generalized Minimum Residual (GMRES), 195
ghost region, 83, 212, 268
git, 329
Global Arrays, 78
GMRES, see Generalized Minimum Residual
GNU, 363

gdb, see gdb
gnuplot, see gnuplot
Make, see Make

gnuplot, 353
Google, 85, 214, 261

Google Docs, 111–113
GPGPU, see General Purpose Graphics Processing

Unit
GPU, see Graphics Processing Unit
gradual underflow, 123
Gram-Schmidt, 191, 271–272

modified, 191, 271
Grape computer, 96
graph

directed, 281
Laplacian, 108, 284
random, 261
social, 261
theory, 281–286
undirected, 86, 173, 281

graph colouring, 230, 283
Graphics Processing Unit (GPU), 53, 103–106, 117,

126, 215
Gray code, 91
grid (CUDA), 104
grid computing, 111
GS, see Gram-Schmidt
guard digit, 127
Gustafson’s law, 101

halfbandwidth, 176
left, 170
right, 170

halo, see ghost region
hardware prefetch, 24
Harwell-Boeing matrix format, 172
heat equation, 142, 149
Hessenberg matrix, 189
High Performance Fortran (HPF), 78, 81
High-Performance Computing (HPC), 83, 111
Horner’s rule, 235, 263
HPC, see High Performance Computing
HPF, see High Performance Fortran
hybrid computing, 76
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hyper-threading, 62
Hyperbolic PDEs, 142
hypercube, 89
Hyperthreading, 27

IBM, 83, 86, 122, 123, 338
BlueGene, 56, 117
BlueGene Q, 24
Power series, 54
Power6, 122
Roadrunner, 47, 96

IBVP, see Initial Boundary Value Problem
idle, 106
idle time, 74
ILP, see Instruction Level Parallelism
ILU, see Incomplete LU
incidence matrix, 262
Incomplete LU (ILU), 185
independent sets, 283
Initial Boundary Value Problem (IBVP), 142, 149–

154
Initial Value Problem (IVP), 135–141
inner products, 217–218
Instruction Level Parallelism (ILP), 9, 12, 47, 59
instruction pipeline, 12
Intel, 13, 27, 53, 117

i860, 54, 96
Itanium, 16, 117
Paragon, 96
Woodcrest, 23

inter-node communication, 76
interior nodes, 282
intra-node communication, 76
irreducible, 284, see reducible
irregular parallelism, 60
Ising model, 267–268
Iterative methods, 178–197
iterative refinement, 184
IVP, see Initial Value Problem

Jacobi method, 182

kernel
CUDA, 104

Krylov methods, 178–197

LAN, see Local Area Network
Lapack, 115, 349, 351–352
Laplace equation, 277
latency, 15, 97
latency hiding, 15, 57
leaf nodes, 282
lexicographic ordering, 147, 221
libraries

creating and using, 307–309
numerical, 340–352, see Lapack, see PETSc

Linda, 83
linear algebra, 270–275

software
dense, 349–352
sparse, 340–348

linear array, 88
linker, 307
Linpack, 349

benchmark, 34, 115, 349
Lisp, 115
little endian, 338
Little’s law, 25
little-endian, 330
load

balancing, 106–110
balancing, dynamic, 107
balancing,static, 107
rebalancing, 108
redistributing, 108, 110
unbalance, 54, 67, 98

Local Area Network (LAN), 111
local solve, 220
locality

core, 34
spatial, 31
temporal, 31

lock, 64
loop unrolling, 35, 44
LRU, see Least Recently Used
LU factorization, 161

M-matrix, 144
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machine epsilon, see machine precision
machine precision, 124
Make, 310–321
Mandelbrot set, 61, 107
mantissa, 122–125, 127, 128
manycore, 104
MapReduce, 114–115
Markov matrix, 284
matrix

nonnegative, 262
norms, 270–271

associated, 270
stochastic, 263
storage, dense, 210–211
storage, sparse, 168–173
strictly upper triangular, 235
unit upper triangular, 235

Matrix Market, 172
matrix format, 172

memory
access pattern, 20
banks, 25
pages, 26
stall, 15
wall, 14

memory hierarchy
., 14

memory leak, 343, 360
memory violations, 359
memory-bound, 9
mercurial, 329
Message Passing Interface (MPI), 71–75
Metropolis algorithm, 268
MIMD, see Multiple Instruction Multiple Data
minimum spanning tree, 202
MIPS, 54
MKL, 349
modified Gramm-Schmidt, see Gram-Schmidt, mod-

ified
MPI, see Message Passing Interface
MTA, see Multi-Threaded Architecture
multi-colouring, 230
Multi-Threaded Architecture (MTA), 103

multi-threading, 103
multicore, 13, 47, 55, 167, 236
multigrid, 189
Multiple Instruction Multiple Data (MIMD), 54
MUMPS, 393

n1/2, 10
natural ordering, 147
nearest neighbour, 88
nested dissection, 221–227, 261
Neumann boundary condition, 144
Newton method, 185
node, 76
nodes, 281
non-blocking communication, 57, 70, 74, 75
non-local operation, 74
Non-Uniform Memory Access (NUMA), 55
normalized floating point numbers, 123
null termination, 373
NUMA, see Non-Uniform Memory Access
NVidia, 96

object file, 307
ODE, see Ordinary Diffential Equation
one-sided communication, 77–78, 83
OpenMP, 66–67
Operating System (OS), 289
order, 276
Ordinary Diffential Equation (ODE), 135–141
OS, see Operating System
overdecomposition, 85, 107, 210
overflow, 121, 123
overflow bit, 121
overlays, 26

page table, 26
PageRank, 261, 263–264
Pagerank, 214
pages

memory, see memory, pages
Parabolic PDEs, 142
parallel fraction, 100
parallel prefix, 234
Parallel Random Access Machine (PRAM), 99
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parallelism
data, 52, 58, 80
dynamic, 66
fine-grained, 58
instruction-level, 48

parameter sweep, 61
partial derivates, 277
Partial Diffential Equation (PDE), 141–154
partial differential equations, 277–278
partial pivoting, 159
Partitioned Global Address Space (PGAS), 56, 78–

83
path (graph theory), 281
PCI-X bus, 105
PDE, see Partial Diffential Equation
peak performance, 12, 30, 34
penta-diagonal, 146
permutation, 178
Perron vector, 262, 263
Perron-Frobenius theorem, 274
PETSc, 340–348
PGAS, see Partitioned Global Address Space
pipeline, 10–12, 34–36

depth, 13, 47
instruction, 12
length, 13
processor, 52

pivoting, 157–159, 164–165
diagonal, 159
full, 159
partial, 159

pivots, 157
PLapack, 349
point-to-point communication, 71
Poisson equation, 142, 277
power

consumption, 46–47
wall, 47

power method, 262, 273
PowerPC, 53
PRAM, see Parallel Random Access Machine
preconditioner, 183–186
prefetch data stream, 24

Pregel, 85
process

affinity, see affinity
program counter, 8
protein interactions, 261
pseudo-random numbers, see random numbers
pthreads, 62
purify, 367
PVM, 75

QR factorization, 271
quicksort, 259–261

radix point, 121
random numbers, 265–266
random placement, 85, 108
RDMA, see Remote Direct Memory Access
real numbers

representation of, 119
recursive doubling, 12, 21, 230, 233–234
red-black ordering, 147, 227–230
reduce-scatter, 203–204, 207, 208
reducible, 174
reduction, 202
reduction operations, 67
redundancy, 87
refinement

adaptive, 109
region of influence, 142
register, 8, 14, 16–17

file, 16
resident in, 16, 17
spill, 17, 36

Remote Direct Memory Access (RDMA), 77
remote method invocation, 84
remote procedure call, 111
repository, 322
representation error

absolute, 124
relative, 124

residual, 179, 180
resource contention, 65
revision control systems, see source code control
ring network, 88
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round-off error analysis, 126–131
round-robin

storage assignment, 80
task scheduling, 67

rounding, 124
row-major, 372

SAN, see Storage Area Network
SAS, see Software as-a Service
scalability, 102

strong, 102, 205
weak, 102, 205

Scalapack, 115, 349
scaling, 102
scheduling

dynamic, 67
static, 67

Scons, 310
search direction, 191, 195
segmentation fault, 365
segmentation violation, 359
semaphore, 64
separable problem, 184
separator, 221, 261
Sequent Symmetry, 28
sequential fraction, 100
serialized execution, 69
SFC, see Space-Filling Curve
SGI, 103

UV, 56
sh, 289
shared libraries, 308
shell, 289
side effects, 115
sign bit, 119, 121
significant, 121, 122
significant digits, 128
SIMD, see Single Instruction Multiple Data
SIMD Streaming Extensions (SSE), 53, 96
SIMT, see Single Instruction Multiple Thread
Single Instruction Multiple Thread (SIMT), 104
single precision, 105
Single Program Multiple Data (SPMD), 54
skyline storage, 177

SM, see Streaming Multiprocessor
small world, 262
smoothers, 189
SMP, see Symmetric Multi Processor
socket, 27, 76, 117
Software as-a Service (SAS), 112
SOR, see Successive Over-Relaxation
sorting, 258–261
source code control, 322
source-to-source transformations, 36
SP, see Streaming Processor
space-filling curve, 108–110
sparse

linear algebra, 168–178, 211–216
matrix, 144, 168, 283

spatial locality, see locality, spatial
SPD, see symmetric positive definite
speculative execution, 13
speedup, 54, 98
SPMD, see Single Program Multiple Data
SSE, see SIMD Streaming Extensions
stall, 24
static libraries, 308
stationary iteration, 180
statistical mechanics, 268
steady state, 140, 150, 278, 392
stochastic matrix, 284
Storage Area Network (SAN), 111
storage by diagonals, 169
stride, 21, 32, 37
strip mining, 44
structurally symmetric, 107, 173, 216, 283
subdomain, 221
substructuring, 222
Subversion, 322–329
Successive Over-Relaxation (SOR), 183
Sun

Ray, 112
superlinear speedup, 98
superscalar, 9, 59
superstep, 50
supersteps, 78, 85
svn, see Subversion
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swapped, 26
switch, 92
symbol table, 364
Symmetric Multi Processing (SMP), 55
symmetric positive definite (SPD), 165, 190, 195

task
parallelism, 59–60
queue, 60, 65

Taylor series, 279–280
temporal locality, see locality, temporal
Tera Computer

MTA, 103
ternary arithmetic, 123
thin client, 112
thread, 62–65, 106

affinity, see affinity
blocks, 104
safe, 67

throughput computing, 104
Tianhe-1A, 96
Titanium, 80
TLB, see Translation Look-aside Buffer

miss, 26
top 500, 115–118
torus, 89
TotalView, 363
transactional memory, 64
Translation Look-aside Buffer (TLB), 26, 400
tree graph, 282
tridiagonal, 146
tridiagonal matrix, 144
truncation, 124
truncation error, 138, 143
tuple space, 83

UMA, see Uniform Memory Access
unbalance

load, 106
unconditionally stable, 140
underflow, 123
Unified Parallel C (UPC), 78, 80
Uniform Memory Access (UMA), 55, 92
unnormalized floating point numbers, 123

unsigned, 120
UPC, see Unified Parallel C
utility computing, 111

valgrind, 367–369
vector

norms, 270
vector processor, 52
vertices, 281
Virtual memory, 26
virtualization, 111
von Neumann architectures, 7

WAN, see Wide Area Network
wavefront, 232–233
weak scaling, 100
weighted graph, 282
Wide Area Network (WAN), 111
wildcard, 294
work pool, 107
World Wide Web, 261

X10, 83
x86, 117
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