
Type to enter text

Challenge the future

Delft
University of
Technology

Programming with MPI
Parallel programming

Jan Thorbecke

• This course is partly based on the MPI courses developed by
– Rolf Rabenseifner at the High-Performance Computing-Center

Stuttgart (HLRS), University of Stuttgart in collaboration with the
EPCC Training and Education Centre, Edinburgh Parallel Computing
Centre, University of Edinburgh.
http://www.hlrs.de/home/

 https://www.epcc.ed.ac.uk

• CSC – IT Center for Science Ltd.
– https://www.csc.fi
– https://research.csc.fi

• http://mpitutorial.com

Acknowledgments

2

3

Contents

• Introduction
• Parallel Programming Models

• domain decomposition
• master worker

• OpenMP
• MPI communication concepts

• Describes the relation between the parallel portion of your code
and the expected speedup

• P = parallel portion
• N = number of processors used in parallel part

• P/N is the ideal parallel speed-up, it will always be less

Amdahl’s Law

4

speedup =
1

(1� P) + P
N

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of Processors

1.0
0.99
0.98

Amdahl’s Law

5

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 7 10 20 30 40 50 70 90

M
ax

im
um

 S
pe

ed
up

Sequential Portion in %

maxspeedup(x)

Amdahl’s Law

6

Parallel computing concepts
• Strong parallel scaling

– constant problem size

– execution time decreases in
proportion to the increase in
the number of cores

– shortens the time to solve a
problem

• Weak parallel scaling

– increasing problem size

– execution time remains constant
when number of cores increases in
proportion to the problem size

– enables to solve larger problems

Concepts

7

Parallel Programming Models

• Shared Memory
• tasks share a common address space, which they read and write

asynchronously.

• Threads
• a single process can have multiple, concurrent execution paths.

Example implementations: POSIX threads & OpenMP

• Message Passing
• tasks exchange data through communications by sending and

receiving messages. Example: MPI

• Data Parallel languages
• tasks perform the same operation on their partition of work.

Example: Co-array Fortran (CAF), Unified Parallel C (UPC), Chapel

• Hybrid
• MPI + OpenMP

Programming Models

9

Hardware Layer

Memory

Interconnect

Interconnect

System Software

Programming Model

User
New to parallel programming
Experienced programmer

Shared Memory
Message passing
Hybrid

Operating system
compilers

Distributed Memory
Shared Memory

Parallel Programming Concepts

• Work distribution
• Which parallel task is doing what?
• Which data is used by which task?

• Synchronization
• Do different parallel tasks meet?

• Communication
• Is communication between parallel parts needed?

• Load Balance
• Does every task has the same amount of work?
• Are all processors of the same speed?

10

• Work decomposition
• based on loop counter

• Data decomposition
• all work for a local portion

of the data is done by the
local processor

• Domain decomposition
• decomposition of work and

data

Distributing of Work and/or Data

11

do i=1,100
1: i=1,25
2: i=26,50
3: i=51,75
4: i=76,100

A(1:10,1:25)
A(1:10,26:50)
A(11:20,1:25)
A(11:20,25:50)

• Synchronization: all parallel processes must reach this point
• causes overhead
• idle time, when not all tasks are finished at the same time:

load imbalance

Synchronization

12

• communication is necessary on the boundaries

• domain decomposition

Communication

13

do i=2,99
 b(i) = b(i) + h*(a(i-1)-2*a(i)+a(i+1))
end do

e.g. b(26) = b(26) + h*(a(25)-2*a(26)+a(27))

A(1:25)
A(26:50)
A(51:75)
A(76:100)

31. — Domain Decomposition – Parallelization of Mesh Based Applications — 31
31-6

Slide 11
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

Replication versus Communication (II)

• Normally replicate the values

– Consider how many calculations you can execute while only
sending 1 Bit from one process to another
(6 µs, 1.0 Gflop/s 6000 operations)

– Sending 16 kByte (20x20x5) doubles
(with 300 MB/s bandwidth 53.3 µs 53 300 operations)

– very often blocks have to wait for their neighbours

– but extra work limits parallel efficiency

• Communication should only be used if one is quite sure that this is
the best solution

Slide 12
Domain Decomposition

Höchstleistungsrechenzentrum Stuttgart
Adamidis/Bönisch

2- Dimensional DD with two Halo Cells

Mesh Partitioning

Subdomain for each Process

38a. — Parallelization of Explicit and Implicit Solvers — 38a.
38a-10

Rolf RabenseifnerParallelization and Iterative Solvers
Slide 19 of 51 Höchstleistungsrechenzentrum Stuttgart

Unstructured Grids

• Mesh partitioning with special load balancing libraries
– Metis (George Karypis, University of Minnesota)
– ParMetis (internally parallel version of Metis)

• http://www.cs.umn.edu/~karypis/metis/metis.html
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/metis.html

– Jostle (Chris Walshaw, University of Greenwich)
• http://www.gre.ac.uk/jostle
• http://www.hlrs.de/organization/par/services/tools/loadbalancer/jostle.html

– Goals:
• Same work load in

each sub-domain
• Minimizing the

maximal number of
neighbor-connections
between sub-domains

0 2

3
1

4
5

6 10

9
8

7 11

12 15

16
13

17 14

21 20

23
22

19

18

P
arallelization

of E
xplicit and Im

plicit S
olvers [38a]

Rolf RabenseifnerParallelization and Iterative Solvers
Slide 20 of 51 Höchstleistungsrechenzentrum Stuttgart

Halo

• Stencil:
– To calculate a new grid point (),

old data from the stencil grid points () are needed
• E.g., 9 point stencil

• Halo
– To calculate the new grid points of a sub-domain,

additional grid points from other sub-domains are needed.
– They are stored in halos (ghost cells, shadows)
– Halo depends on form of stencil

• Load imbalance is the time that some processors in the system
are idle due to:

• less parallelism than processors
• unequal sized tasks together with too little parallelism
• unequal processors

Load Imbalance

14

Examples of work distribution

• Domain Decomposition

• Master Worker

• Task Decomposition

15

Domain Decomposition

• First, decide how data elements should be divided among processors

• Second, decide which tasks each processor should be doing

Domain Decomposition

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

Domain Decomposition
Find the largest element of an array

5 6 68 83

Core 0 Core 1 Core 2 Core 3

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 645 6 68 83 5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

13 49 12 51

13 49 68 83

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

1 34 98 94

13 49 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

9 50 16 27

13 50 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 22 78 74

26 50 98 94

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Domain Decomposition
Find the largest element of an array

Core 0 Core 1 Core 2 Core 3

26 50 98 94

13 12 31 64

Domain Decomposition
Find the largest element of an array

26

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

50

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98

Domain Decomposition
Find the largest element of an array

5 13 1 9 26 13 6 49 34 50 22 12 68 12 98 16 78 31 83 51 94 27 74 64

Core 0 Core 1 Core 2 Core 3

26 50 98 94

98

Domain decomposition of sum

29

Data parallelism

• Data is distributed to processor cores

• Each core performs (nearly) identical tasks with different data

• Example: summing the elements of an 2 D array

core 2: ∑=core 1: ∑=

core 3: ∑= core 4: ∑=

• Each core sums it's part of the array

• The individual sums have to be combined in the end

Core 2

Core 1

Core 3

Master Worker

30

Get a pile of work done

Core 0 (master)

• The problem is decomposed according to the work that must be done.
Each task then performs a portion of the overall work.

• Divide computation based on natural set of independent tasks
‣ Assign data for each task as needed

• Example: pipeline seismic data pre-processing
• static-correction
• deconvolution
• nmo correction
• stacking
• ….

Task/Functional Decomposition

32

3

What Is OpenMP?

• Compiler directives for multithreaded programming

• Easy to create threaded Fortran and C/C++ codes

• Supports data parallelism model

• Portable and Standard

• Incremental parallelism
• Combines serial and parallel code in single source

Directive based
• Directives are special comments in the language

– Fortran fixed form: !OMP, COMP, *$OMP

– Fortran free form: !$OMP

Special comments are interpreted by OpenMP

compilers

 w = 1.0/n

 sum = 0.0

!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:sum)

 do I=1,n

 x = w*(I-0.5)

 sum = sum + f(x)

 end do

 pi = w*sum

 print *,pi

 end

34

Comment in
Fortran
but interpreted by
OpenMP compilers

Programming Model

• Fork-join parallelism:
‣ Master thread spawns a team of threads as needed

‣ Parallelism is added incrementally: the sequential program
 evolves into a parallel program

Parallel Regions

Master
Thread

35

Threads are assigned an independent
set of iterations

Threads must wait at the end of work-
sharing construct

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

Work-sharing Construct

#pragma omp parallel

#pragma omp for

Implicit barrier

#pragma omp parallel
#pragma omp for
 for(i = 0; i < 12; i++)
 c[i] = a[i] + b[i]

36

MPI

37

The Message-Passing
Programming model

• Sequential Programming

• Message-Passing Programming

38

data

program

memory

Processor/Process

data

program

data

program

data

program

data

program

communication network

distributed
memory
parallel
processors

A processor may run
many processes

T

5

Programming Model

• Explicit parallelism:
‣ All processes starts at the same time at the same point in the code

‣ Full parallelism: there is no sequential part in the program

Parallel Region

processes

Execution model

40

Execution model
• Parallel program is launched as set of independent, identical

processes

Parallel program

Process 1

Process 2

Process N

...

• All the processes contain the same program code and instructions

• Processes can reside in different nodes or even in different computers

• The way to launch parallel program is implementation dependent

– mpirun, mpiexec, aprun, poe, ...

MPI

memory

cpu

processes

memory

cpu

memory

cpu

41

memory

cpu

MPI

42

memory

cpu

process 0

MPI_Send(a,...,1,…)

process 1

MPI_Recv(a,...,0,…)

Data Model

43

Data model

• All variables and data structures are local to the process

• Processes can exchange data by sending and receiving messages

a = 1.0
b = 2.0

a = -1.0
b = -2.0

Messages

MPI
Process 1
(rank 0)

Process 2
(rank 1)

...
a = 6.0
b = 5.0

Process N
(rank N-1)

44

MPI advantages
• Mature and well understood

• Backed by widely-supported formal standard (1992)
• Porting is “easy”

• Efficiently matches the hardware
• Vendor and public implementations available

• User interface:
• Efficient and simple
• Buffer handling
• Allow high-level abstractions

• Performance

45

MPI learning

• MPI 3.1 includes many features beyond message passing

• Execution control environment depends on implementation

Learning curve

Basic Concepts

46

Work Distribution

• All processors run the same executable.

• Parallel work distribution must be explicitly programmed into the
algorithm:

• domain decomposition
• master worker

47

Data and Work Distribution

• To communicate together mpi-processes need identifiers:
rank = identifying number

• all distribution decisions are based on the rank
– i.e., which process works on which data

48

myrank=0
data

program

myrank=1
data

program

myrank=2
data

program

myrank=
(size-1)

data

program

communication network

• Point-to-Point

• Requires explicit commands in program
• Send, Receive

• Must be synchronized among different processors
• Sends and Receives must match

• Multi-processor communications
• e.g. broadcast, reduce

Message passing Message passing

• Messages are packets of data moving between sub-programs
• Necessary information for the message passing system:

– sending process – receiving process i.e., the ranks
– source location – destination location
– source data type – destination data type
– source data size – destination buffer size

50

data

program

communication network

MPI Course

Point-to-Point Communication

• Simplest form of message passing.

• One process sends a message to another.

• Different types of point-to-point communications

– synchronous send

– buffered = asynchronous send

51

Synchronous Sends fax(?)

• The sender gets an information that the message is received.
• Analogue to the beep or okay-sheet of a fax.

52

ok

beep

Synchronous Sends in

53

• Check marks will appear next to each message you send. Here's what
each one indicates:

• The message was successfully sent.

• The message was successfully delivered to the recipient's phone
or any of their linked devices.

• The recipient has read your message.

MPI Course

Blocking Operations

• Some sends/receives may block until another process acts:
– synchronous send operation blocks until receive is issued;
– receive operation blocks until message is sent.

• Blocking subroutine returns only when the operation has
completed.

• Don’t confuse this with blocking messages in what’s app !

54

Non-Blocking Operations

• Non-blocking operations return immediately and allow the sub-
program to perform other work.

55

ok

beep

MPI Course

Collective Communications

• Collective communication routines are higher level routines.

• Several processes are involved at a time.

• May allow optimized internal implementations, e.g., tree based
algorithms

56

Broadcast

• A one-to-many communication.

57

Reduction Operations

• Combine data from several processes to produce a single result.

58

200

300

 15

 30
 10

sum=?

• Synchronize processes.

Barriers

59

all here?

End of brief overview

60

