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• Describes the relation between the parallel portion of your code 
and the expected speedup 

• P = parallel portion 
• N = number of processors used in parallel part 

• P/N is the ideal parallel speed-up, it will always be less

Amdahl’s Law
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speedup =
1

(1� P ) + P
N
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Parallel computing concepts
• Strong parallel scaling

– constant problem size

– execution time decreases in 
proportion to the increase in 
the number of cores

– shortens the time to solve a 
problem

• Weak parallel scaling

– increasing problem size

– execution time remains constant 
when number of cores increases in 
proportion to the problem size

– enables to solve larger problems

Concepts
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Parallel Programming Models

• Shared Memory 
• tasks share a common address space, which they read and write 

asynchronously. 

• Threads  
• a single process can have multiple, concurrent execution paths. 

Example implementations: POSIX threads & OpenMP  

• Message Passing 
• tasks exchange data through communications by sending and 

receiving messages. Example: MPI 

• Data Parallel languages 
• tasks perform the same operation on their partition of work. 

Example: Co-array Fortran (CAF), Unified Parallel C (UPC), Chapel 

• Hybrid  
• MPI + OpenMP



Programming Models
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Hardware Layer

Memory

Interconnect

Interconnect

System Software

Programming Model

User
New to parallel programming 
Experienced programmer

Shared Memory 
Message passing 
Hybrid

Operating system 
compilers

Distributed Memory  
Shared Memory

Parallel Programming Concepts

• Work distribution 
• Which parallel task is doing what? 
• Which data is used by which task? 

• Synchronization 
• Do different parallel tasks meet? 

• Communication 
• Is communication between parallel parts needed? 

• Load Balance 
• Does every task has the same amount of work? 
• Are all processors of the same speed?
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• Work decomposition 
• based on loop counter 

• Data decomposition 
• all work for a local portion 

of the data is done by the 
local processor 

• Domain decomposition 
• decomposition of work and 

data

Distributing of Work and/or Data

11

do i=1,100
1: i=1,25
2: i=26,50
3: i=51,75
4: i=76,100

A(1:10,1:25)
A(1:10,26:50)
A(11:20,1:25)
A(11:20,25:50)

• Synchronization: all parallel processes must reach this point 
• causes overhead 
• idle time, when not all tasks are finished at the same time: 

load imbalance

Synchronization
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• communication is necessary on the boundaries 

• domain decomposition

Communication
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do i=2,99
   b(i) = b(i) + h*(a(i-1)-2*a(i)+a(i+1))
end do

e.g. b(26) = b(26) + h*(a(25)-2*a(26)+a(27))

A(1:25)
A(26:50)
A(51:75)
A(76:100)

31. —   Domain Decomposition – Parallelization of Mesh Based Applications   — 31
31-6
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Replication versus Communication (II)

• Normally replicate the values

– Consider how many calculations you can execute while only
sending 1 Bit from one process to another
(6 µs, 1.0 Gflop/s  6000 operations)

– Sending 16 kByte (20x20x5) doubles
(with 300 MB/s bandwidth   53.3 µs  53 300 operations)

– very often blocks have to wait for their neighbours

–  but extra work limits parallel efficiency

• Communication should only be used if one is quite sure that this is
the best solution

Slide 12
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

2- Dimensional DD with two Halo Cells

Mesh Partitioning

Subdomain for each Process

38a. — Parallelization of Explicit and Implicit Solvers   — 38a.
38a-10

Rolf RabenseifnerParallelization and Iterative Solvers
Slide 19 of  51 Höchstleistungsrechenzentrum Stuttgart

Unstructured Grids

• Mesh partitioning with special load balancing libraries
– Metis (George Karypis, University of Minnesota)
– ParMetis (internally parallel version of Metis)

• http://www.cs.umn.edu/~karypis/metis/metis.html
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/metis.html

– Jostle (Chris Walshaw, University of Greenwich)
• http://www.gre.ac.uk/jostle
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/jostle.html

– Goals:
• Same work load in 

each sub-domain
• Minimizing the

maximal number of 
neighbor-connections
between sub-domains
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Halo

• Stencil:
– To calculate a new grid point (   ), 

old data from the stencil grid points ( ) are needed
• E.g., 9 point stencil

• Halo
– To calculate the new grid points of a sub-domain,

additional grid points from other sub-domains are needed.
– They are stored in  halos  (ghost cells, shadows)
– Halo depends on form of stencil

• Load imbalance is the time that some processors in the system 
are idle due to: 

• less parallelism than processors 
• unequal sized tasks together with too little parallelism 
• unequal processors

Load Imbalance
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Examples of work distribution

• Domain Decomposition 

• Master Worker  

• Task Decomposition
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Domain Decomposition

• First, decide how data elements should be divided among processors 

• Second, decide which tasks each processor should be doing 



Domain Decomposition

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

Domain Decomposition
Find the largest element of an array

5 6 68 83
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Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

13 49 12 51

13 49 68 83



Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

1 34 98 94

13 49 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

9 50 16 27

13 50 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 22 78 74

26 50 98 94

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

26 50 98 94

13 12 31 64



Domain Decomposition
Find the largest element of an array
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5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94
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Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98



Domain decomposition of sum 
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Data parallelism

• Data is distributed to processor cores

• Each core performs (nearly) identical tasks with different data

• Example: summing the elements of an 2 D array

core 2: ∑=core 1: ∑=

core 3: ∑= core 4: ∑=

• Each core sums it's part of the array

• The individual sums have to be combined in the end

Core 2

Core 1

Core 3

Master Worker
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Get a pile of work done 

Core 0 (master)

• The problem is decomposed according to the work that must be done. 
Each task then performs a portion of the overall work. 

• Divide computation based on natural set of independent tasks 
‣ Assign data for each task as needed 

• Example: pipeline seismic data pre-processing 
• static-correction 
• deconvolution 
• nmo correction 
• stacking 
• ….

Task/Functional Decomposition

32
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What Is OpenMP?

• Compiler directives for multithreaded programming 

• Easy to create threaded Fortran and C/C++ codes 

• Supports data parallelism model 

• Portable and Standard 

• Incremental parallelism 
• Combines serial and parallel code in single source

Directive based
• Directives are special comments in the language 

– Fortran fixed form: !$OMP, C$OMP, *$OMP 

– Fortran free form: !$OMP 

Special comments are interpreted by OpenMP 

compilers 

      w = 1.0/n 

      sum = 0.0 

!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:sum) 

      do I=1,n 

        x = w*(I-0.5) 

        sum = sum + f(x) 

      end do 

      pi = w*sum 

      print *,pi 

      end 
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Comment in 
Fortran 
but interpreted by 
OpenMP compilers

Programming Model 

• Fork-join parallelism:  
‣  Master thread spawns a team of threads as needed 

‣ Parallelism is added incrementally: the sequential program 
   evolves into a parallel program

Parallel Regions

Master 
Thread
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Threads are assigned an independent 
set of iterations 

Threads must wait at the end of work-
sharing construct

i = 0 

i = 1 

i = 2 

i = 3

i = 4 

i = 5 

i = 6 

i = 7

i = 8 

i = 9 

i = 10 

i = 11

Work-sharing Construct

#pragma omp parallel

#pragma omp for

Implicit barrier

#pragma omp parallel 
#pragma omp for 
   for(i = 0; i < 12; i++)  
      c[i] = a[i] + b[i]

36



MPI
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The Message-Passing 
Programming model  

• Sequential Programming 

• Message-Passing Programming
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data

program

memory

Processor/Process

data

program

data

program

data

program

data

program

communication network

distributed 
memory
parallel 
processors

A processor may run 
many processes

T
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Programming Model 

• Explicit parallelism:  
‣ All processes starts at the same time at the same point in the code 

‣ Full parallelism: there is no sequential part in the program

Parallel Region

processes

Execution model
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Execution model
• Parallel program is launched as set of independent, identical 

processes

Parallel program

Process 1

Process 2

Process N

...

• All the processes contain the same program code and instructions

• Processes can reside in different nodes or even in different computers

• The way to launch parallel program is implementation dependent

– mpirun, mpiexec, aprun, poe, ...



MPI

memory

cpu

processes

memory

cpu

memory

cpu
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memory

cpu

MPI
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memory

cpu

process 0

MPI_Send(a,...,1,…)

process 1

MPI_Recv(a,...,0,…)

Data Model
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Data model

• All variables and data structures are local to the process

• Processes can exchange data by sending and receiving messages

a = 1.0
b = 2.0

a = -1.0
b = -2.0

Messages

MPI
Process 1
(rank 0 )

Process 2
(rank 1 )

...
a = 6.0
b = 5.0

Process N
(rank N-1 )
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MPI advantages
• Mature and well understood 

• Backed by widely-supported formal standard (1992) 
• Porting is “easy” 

• Efficiently matches the hardware 
• Vendor and public implementations available 

• User interface: 
• Efficient and simple 
• Buffer handling 
• Allow high-level abstractions 

• Performance
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MPI learning

• MPI 3.1 includes many features beyond message passing 

• Execution control environment depends on implementation

Learning curve

Basic Concepts
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Work Distribution

• All processors run the same executable. 

• Parallel work distribution must be explicitly programmed into the 
algorithm: 

• domain decomposition 
• master worker  
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Data and Work Distribution

• To communicate together mpi-processes need identifiers:  
rank = identifying number 

• all distribution decisions are based on the rank 
– i.e., which process works on which data

48

myrank=0 
data

program

myrank=1 
data

program

myrank=2 
data

program

myrank= 
(size-1) 

data

program

communication network



• Point-to-Point 

• Requires explicit commands in program 
• Send, Receive 

• Must be synchronized among different processors 
• Sends and Receives must match 

• Multi-processor communications 
• e.g. broadcast, reduce

Message passing Message passing

• Messages are packets of data moving between sub-programs 
• Necessary information for the message passing system: 

– sending process – receiving process         i.e., the ranks 
– source location – destination location 
– source data type – destination data type 
– source data size – destination buffer size  
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data

program

communication network

MPI Course

Point-to-Point Communication

• Simplest form of message passing. 

• One process sends a message to another. 

• Different types of point-to-point communications 

– synchronous send 

– buffered = asynchronous send
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Synchronous Sends fax(?)

• The sender gets an information that the message is received. 
• Analogue to the beep or okay-sheet of a fax. 
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ok

beep



Synchronous Sends in 
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• Check marks will appear next to each message you send. Here's what 
each one indicates: 

•  The message was successfully sent. 

•  The message was successfully delivered to the recipient's phone 
or any of their linked devices. 

•  The recipient has read your message.

MPI Course

Blocking Operations

• Some sends/receives may block until another process acts: 
– synchronous send operation blocks until receive is issued; 
– receive operation blocks until message is sent. 

• Blocking subroutine returns only when the operation has 
completed. 

• Don’t confuse this with blocking messages in what’s app !
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Non-Blocking Operations

• Non-blocking operations return immediately and allow the sub-
program to perform other work.
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ok

beep

MPI Course

Collective Communications

• Collective communication routines are higher level routines. 

• Several processes are involved at a time. 

• May allow optimized internal implementations, e.g., tree based 
algorithms
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Broadcast

• A one-to-many communication.
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Reduction Operations

• Combine data from several processes to produce a single result.
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sum=?

• Synchronize processes.

Barriers
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all here?

End of brief overview
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