

Intel® Next Generation Nehalem Microarchitecture

HPC Technology Manager Intel Corporation, EMEA

Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.
- Intel may make changes to specifications and product descriptions at any time, without notice.
- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Penryn, Nehalem, Westmere, Sandy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.
- Intel, Intel Inside, Xeon, Core 2, Core i7, Pentium, AVX and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.
- Copyright ° 2009 Intel Corporation.

Risk Factors

This presentation contains forward-looking statements that involve a number of risks and uncertainties. These statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other similar transactions that may be completed in the future. The information presented is accurate only as of today's date and will not be updated. In addition to any factors discussed in the presentation, the important factors that could cause actual results to differ materially include the following: Factors that could cause demand to be different from Intel's expectations include changes in business and economic conditions, including conditions in the credit market that could affect consumer confidence; customer acceptance of Intel's and competitors' products; changes in customer order patterns, including order cancellations; and changes in the level of inventory at customers. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Additionally, Intel is in the process of transitioning to its next generation of products on 45 nm process technology, and there could be execution issues associated with these changes, including product defects and errata along with lower than anticipated manufacturing yields. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; Intel's ability to respond quickly to technological developments and to incorporate new features into its products; and the availability of sufficient components from suppliers to meet demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, vary depending on the level of demand for Intel's products, the level of revenue and profits, and impairments of long-lived assets. Intel is in the midst of a structure and efficiency program that is resulting in several actions that could have an impact on expected expense levels and gross margin. Intel is also in the midst of forming Numonyx, a private, independent semiconductor company, together with STMicroelectronics N.V. and Francisco Partners L.P. A change in the financial performance of the contributed businesses could have a negative impact on our financial statements. Intel's equity proportion of the new company's results will be reflected on its financial statements below operating income and with a one guarter lag. The results could have a negative impact on Intel's overall financial results. Intel's results could be affected by the amount, type, and valuation of share-based awards granted as well as the amount of awards cancelled due to employee turnover and the timing of award exercises by employees. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the report on Form 10-O for the guarter ended Sept. 29, 2007.

Agenda

- Nehalem Design Philosophy
- Enhanced Processor Core
- New Instructions
- Optimization Guidelines and Software Tools
- New Platform Features

- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Penryn, Nehalem, Westmere, Sandy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet publicly
 announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services
 and any such use of Intel's internal code names is at the sole risk of the user
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those
 tests. Any difference in system hardware or software design or configuration may affect actual performance.
- Intel, Intel Inside, Xeon, Core, Pentium, AVX and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.
- Copyright ° 2009 Intel Corporation.

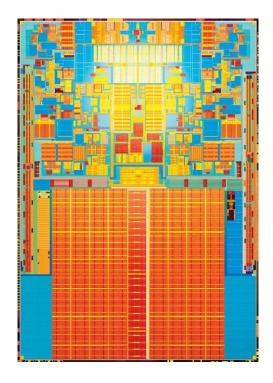
Intel Tick-Tock Development Model: Delivering Leadership Multi-Core Performance

Silicon and Software Tools Unleash Performance

inte

Nehalem Design Goals

World class performance combined with superior energy efficiency – Optimized for:

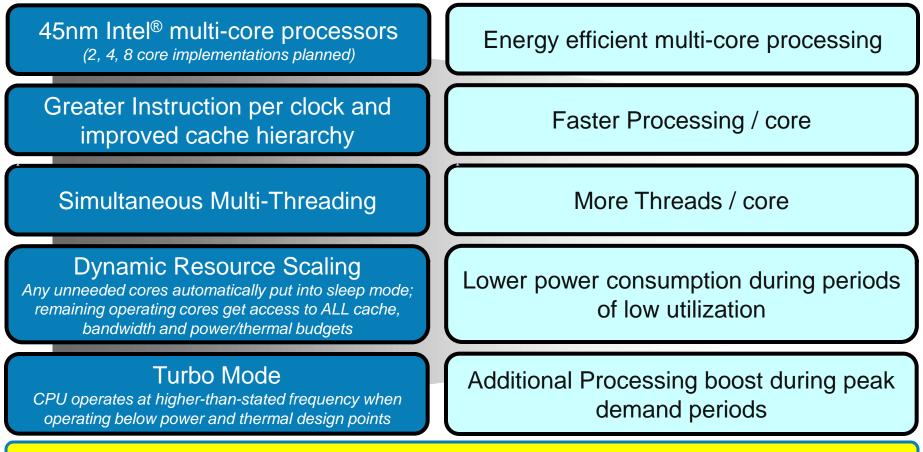


A single, scalable, foundation optimized across each segment and power envelope

Core Microarchitecture Recap

- Wide Dynamic Execution
 4-wide decode/rename/retire
- Advanced Digital Media Boost
 - 128-bit wide SSE execution units
- Intel HD Boost
 - New SSE4.1 Instructions
- Smart Memory Access
 - Memory Disambiguation
 - Hardware Prefetching
- Advanced Smart Cache
 - Low latency, high BW shared L2 cache

Nehalem builds on the great Core microarchitecture



Nehalem Micro-Architecture

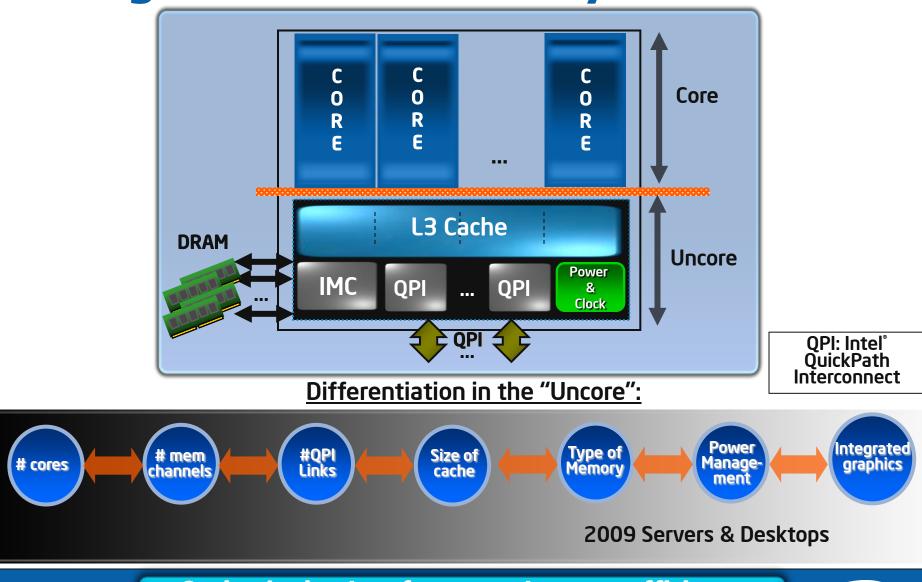
A new dynamically scalable microarchitecture

KEY FEATURES

BENEFITS

FASTER cores ... MORE cores/threads ... DYNAMICALLY ADAPTABLE

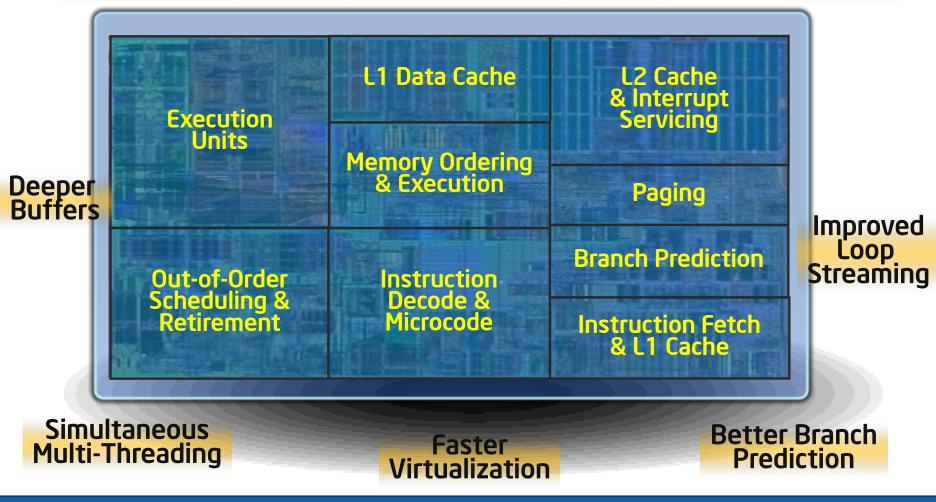
Source: Intel. All future products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.



Agenda

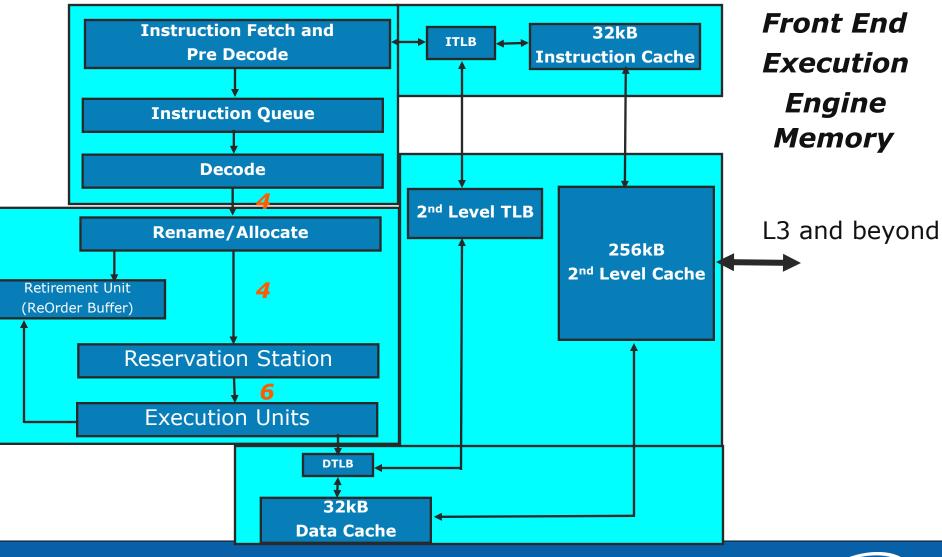
- Nehalem Design Philosophy
- Enhanced Processor Core
- New Instructions
- Optimization Guidelines and Software Tools
- New Platform Features

Designed For Modularity

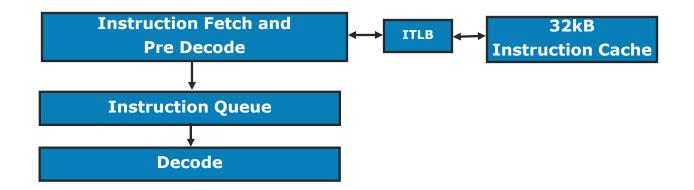


Optimal price / performance / energy efficiency for server, desktop and mobile products

(intel


Designed for Performance

New SSE4.2 Instructions Improved Lock Support Additional Caching Hierarchy


Enhanced Processor Core

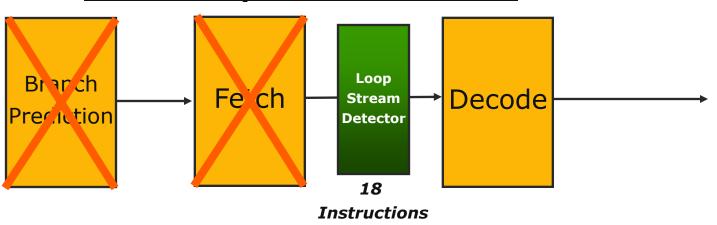
Front-end

- Responsible for feeding the compute engine
 - Decode instructions
 - Branch Prediction
- Key Core 2 Features
 - 4-wide decode
 - Macrofusion
 - Loop Stream Detector

Macrofusion Recap

- Introduced in Core 2
- TEST/CMP instruction followed by a conditional branch treated as a single instruction
 - Decode as one instruction
 - Execute as one instruction
 - Retire as one instruction
- Higher *performance*
 - Improves throughput
 - Reduces execution latency
- Improved *power efficiency*
 - Less processing required to accomplish the same work

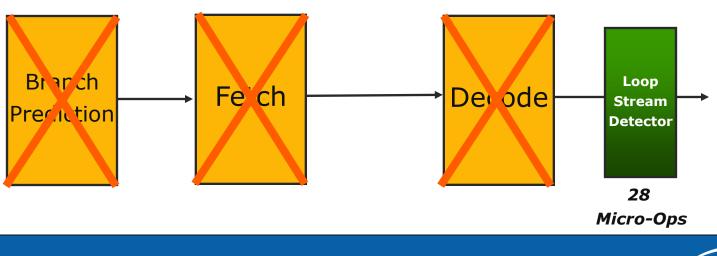
Nehalem Macrofusion


- Goal: Identify more macrofusion opportunities for increased performance and power efficiency
- Support all the cases in Core 2 PLUS
 - CMP+Jcc macrofusion added for the following branch conditions
 - JL/JNGE
 - JGE/JNL
 - JLE/JNG
 - JG/JNLE
- Core 2 only supports macrofusion in 32-bit mode
 - Nehalem supports macrofusion in both 32-bit and 64-bit modes

Increased macrofusion benefit on Nehalem

Front-end: Loop Stream Detector Reminder

- Loops are very common in most software
- Take advantage of knowledge of loops in HW
 - Decoding the same instructions over and over
 - Making the same branch predictions over and over
- Loop Stream Detector identifies software loops
 - Stream from Loop Stream Detector instead of normal path
 - Disable unneeded blocks of logic for *power savings*
 - Higher performance by removing instruction fetch limitations



Core 2 Loop Stream Detector

Front-end: Loop Stream Detector

- Same concept as in prior implementations
- Higher performance: Expand the size of the loops detected
- Improved power efficiency: Disable even more logic

Nehalem Loop Stream Detector

Branch Prediction Reminder

- Goal: Keep powerful compute engine fed
- Options:
 - Stall pipeline while determining branch direction/target
 - Predict branch direction/target and correct if wrong
- Minimize amount of time wasted correcting from incorrect branch predictions
 - Performance:
 - Through higher branch prediction accuracy
 - Through faster correction when prediction is wrong
 - Power efficiency: Minimize number of speculative/incorrect micro-ops that are executed

Continued focus on branch

prediction improvements

L2 Branch Predictor

- Problem: Software with a large code footprint not able to fit well in existing branch predictors
 - Example: Database applications
- Solution: Use multi-level branch prediction scheme
- Benefits:
 - Higher *performance* through improved branch prediction accuracy
 - Greater *power efficiency* through less mis-speculation

Renamed Return Stack Buffer (RSB)

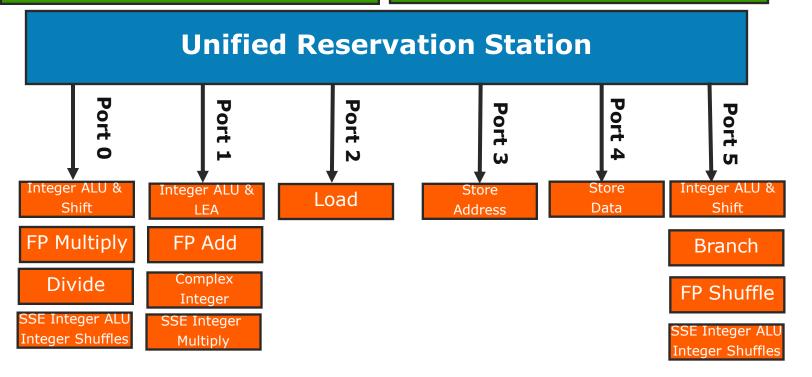
- Instruction Reminder
 - CALL: Entry into functions
 - RET: Return from functions
- Classical Solution
 - Return Stack Buffer (RSB) used to predict RET
 - RSB can be corrupted by speculative path

• The **Renamed RSB**

- No RET mispredicts in the common case

Execution Engine

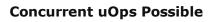
- Start with powerful Core 2 execution engine
 - Dynamic 4-wide Execution
 - Advanced Digital Media Boost
 - 128-bit wide SSE
 - HD Boost (Penryn)
 - SSE4.1 instructions
 - Super Shuffler (Penryn)
- Add Nehalem enhancements
 - Additional parallelism for higher performance

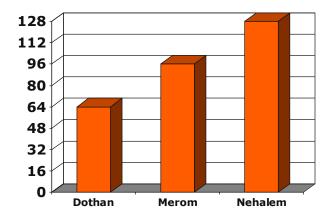

Execution Unit Overview

Unified Reservation Station

- Schedules operations to Execution units
- Single Scheduler for all Execution Units
- Can be used by all integer, all FP, etc.

Execute 6 operations/cycle


- 3 Memory Operations
 - 1 Load
 - 1 Store Address
 - 1 Store Data
- 3 "Computational" Operations



Increased Parallelism

- Goal: Keep powerful execution engine fed
- Nehalem increases size of out of order window by 33%
- Must also increase other corresponding structures

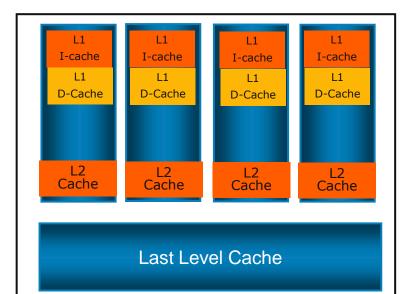
Structure	Merom	Nehalem	Comment
Reservation Station	32	36	Dispatches operations to execution units
Load Buffers	32	48	Tracks all load operations allocated
Store Buffers	20	32	Tracks all store operations allocated

Increased Resources for Higher Performance

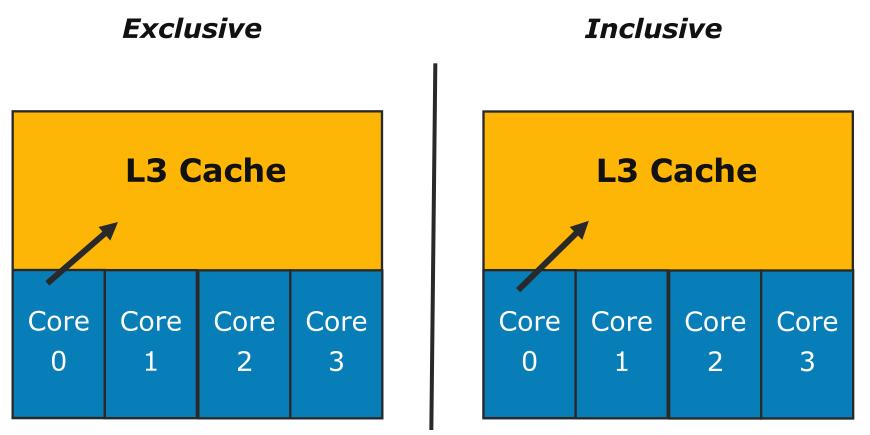
Enhanced Memory Subsystem

- Start with great Core 2 Features
 - Memory Disambiguation
 - Hardware Prefetchers
 - Advanced Smart Cache
- New Nehalem Features
 - New TLB Hierarchy
 - Fast 16-Byte unaligned accesses
 - Faster Synchronization Primitives

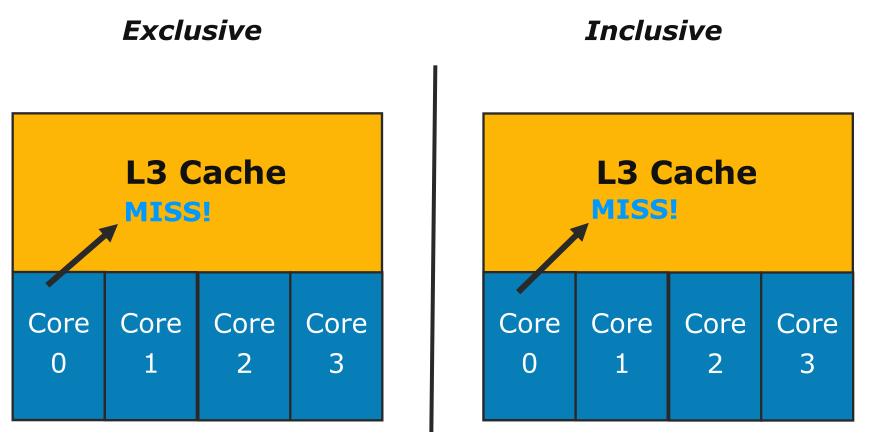
New TLB Hierarchy


- Problem: Applications continue to grow in data size
- Need to increase TLB size to keep the pace for performance
- Nehalem adds new low-latency unified 2nd level TLB

	# of Entries		
1 st Level Instruction TLBs			
Small Page (4k)	128		
Large Page (2M/4M)	7 per thread		
1 st Level Data TLBs			
Small Page (4k)	64		
Large Page (2M/4M)	32		
New 2 nd Level Unified TLB			
Small Page Only	512		

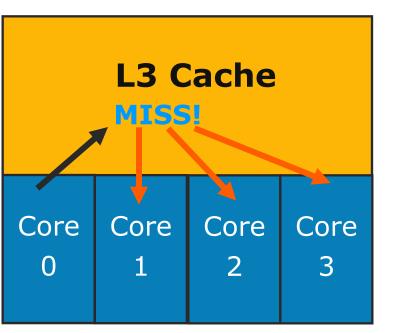

Enhanced Cache Subsystem – New Memory Hierarchy

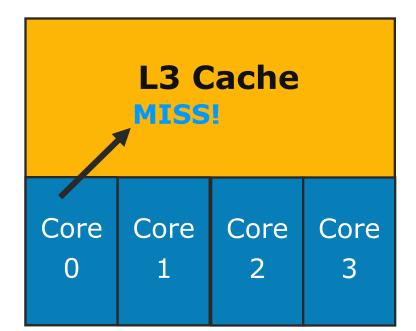
- New 3-level cache hierarchy
 - 1st level remains the same as Intel Core Microarchitecture
 - 32KB instruction cache
 - 32KB data cache
 - New L2 cache per core
 - 256 KB per core holds data + instructions
 - Very low latency
 - New shared last level cache
 - Large size (8MB for 4-core)
 - Shared between all cores
 Allows lightly threaded applications to use the entire cache
 - Inclusive Cache Policy
 - ✓ Minimize traffic from snoops
 - On cache miss, only check other cores if needed (data in modified state)


Inclusive vs. Exclusive Caches – Cache Miss

Data request from Core 0 misses Core 0's L1 and L2 Request sent to the L3 cache

Inclusive vs. Exclusive Caches – Cache Miss


Core 0 looks up the L3 Cache Data not in the L3 Cache

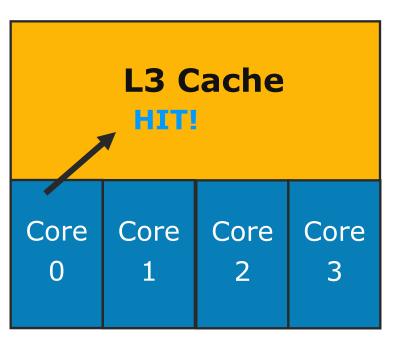

Inclusive vs. Exclusive Caches – Cache Miss

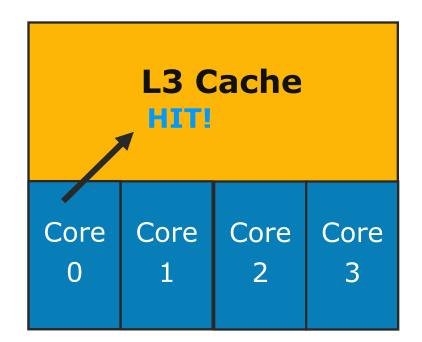
Exclusive

Inclusive

Must check other cores

Guaranteed data is not on-die

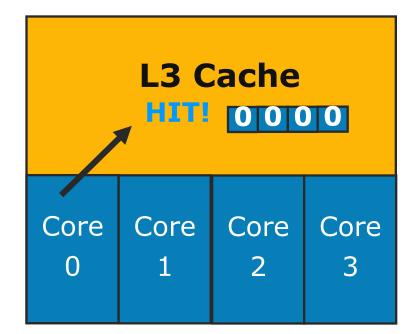

Greater *scalability* from inclusive approach


Inclusive vs. Exclusive Caches – Cache Hit

Exclusive

Inclusive

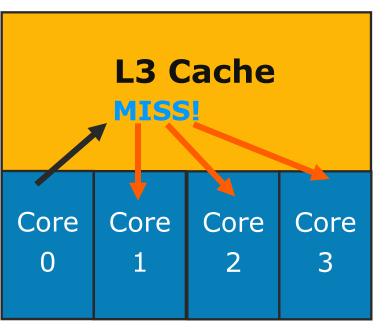
No need to check other cores

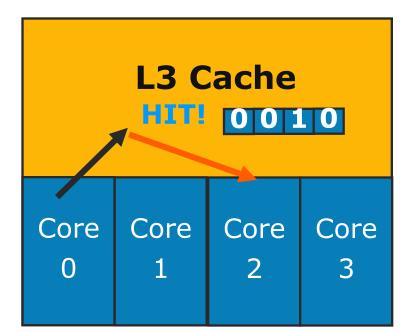

Data could be in another core **BUT** Nehalem is smart...

Inclusive vs. Exclusive Caches – Cache Hit

- Maintain a set of "core valid" bits per cache line in the L3 cache
- Each bit represents a core
- If the L1/L2 of a core may contain the cache line, then core valid bit is set to "1"
- •No snoops of cores are needed if no bits are set
- If more than 1 bit is set, line cannot be in Modified state in any core

Inclusive

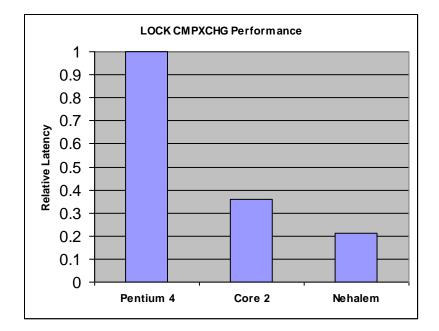

Core valid bits limit unnecessary snoops


Inclusive vs. Exclusive Caches – Read from other core

Exclusive

Inclusive

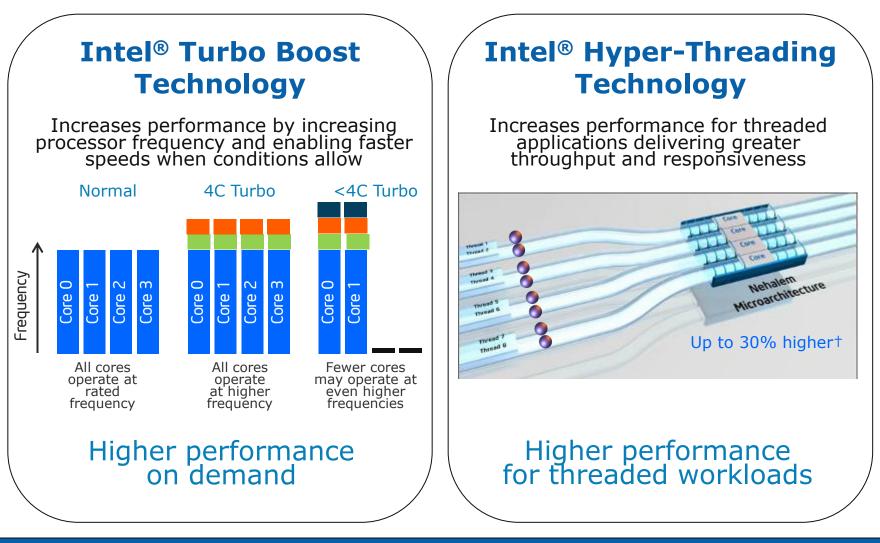
Must check all other cores



Only need to check the core whose core valid bit is set

Faster Synchronization Primitives

- Multi-threaded software becoming more prevalent
- Scalability of multi-thread applications can be limited by synchronization
- Synchronization primitives: LOCK prefix, XCHG
- Reduce synchronization latency for legacy software



Greater thread scalability with Nehalem

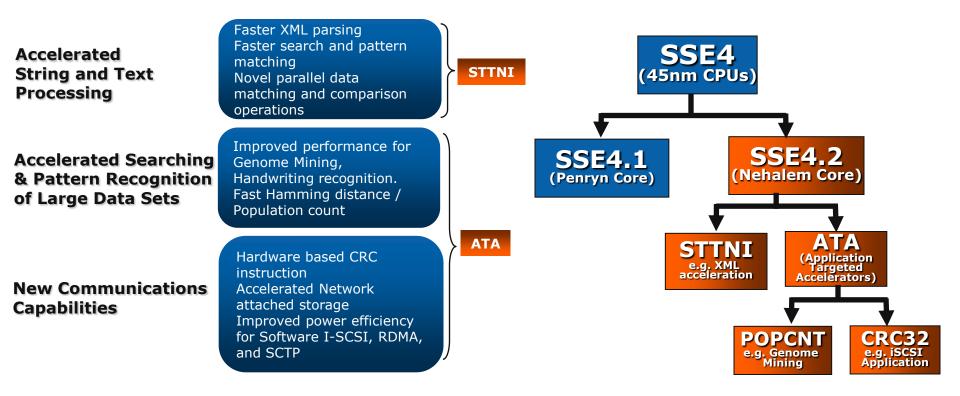
Other Performance Enhancements

Intel Xeon® 5500 Series Processor (Nehalem-EP)

⁺ For notes and disclaimers, see performance and legal information slides at end of this presentation.

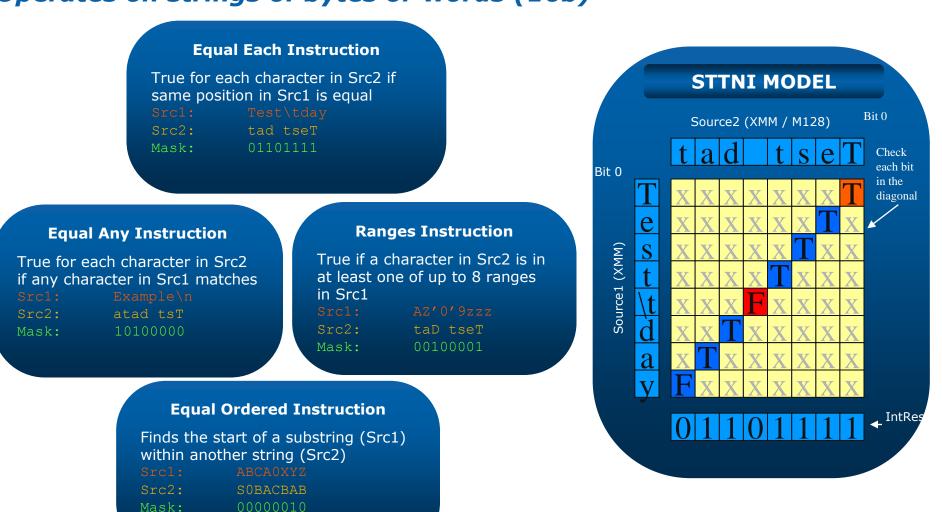
Hyper-Threading Implementation Details for Nehalem

- Multiple policies possible for implementation of SMT
- Replicated Duplicate state for SMT
 - Register state
 - Renamed RSB
 - Large page ITLB
- Partitioned Statically allocated between threads
 - Key buffers: Load, store, Reorder
 - Small page ITLB
- **Competitively shared** Depends on thread's dynamic behavior
 - Reservation station
 - Caches
 - Data TLBs, 2nd level TLB
- Unaware
 - Execution units

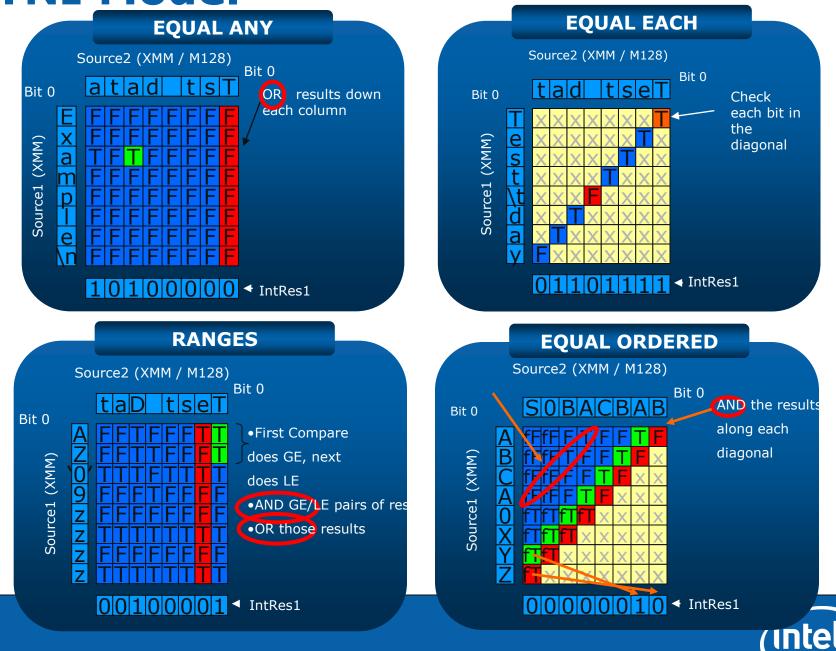


Agenda

- Nehalem Design Philosophy
- Enhanced Processor Core
- New Instructions
- Optimization Guidelines and Software Tools
- New Platform Features


Extending Performance and Energy Efficiency - SSE4.2 Instruction Set Architecture (ISA) Leadership

What should the applications, OS and VMM vendors do?: Understand the benefits & take advantage of new instructions in 2008. Provide us feedback on instructions ISV would like to see for next generation of applications



STTNI - STring & Text New Instructions Operates on strings of bytes or words (16b)

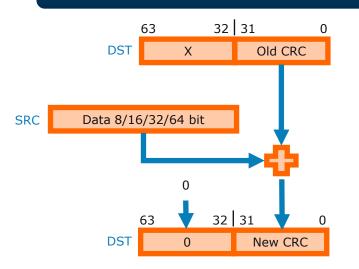
Projected 3.8x kernel speedup on XML parsing & 2.7x savings on instruction cycles

Example Code For strlen()

	[esp + 4]		
mov		; ecx -⁄	
	ecx,3	; test if (
	short main_loc	p qu	
str_misalig			;
	ole byte loop unt		
	al,byte ptr [e	ecx]	
add	ecx,1		; ; b
test			i b
	short byte_3		D
test			
jne			
	eax,dword ptr		
align	16	; should l	le .
main_loop:			b
	eax,dword ptr	[ecx] ; re	
	edx,7efefeffh		
	edx,eax		
xor			le i
	eax,edx		b
	ecx,4		
	eax,81010100h		
	short main_loop		
	d zero byte in th	ie loop	le .
mov	eax,[ecx - 4]		b
test		; is it byte	
	short byte_0		
test		; is it byte	
	short byte_1		~ 4
test	eax,00ff0000h	; is it byte	st

		short byte_2 eax,0ff000000h
ic it		
15 11	byte :	
		short byte_3
tal		short main_loop
		its 24-30 are clear and
	is set	
yte_		
		eax,[ecx - 1]
		ecx,string
	sub	eax,ecx
	ret	
yte_		5 01
		eax,[ecx - 2]
		ecx,string
	sub	eax,ecx
	ret	
yte_		
		eax,[ecx - 3]
		ecx,string
	sub	eax,ecx
	ret	
yte_	_0:	
	lea	eax,[ecx - 4]
	mov	ecx,string
	sub	eax,ecx
	ret	
trler	n endp)
	end	

STTNI Version


int sttni_strlen(const char * src) {
char eom_vals[32] = {1, 255, 0};
asm{
mov eax, src
movdqu xmm2, eom_vals
xor ecx, ecx
topofloop:
add eax, ecx
movdqu xmm1, OWORD PTR[eax]
pcmpistri xmm2, xmm1, imm8
jnz topofloop
endofstring:
add eax, ecx
sub eax, src ret

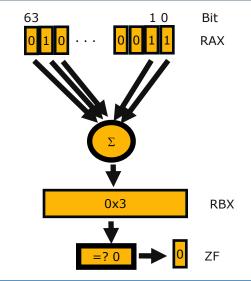
Current Code: Minimum of 11 instructions; Inner loop processes 4 bytes with 8 instructions STTNI Code: Minimum of 10 instructions; A single inner loop processes 16 bytes with only 4 instructions

ATA - Application Targeted Accelerators

CRC32

Accumulates a CRC32 value using the iSCSI polynomial

One register maintains the running CRC value as a software loop iterates over data. Fixed CRC polynomial = 11EDC6F41h


Replaces complex instruction sequences for CRC in Upper layer data protocols:

• iSCSI, RDMA, SCTP

POPCNT

POPCNT determines the number of nonzero

bits in the source.

POPCNT is useful for speeding up fast matching in data mining workloads including:

- DNA/Genome Matching
- Voice Recognition

ZFlag set if result is zero. All other flags (C,S,O,A,P) reset

Enables enterprise class data assurance with high data rates in networked storage in any user environment.

CRC32 Preliminary Performance

CRC32 optimized Code

crc32c_sse42_optimized_version(uint32 crc, unsigned char const *p, size_t len)

{ // Assuming len is a multiple of 0x10

```
asm("pusha");
```

```
asm("mov %0, %%eax" :: "m" (crc));
```

```
asm("mov %0, %%ebx" :: "m" (p));
```

```
asm("mov %0, %%ecx" :: "m" (len));
```

asm("1:");

return crc;

}}

// Processing four byte at a time: Unrolled four times: asm("crc32 %eax, 0x0(%ebx)"); asm("crc32 %eax, 0x4(%ebx)"); asm("crc32 %eax, 0x8(%ebx)"); asm("crc32 %eax, 0xc(%ebx)"); asm("add \$0x10, %ebx")2; asm("add \$0x10, %ecx"); asm("sub \$0x10, %ecx"); asm("jecxz 2f"); asm("jimp 1b"); asm("imov %%eax, %0" : "=m" (crc)); asm("popa"); Preliminary tests involved Kernel code implementing CRC algorithms commonly used by iSCSI drivers.

- > 32-bit and 64-bit versions of the Kernel under test
- > 32-bit version processes 4 bytes of data using 1 CRC32 instruction
- > 64-bit version processes 8 bytes of data using 1 CRC32 instruction
- Input strings of sizes 48 bytes and 4KB used for the test

	32 - bit	64 - bit
Input Data Size = 48 bytes	6.53 X	9.85 X
Input Data Size = 4 KB	9.3 X	18.63 X

Preliminary Results show CRC32 instruction outperforming the fastest CRC32C software algorithm by a big margin

Agenda

- Nehalem Design Philosophy
- Enhanced Processor Core
- New Instructions
- Optimization Guidelines and Software Tools
- New Platform Features

Software Optimization Guidelines

- Most optimizations for Core microarchitecture still hold
- Examples of new optimization guidelines:
 - 16-byte unaligned loads/stores
 - Enhanced macrofusion rules
 - NUMA optimizations
- Nehalem SW Optimization Guide are published
- Intel Compiler supports settings for Nehalem optimizations (e.g. -xSSE4.2 option)

Simplified Many-core Development with Intel® Tools

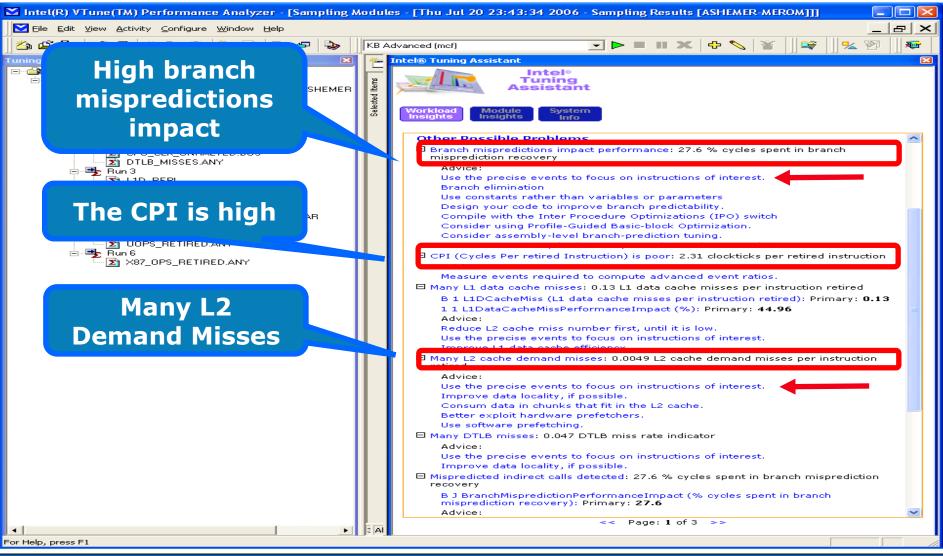
Methods

Insight

Areincecturer Analysis		Windows; Lint	
can benefit from threading and multicore • Find hotspots that limit performance Architectural Analysis	 MKL TBB IPP Clients OpenMP Ct research Hybrid methods Clusters MPI Hybrid methods Introduce Parallelism	 Find deadlocks and race conditions Intel® Trace Analyzer and Collector Event based tracing Confidence/Correctness Windows: Line 	performance and scalability • Intel® Thread Profiler • Visualize efficiency of threaded code Optimize/Tune
 VTune[™] Analyzer Find the code that 	Integrated Building Blocks Integrated Performance Primitives Integrated Integrated Performance Primitives Integrated Performance Integrated Integrated Performance Integrated In	 Intel® Thread Checker 	 VTune Analyzer Tune for

Confidence

Performance


Tools Support of New Instructions

- Intel Compiler 10.x+ supports the new instructions
 - SSE4.2 supported via intrinsics
 - Inline assembly supported on both IA-32 and Intel64 targets
 - > Necessary to include required header files in order to access intrinsics
 - <<u>tmm</u>intrin.h> for Supplemental SSE3
 - <<u>smm</u>intrin.h> for SSE4.1
 - ✓ <<u>nmm</u>intrin.h> for SSE4.2
- Intel Library Support
 - > XML Parser Library released in Fall '08
 - IPP is investigating possible usages of new instructions
- Microsoft Visual Studio 2008 VC++
 - SSE4.2 supported via intrinsics
 - Inline assembly supported on IA-32 only
 - Necessary to include required header files in order to access intrinsics
 - ✓ <<u>tmm</u>intrin.h> for Supplemental SSE3
 - $\checkmark < \underline{smm}$ intrin.h> for SSE4.1
 - ✓ <<u>nmm</u>intrin.h> for SSE4.2
 - VC++ 2008 tools masm, msdis, and debuggers recognize the new instructions

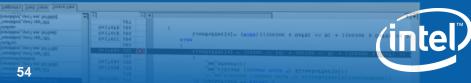
🛛 VTune(TM) Performance Environment - [Source View - [C:\examples\labs\matrix\blocked_dgemm.c]]														
Eile Edit View Activity Configure Window	w <u>H</u> elp													_ & ×
🏠 🗳 🎦 🛎 🎒 X 🖻 🛍 🤤 I	i 🗣 🕫 🛙	<u>کال</u> 🖌	/Tune Activity (S	ampling)		•		II 🗙 🕈 📏	. 省 🛛 🕶 🗍	<mark>%</mark> 🕅 📗	Q			
Tuning Browser 🛛 🗙				111	a V	<u> ಗ</u> ಹ ಗಹ	?]							
⊡ 🚔 tp_demo	Address					Sou				MEM LOA	D L2 LINES	5 INST RETI	CBIL CLK	
🖻 🏶 TP: prime_omp, OpenMP*, 2 threads		1	<pre>#include</pre>	"multip	ly d.1									
		2												
prime_omp3.exe [2 threads][Tue N		3												
prime_omp4.exe [2 threads][Tue N		4	void dgemm (
TC prime_omp5.exe [2 threads][Tue N		6	agenna (co	onst de	ouble */	, const	double *B,	double *C)					
ー・4 TC: prime_omp1.exe (12:45 PM, 2007 回・4 VTune Activity (Sampling)	0x120C	7	{											
		8	unsigne	di, j,	k;									=
🚊 🖏 Run 1	0x1212	9	for (i	= 0• i	< NUM	; ++i) {								
MEM_LOAD_RETIRED.L	0x1212 0x1239					, ++1, (Ai_ = A								
L2_LINES_IN.SELF.ANY ST_RETIRED.ANY	0x1245		fo	r (j =	0;ј-	< NUM; H	+j) (1	7	
CPU_CLK_UNHALTED.C		13					_							
	0x1256	14 15		cons	st doub	ole *B_j	= B +	j*NUM;				1	2	
	0x1262			doub	le ci	j = *(C	+ j*NUM	(+ i);		2	2 1	. 1	12	
		17												
	0x1274			for		D; k < N					t		237	
	0x1285	19 20		}	сіј -	+= *(A1_	. + k*NU	M) * *(B_j -	+ k);		4		931	
		21		,								INST_	RETIRED.ANY (2	2) = 656
	Ox12B1			* (C	+ j*NU	UM + i)	= cij;					1		
		23	}											
	Ox12D5	24	}											
		26	1											
		27												
		28												
		29	/*											
		30 31	void											
	B	22	daemm (
		> <								<				>~
			n Summary						22 12:56:22				YIL-MOBL1]	
					м. L.	INS	CPU	Clocks per .	Instructi	L2 Cach	ne Miss Ka	te (22)		
I	0x120C		Se		2.5	1,005	1 189		1.18	3				0.000
	U OXIEGO	- oxec			0	17000	1,105		1.10					
Output														×
General Tue Mai: 22.12:55:59.2007 HL&KYIL-MOBL1 (Run	1) Satting Correli	na CDU -	pack to 0.1											•
For Help, press F1	C SPORIO SAMON		NAVE IIIIE											
r or neip, press r i														

VTune Tuning Assist View

Use specific events to focus on instructions of interest.

VTune Sampling Over Time View

erformance Ana	ilyzer - [Sampling : Pro	cesses Over Time]						_ 2
≆ @ X № 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Activity2 (Sampling)	<u> </u>	- II X 🕁 📏 🖌	í 🗍 🕷 🗍 🕅 🔽			
×	🛅 🛅 🖤 🍳 🍳	🔹 📮 🗄 🐔 🔮	Process 🛃 Thread	Module Clockticks	-	5		
20 🔺 y1 (Sampling)		Sampling Results [B]	SHAH-P4HT] - Fr			Time in	seconds	
ampling Result	Process Mande//Tune.exe System Idle Process Explorer FXE			Total Clockticks 🗸	0.60 3.02		2.67 15.08 17.50 19.91 22	2.33
Run 1	B Mandel/Tune.exe		1832		28051			
∑ Non-Ha ∑ Clocktic ∑ 128-bit	System Idle Process		0		10711			
Clocktic	Enploronerie		1088		106			
∑ 128-bit	VTuneEnv.exe		964		106			
E Run 2 E Run 2 E Run 3 E Run 3 E A-bit M	taskmgr.exe		984		84 56			
Bun 3	System		4 992		25			
Σ 64-bit M	svchost.exe inetinfo.exe		1508		25			
FHUN 4	csrss.exe		624		19			
∑ Branch ∑ 64k Alia	Isass.exe		704		14			
🖸 🖸 🔁 🔁 🔁	mdm.exe		1528		10			
Run 5	winlogon.exe		648		2			
E Run 5 ∑ Streami ∑ Instruct	svchost.exe		892		2			
Run 6	services.exe		692		1			
∑ Loads F	msmsgs.exe		1564		1		_	
Run 8 Fun 8 Fun 9 Fun 10 Packec Run 11 Packec Run 12 Scalar [E Run 13 E Run 13 E Run 14 D Specuki Part 14 Paspit Lo Paspit Lo								
∑ Uops R Run 17 ∑ x87 Inp Run 18 ∑ x87 Insl ↓		Total Duration 24136 ms. View 0 - 24. Sampling : Modules Over Time	_	esses Over Time Sar	mpling : Threads Over	Time		


Sampling Over Time Views Show How Sampling Data Changes Over Time

Intel® Thread Checker Deliver Multi-Threaded Optimized Code

- Detect hidden potential non-deterministic multithreading errors such as deadlocks and data races
- Analyze the results using Visual Studio* integration or a standalone graphical interface.
- Quickly drill down to the source to identify problematic lines of code

Urag a							Severity distribution	
el A	ID	Short Description	Severity	Description	Count	Filtered		<pre>// Flush LineBuilet = FALSE) (if (cacheFixed = FALSE) (// mm_clflush ((const void *) &LineBuffer[x][threadMum]); // mm_clflush ((const void *) &LineBuffer[x]); </pre>
	1	Write -> Write data-race		Memory write at "mandelbrot_sync1.cpp":182 conflicts with a prior memory write at "mandelbrot_sync1.cpp":182 (output dependence)	137956 4	False		
	4	Read -> Write data-race	8	Memory write at "mandelbrot_sync1.cpp":182 conflicts with a prior memory read at "mandelbrot_sync1.cpp":156 (anti dependence)	734644	False		LineBuffer[x] = (BORD) ((COTOL C COTOL)
	2	Write -> Read data-race	8	Memory read at "mandelbrot_sync1.cpp":156 conflicts with a prior memory write at "mandelbrot_sync1.cpp":182 (flow dependence)	761036	False	0 1 2 3 4 5 6 7 8 Number of occurences	Source Source
	3	Read -> Write data-race	8	Memory write at "mandelbrot_sync1.cpp":231 conflicts with a prior memory read at "mandelbrot_sync1.cpp":294 (anti dependence)	5	False	Unclassified Remark Information	<pre>if(gColorDepth == 32) { // Flush LineBuffer reference from cache before write if not runni if (acaberized == PALSE) { //mmclflush ((const void *) & (LineBuffer[x](threadNum)); mmclflush ((const void *) & (LineBuffer[x]); //mmclflush ((const void *) & (LineBuffer[x]); } }</pre>
	5	Write -> Read data-race	8	Memory read at "mandelbrot_sync1.cpp":294 conflicts with a prior memory write at "mandelbrot_sync1.cpp":234 (flow dependence)	6	False	Caution Warning	

Use the Same Toolset for 32/64 bit on Windows*, Linux* and Mac OS* X

intel

		Itan	ium" Inside	Xeon [°]	Core ² vPro ⁻ inside ⁻	Core 2 Duo Inside
Intol® Soft	Intel [®] Software		Systems	Operating Systems		
Development Products		Windows*	Linux*	Windows	Linux	Mac OS*
		Development E	Environments	Deve	elopment Enviror	nments
	• = Currently Available	Visual Studio*	GCC*	Visual Studio	GCC	Xcode*
Compilers	C++	•	•	•	•	•
compilers	Fortran	•	•	•	•	•
Performance Analyzers	VTune® Performance Analyzer	•	•	•	•	
	Integrated Performance Primitives	•	•	•	•	•
Performance Libraries	Math Kernel Library	•	•	•	•	•
	Mobile Platform SDK			•		
Threading Analysis	Thread Checker			•	•	
Tools	Thread Profiler			•		
	MPI Library	•	•	•	•	
	Trace Analyzer and Collector	•	•	•	•	
Cluster Tools	Math Kernel Library Cluster Edition	•	•	•	•	
	Cluster Toolkit	•	•	•	•	
XML Tools**	XML Software Suite 1.0		•	•	•	

From Servers to Mobile / Wireless Computing, Intel® Software Development Products Enable Application Development Across Intel® Platforms

** Additional XML tools information can be found at www.intel.com/software/xml

(intel)

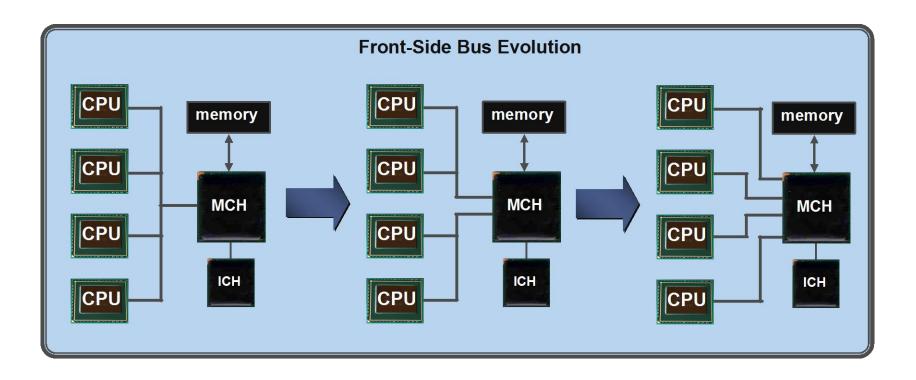
(intel

intel)

Agenda

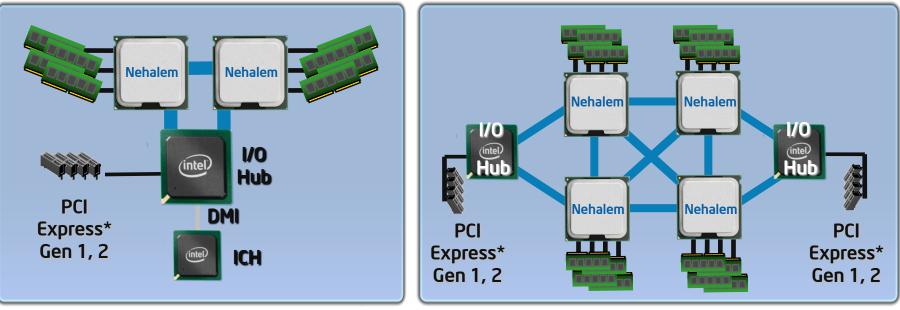
- Nehalem Design Philosophy
- Enhanced Processor Core
- New Instructions
- Optimization Guidelines and Software Tools

New Platform Features


Feeding the Execution Engine

- Powerful 4-wide dynamic execution engine
- Need to keep providing fuel to the execution engine
- Nehalem Goals
 - Low latency to retrieve data
 - Keep execution engine fed w/o stalling
 - High data **bandwidth**
 - Handle requests from multiple cores/threads seamlessly
 - Scalability
 - Design for increasing core counts
- Combination of great cache hierarchy and new platform

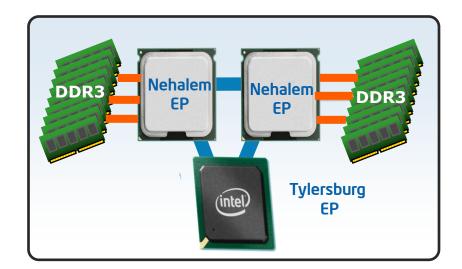
Nehalem designed to feed the execution engine



Previous Platform Architecture

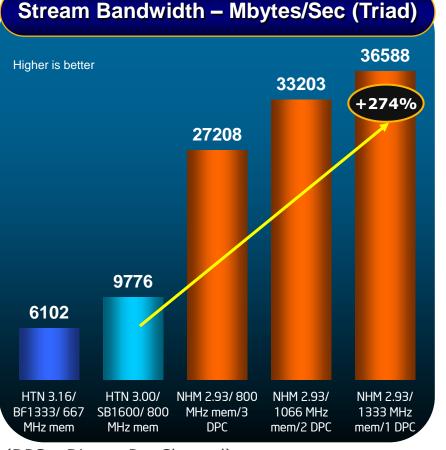
Nehalem Based System Architecture

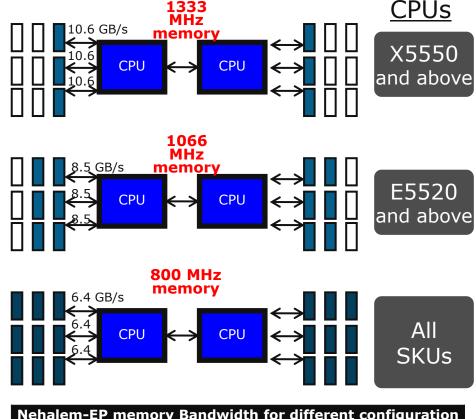
Intel[®] QuickPath Interconnect


Nehalem Microarchitecture Integrated Intel[®] QuickPath Memory Controller Intel[®] QuickPath Interconnect Buffered or Un-buffered Memory PCI Express* Generation 2 Optional Integrated Graphics

Source: Intel. All future products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Integrated Memory Controller (IMC)

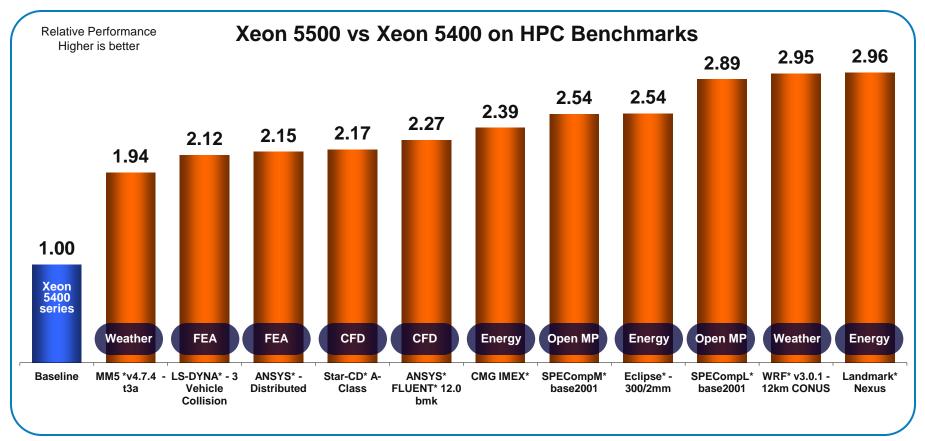

- Memory controller optimized per market segment
- Initial Nehalem products
 - Native DDR3 IMC
 - Up to 3 channels per socket
 - Speeds up to DDR3-1333
 - Massive memory bandwidth
 - Designed for *low latency*
 - Support RDIMM and UDIMM
 - RAS Features
- Future products
 - Scalability
 - Vary # of memory channels
 - Increase memory speeds
 - Buffered and Non-Buffered solutions
 - Market specific needs
 - Higher memory capacity
 - Integrated graphics


Significant performance through new IMC

(DPC – Dimms Per Channel)

Nehalem-EP memory Bandwidth for different configuration										
Memory speed		800 MHz		1066	MHz	1333 MHz				
	1 DPC	2 DPC	3 DPC	1 DPC	2 DPC	1 DPC				
Stream Triad	27748	26565	27208	33723	33203	36588				

Massive Increase in Platform Bandwidth

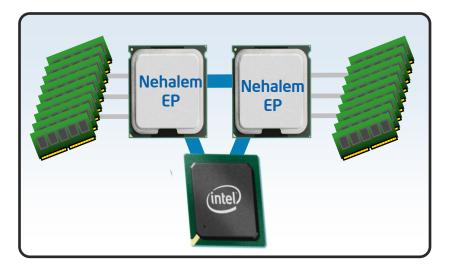

Source: Intel internal measurement - March 2009

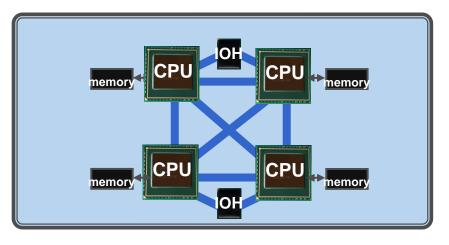
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performance/resources/limits.htm Copyright © 2009, Intel Corporation. * Other names and brands may be claimed as the property of others.

61

Intel® Xeon® Processor 5500 series based Server platforms HPC Performance comparison to Xeon 5400 Series

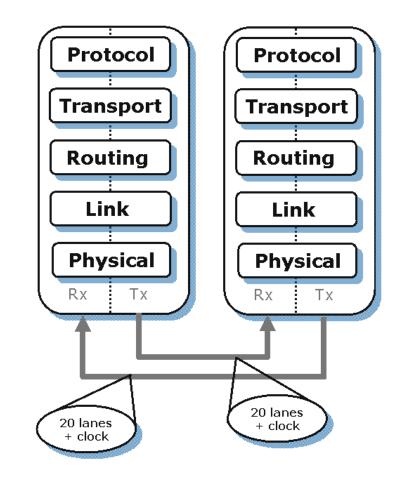
Source: Published/submitted/approved results March 30, 2009. See backup for additional details


Exceptional gains on HPC applications

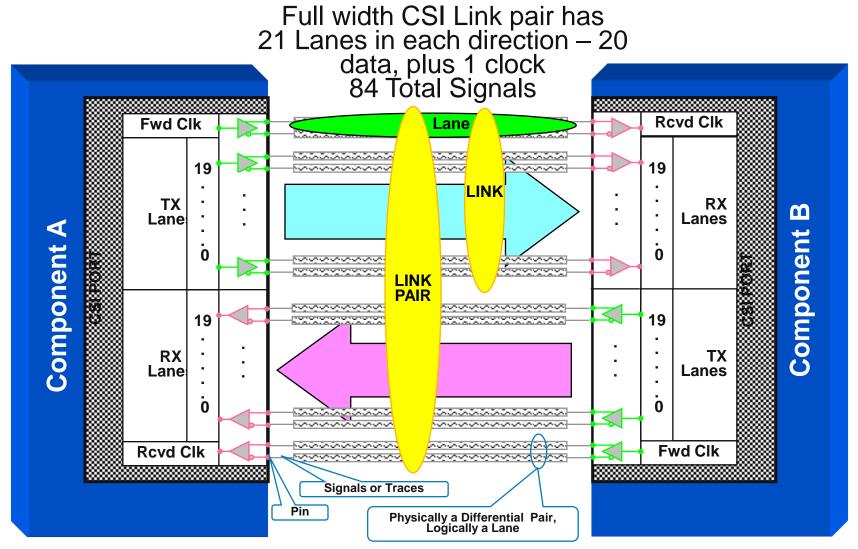

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performance/resources/limits.htm Copyright © 2009, Intel Corporation. * Other names and brands may be claimed as the property of others.

QuickPath Interconnect

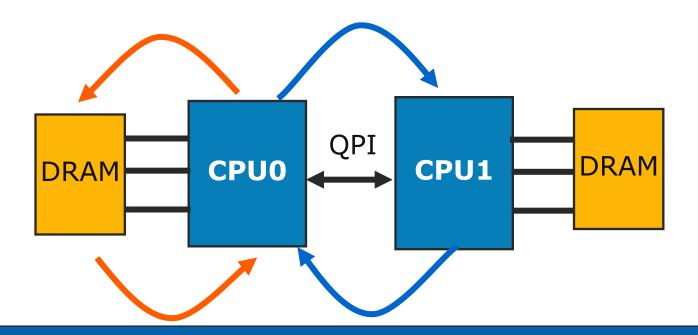
- Nehalem introduces new QuickPath Interconnect (QPI)
- *High bandwidth, low latency* point to point interconnect
- Up to 6.4 GT/sec initially
 - 6.4 GT/sec -> 12.8 GB/sec
 - Bi-directional link -> 25.6 GB/sec per link
 - Future implementations at even higher speeds
- Highly scalable for systems with varying # of sockets



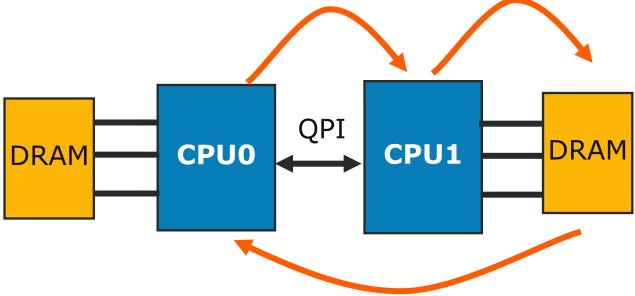
Layered Architecture


- Functionality is partitioned into fivelayers, each layer performing a well-defined set of non-overlapping functions
 - Protocol Layer is the set of rules for exchanging packets between devices
 - Transport Layer provides advanced routing capability for the future*
 - Routing Layer provides framework for directing packet through the fabric
 - Link Layer is responsible for reliable transmission and flow control
 - Physical Layer carries the signals and transmission/receiver support logic

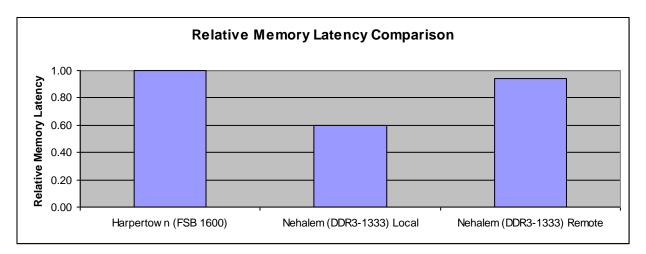
Modularity aids interconnect longevity & eases component design


QPI Link – Logical View

Local Memory Access


- CPU0 requests cache line X, not present in any CPU0 cache
 - CPU0 requests data from its DRAM
 - CPU0 snoops CPU1 to check if data is present
- Step 2:
 - DRAM returns data
 - CPU1 returns snoop response
- Local memory latency is the maximum latency of the two responses
- Nehalem optimized to keep key latencies close to each other

Remote Memory Access


- CPU0 requests cache line X, not present in any CPU0 cache
 - CPU0 requests data from CPU1
 - Request sent over QPI to CPU1
 - CPU1's IMC makes request to its DRAM
 - CPU1 snoops internal caches
 - Data returned to CPU0 over QPI
- Remote memory latency a function of having a low latency interconnect

Memory Latency Comparison

- Low memory latency critical to high performance
- Design integrated memory controller for low latency
- Need to optimize both local and remote memory latency
- Nehalem delivers
 - Huge reduction in local memory latency
 - Even remote memory latency is fast
- Effective memory latency depends per application/OS
 - Percentage of local vs. remote accesses
 - Nehalem has lower latency regardless of mix

Summary

- Nehalem The 45nm Tock designed for
 - Power Efficiency
 - Scalability
 - Performance
- Enhanced Processor Core
- Brand New Platform Architecture
- Extending x86 ISA Leadership
- Tools Available to support new processors feature and ISA
- More web based info: <u>http://www.intel.com/technology/architecture-</u> <u>silicon/next-gen/index.htm</u>

