Acknowledgments

» This course is partly based on the MPI courses developed by
— Rolf Rabenseifner at the High-Performance Computing-Center
1 1 Stuttgart (HLRS), University of Stuttgart in collaboration with the
Programmlng Wlth MPI EPCC Training and Education Centre, Edinburgh Parallel Computing
Centre, University of Edinburgh.

http://www.hlrs.de/home/ I I
Jan Thorbecke https://www.epcc.ed.ac.uk I— R S

High-Performance Computing Center | Stuttgart

e CSC — IT Center for Science Ltd.

- https://www.csc.fi
— https://research.csc.fi
CSC-IT CENTER FOR SCIENCE
* http://mpitutorial.com csc
3 5
TUDelft & TUDelft 2
9
Contents Amdahl’s Law
» Introduction « Describes the relation between the parallel portion of your code
« Parallel Programming Models and the expected speedup
» domain decomposition
» master worker
* OpenMP d . 1
» MPI communication concepts speeaup =

(1-P)+ %

e P = parallel portion
* N = number of processors used in parallel part

* P/N is the ideal parallel speed-up, it will always be less

2 2
TUDelft 3 TUDelft 4



Amdahl’s Law Amdahl’s Law

T 100 T ——
60 - 1.0 | maxspeedup(x)
0.99 -7
0.98 A
50 - 80 1 1
o
3
o 407 8 60 f 1
> Q.
3 %)
2 30f 5
@ E 40f ]
3
20 s
20 1
10 |
0 10 20 30 40 50 60 1 2 3 45 7 10 20 30 4050 7090
Number of Processors Sequential Portion in %
5 i
TUDelft 5 TUDelft 6

Concepts Parallel Programming Models
- Strong parallel scaling 104 ' ' ' -
— constant problem size sesk| :geall Scall""g ] * Shared Memory ) )
ion time d ) & —— Realscaling * tasks tﬁhare a Icommon address space, which they read and write
— execution time decreases in o asynchronously.
proportion to the increase in g sur 1
the number of cores @ e Threads ) )
) 2861 i * a single process can have multiple, concurrent execution paths.
— shortens the time to solve a Example implementations: POSIX threads & OpenMP
problem K 3 2 768 1024 .
cores * Message Passing o )
. * tasks exchange data through communications by sending and
* Weak parallel scaling 100 ' ' ' ' receiving messages. Example: MPI
— increasing problem size 80~ [— |deal scaling g - Data Parallel languages
— execution time remains constant  ef L Realscaing 1 * tasks perform the same operation on their partition of work.
when number of cores increases in £ Example: Co-array Fortran (CAF), Unified Parallel C (UPC), Chapel
proportion to the problem size dop ] « Hybrid
— enables to solve larger problems 200 ] * MPI + OpenMP
O 35 502 768 034
—— cores
problem size 3
TUDelft 7 TUDelft




Programming Models

New to parallel programming
Experienced programmer

Shared Memory
Message passing
Hybnd

Operating system
compilers

Distributed Memory
Shared Memory

TUDelft

Parallel Programming Concepts

» Work distribution
» Which parallel task is doing what?
» Which data is used by which task?

» Synchronization
« Do different parallel tasks meet?

» Communication
« Is communication between parallel parts needed?

 Load Balance
* Does every task has the same amount of work?
* Are all processors of the same speed?

L3
TUDelft 10

Distributing of Work and/or Data

do i=1,100
1: i=1,25
» Work decomposition 2: i=26,50
« based on loop counter 3: i=51,75
4: i=76,100

» Data decomposition A(1:10,1:25)
A(1:10,26:50)

« all work for a local portion A(11:20,1:25)
of the data is done by the A(11:20,25:50)
local processor

» Domain decomposition
» decomposition of work and
data

Synchronization

» Synchronization: all parallel processes must reach this point

« causes overhead
« idle time, when not all tasks are finished at the same time:

load imbalance

5
TUDelft

5
TUDelft 12




Communication
» communication is necessary on the boundaries
A(26:50)
do i=2,99 A(iézg’é
b(i) = b(i) + h*(a(i—l)—2*a(i)+a(i+1))A( . )
end do
e.g. b(26) = b(26) + h*( —2*a(26)+a(27))

» domain decomposition

5
TUDelft 13

Examples of work distribution

» Domain Decomposition
» Master Worker

» Task Decomposition

2
TUDelft 15

Load Imbalance

» Load imbalance is the time that some processors in the system
are idle due to:
* less parallelism than processors
» unequal sized tasks together with too little parallelism
* unequal processors

5
TUDelft 14

Domain Decomposition

o First, decide how data elements should be divided among processors

e Second, decide which tasks each processor should be doing

Problem Data Set

2
TUDelft




Domain Decomposition

Find the largest element of an array

5
TUDelft

Domain Decomposition

Find the largest element of an array
o8] 53]

2
TUDelft

Domain Decomposition

Find the largest element of an array

3 EE1 IR 5 N ) X ) Y N ) E D RN R X E Z
= = = =
=
'FUDeIft

Domain Decomposition

Find the largest element of an array

I3
TUDelft




Domain Decomposition

Find the largest element of an array

5 [13[1]9]26]13 6[49]34]50]22]12 68]12]08[16]78]31 83]51]04]27]74]e4

[s¢] El

=

5
TUDelft

Domain Decomposition

Find the largest element of an array

5 [13[1]9]26]13 6[49]34]50]22]12 68]12]08]16]78]31 83]51]04]27]74]e4

[s¢] El

&

2
TUDelft

Domain Decomposition

Find the largest element of an array

5 [13] 1] 9[26[13 6[49]34]50]22]12 68]12]08]16]78]31 83]51[04]27]74]64

[50] [5¢] El

L3
TUDelft

Domain Decomposition

Find the largest element of an array

53] 1] 9]26]13 6[49]34]50]22]12 68]12]08]16]78]31 83]51[04]27]74]64

[50] [5¢] El

&

.3
TUDelft




Domain Decomposition

Find the largest element of an array

8 51 I N 3 EE 2 XY 23 ) ) BN B ) ) Y E A 2
2] [50] £ (5]

%

TUDelft

Domain Decomposition

Find the largest element of an array

5 €1 ¥ IE0 3 A 3 ) ) 23 ) R ) 5 T R R E EA 21
[2] E] [] [=]
[5¢]
<2
TUDelft

Domain Decomposition

Find the largest element of an array

3 EE1 IR 5 N ) X ) Y N ) E D RN R X E Z
[] El £ [=4]
El
'FUDeIft

Domain Decomposition

Find the largest element of an array

I3
TUDelft



Domain decomposition of sum

» Data is distributed to processor cores
» Each core performs (nearly) identical tasks with different data
* Example: summing the elements of an 2 D array

core 1: Y =[] core2: Y=H

core3: Y=M core 4: Y =0

» Each core sums it's part of the array
* The individual sums have to be combined in the end

5
TUDelft 29

Task/Functional Decomposition

» The problem is decomposed according to the work that must be done.
Each task then performs a portion of the overall work.

« Divide computation based on natural set of independent tasks
» Assign data for each task as needed

» Example: pipeline seismic data pre-processing
e static-correction
e deconvolution
° nmo correction
e stacking

Task 4

2
TUDelft

Master Worker

Get a pile of work done
I

L3
TUDelft

30

OpenMP

.3
TUDelft

32




What Is OpenMP?

» Compiler directives for multithreaded programming
» Easy to create threaded Fortran and C/C++ codes
» Supports data parallelism model

* Portable and Standard

 Incremental parallelism
» Combines serial and parallel code in single source

3
TUDelft

Programming Model

e Fork-join parallelism:
» Master thread spawns a team of threads as needed

» Parallelism is added incrementally: the sequential program
evolves into a parallel program

Master
Thread

2
TUDelft 35

Directive based

e Directives are special comments in the language
— Fortran fixed form: ! SOMP, CS$SOMP, *$SOMP
— Fortran free form: ! SOMP

Special comments are interpreted by OpenMP
compilers
w=1.0/n
sum = 0.0
!{$OMP PARALLEL DO PRIVATE(x) REDUCTION (+:sum)
do I=1,n

¥ = wx(1-0.5) Comment in
sum = sum + f(x)
end do Fortran
pi = w*sum but interpreted by
print *,pi OpenMP compilers
end
7
TUDelft 34

Work-sharing Construct

#pragma omp parallel
#pragma omp for
for(i = 0; i < 12; i++)
c[i] = a[i] + b[i]

Z N

Threads are assigned an independent
set of iterations

Threads must wait at the end of work-
sharing construct

#pragma omp parallel

2
TUDelft

36




AT WP

5
TUDelft 37

Programming Model

e Explicit parallelism:
» All processes starts at the same time at the same point in the code

» Full parallelism: there is no sequential part in the program

processes

| /

Parallel Region

2
TUDelft

The Message-Passing
Programming model

e Sequential Programming

——memory A processor may run
many processes

program— Processor/Process

e Message-Passing Programming

—distributed
xXxxx) memory
|program| |program| |program program|——parallel
processors
o2
TUDelft 38

Execution model

» Parallel program is launched as set of independent, identical

processes
Process 1

Parallel program ———-
prog Process 2
Process N

» All the processes contain the same program code and instructions
* Processes can reside in different nodes or even in different computers
* The way to launch parallel program is implementation dependent

— mpirun, mpiexec, aprun, poe, ...

2
TUDelft 40



MPI

processes
memory memory
o &=
(== (eninnnna]
oo o

VW, ——>
MWW, ————>

cpu cpu cpu

- Y |

5
TUDelft “

Data Model

¢ All variables and data structures are local to the process
* Processes can exchange data by sending and receiving messages

a=1.0 —_— a=-1.0
=] b=-2.0

b=2.0 MPI

Process 1 - Process 2

(rank 0 ) Messages (rank 1)
a=6.0

b=5.0

Process N

(rank N-1)

FUDelft 43

MPI

process 0 process 1

(T ) T )
rgsenn;;)ry m;mory

oo oo

I ]

| |

: :

cpu cp

-

MPI Send(a,...,1,..) MPI Recv(a,...,0,..)

5
TUDelft 2

MPI advantages

» Mature and well understood
* Backed by widely-supported formal standard (1992)
* Porting is “easy”

« Efficiently matches the hardware
* Vendor and public implementations available

e User interface:
* Efficient and simple
* Buffer handling
* Allow high-level abstractions

» Performance

.3
TUDelft 44



MPI learning

* MPI 3.1 includes many features beyond message passing

competence

time

» Execution control environment depends on implementation

5
TUDelft 45

Work Distribution

« All processors run the same executable.

« Parallel work distribution must be explicitly programmed into the
algorithm:
» domain decomposition
* master worker

2
TUDelft 47

Basic Concepts

L3
TUDelft 46

Data and Work Distribution

» To communicate together mpi-processes need identifiers:
rank = identifying number

« all distribution decisions are based on the rank
— i.e., which process works on which data

'myrank=0\ /myrank=1\ /myrank=2 eccee| (size-1)
data data data

program| |program| |program program

communication network
cation |

.3
TUDelft 48




Message passing

¢ Point-to-Point

» Requires explicit commands in program
« Send, Receive

» Must be synchronized among different processors
» Sends and Receives must match

 Multi-processor communications
« e.g. broadcast, reduce

5
TUDelft

Point-to-Point Communication

» Simplest form of message passing.

» One process sends a message to another.

« Different types of point-to-point communications
- synchronous send

- buffered = asynchronous send

2
TUDelft 51

Message passing

* Messages are packets of data moving between sub-programs
» Necessary information for the message passing system:

— sending process — receiving process } i.e., the ranks
— source location — destination location
— source data type — destination data type | g
— source data size — destination buffer size
Q (X X XN J
program
NG

communication network

L3
TUDelft 50

Synchronous Sends fax(?)

» The sender gets an information that the message is received.
» Analogue to the beep or okay-sheet of a fax.

= =

%@%@

%

2
TUDelft 52




Synchronous Sends in e

* Check marks will appear next to each message you send. Here's what

each one indicates:

e ./ The message was successfully sent.

or any of their linked devices.

e/ The recipient has read your message.

* -/ The message was successfully delivered to the recipient's phone

5
TUDelft

53

Non-Blocking Operations

program to perform other work.

s
ot T =
== B

o Yoo

» Non-blocking operations return immediately and allow the sub-

2
TUDelft

55

Blocking Operations

» Some sends/receives may block until another process acts:
— synchronous send operation blocks until receive is issued;
— receive operation blocks until message is sent.

» Blocking subroutine returns only when the operation has
completed.

» Don't confuse this with blocking messages in what's app !

L3
TUDelft 54

Collective Communications

« Collective communication routines are higher level routines.

» Several processes are involved at a time.
» May allow optimized internal implementations, e.g., tree based
algorithms
73
TUDelft 56



Broadcast

* A one-to-many communication.

0

5
TUDelft

57

Barriers

» Synchronize processes.

2
TUDelft

59

Reduction Operations

» Combine data from several processes to produce a single result.

2 =

—

=y

L3
TUDelft 58

End of brief overview

.3
TUDelft 60



