
Type to enter text

Challenge the future

Delft
University of
Technology

Programming with MPI
Basic send and receive

Jan Thorbecke

Acknowledgments

• This course is partly based on the MPI course developed by

– Rolf Rabenseifner at the High-Performance Computing-Center
Stuttgart (HLRS), University of Stuttgart in collaboration with the
EPCC Training and Education Centre, Edinburgh Parallel Computing
Centre, University of Edinburgh.
http://www.hlrs.de/home/

• CSC – IT Center for Science Ltd.
https://www.csc.fi

2

3

Contents

• Initialisation of MPI
• exercise: HelloWorld

• Basic Send & Recv
• exercise: Sum
• exercise: SendRecv

• more Send Receive messages
• exercise: PingPong (optional)
• exercise: Ring (optional)

4

A Minimal MPI Program (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 err = MPI_Init(&argc, &argv);
 printf("Hello, world!\n");
 err = MPI_Finalize();
 return 0;
}

All C functions return an error message

5

A Minimal MPI Program (Fortran 90)

program main
use MPI
integer ierr

call MPI_INIT(ierr)
print *, 'Hello, world!'
call MPI_FINALIZE(ierr)
end

All MPI fortran calls return an error message as argument

Starting the MPI Environment

• MPI_INIT ()

Initializes MPI environment. This function must be called and
must be the first MPI function called in a program (exception:
MPI_INITIALIZED)

Syntax

int MPI_Init (int *argc, char ***argv)

MPI_INIT (IERROR)

INTEGER IERROR

NOTE: Both C and Fortran return error codes for all calls.

6

Exiting the MPI Environment

• MPI_FINALIZE ()

Cleans up all MPI state. Once this routine has been called, no
MPI routine (even MPI_INIT) may be called

Syntax
int MPI_Finalize ();

MPI_FINALIZE (IERROR)

INTEGER IERROR

MUST call MPI_FINALIZE when you exit from an MPI program.

7

C and Fortran Language
Considerations

• Bindings

– C

• All MPI names have an MPI_ prefix

• Defined constants are in all capital letters

• Defined types and functions have one capital letter after the
prefix; the remaining letters are lowercase

– Fortran

• All MPI names have an MPI_ prefix

• No capitalization rules apply

• last argument is an returned error value

8

• C:
#include <mpi.h>

error = MPI_Xxxxxx(parameter, …);

• Fortran:
INCLUDE 'mpif.h'

CALL MPI_XXXXXX(parameter, ..., IERROR)

MPI Function Format

9

don’t
forget

10

Finding Out About the Environment

• Two important questions that arise early in a parallel program are:
• How many processes are participating in this computation?
• Which one am I?

• MPI provides functions to answer these questions:
– MPI_Comm_size reports the number of processes.
– MPI_Comm_rank reports the rank, a number between 0 and size-1,

identifying the calling process

MPI Rank

11

• MPI runtime assigns each process a rank, which can be used as an
ID of the processes

– ranks start from 0 and extent to N-1

• Processes can perform different tasks and handle different data
based on their rank

...
if (rank == 0) {
 …
 }
if (rank == 1) {
 …
 }
...

Exercise: Hello World

• README.txt
• Try to answer the questions in the README
• How is the program compiled?
• How do you run the parallel program?

• There is a C and Fortran version of the exercise.

• Use the job.slurm script to submit to the workload manager
slurm.

• Try to run directly without submitting to slurm (but don’t tell me).

12

13

Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

14

Better Hello (Fortran)

program main
use MPI
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

Rank

• The rank identifies different processes within a communicator

• The rank is the basis for any work and data distribution.

15

myrank=0 myrank=1 myrank=2 myrank=
(size-1)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierror)

16

Some Basic Concepts

• Processes can be collected into groups.
• Each message is sent in a context, and must be received in the

same context.
• A group and context together form a communicator.
• A process is identified by its rank in the group associated with a

communicator.
• There is a default communicator whose group contains all initial

processes, called MPI_COMM_WORLD.
• Each process has it own number

• starts with 0
• ends with (size-1)

Day 2: MPI
 2010 – Course MT1

MPI Communicators

• Communicator is an internal object
• MPI Programs are made up of communicating

processes
• Each process has its own address space containing its

own attributes such as rank, size (and argc, argv, etc.)
• MPI provides functions to interact with it
• Default communicator is MPI_COMM_WORLD

– All processes are its members
– It has a size (the number of processes)
– Each process has a rank within it
– One can think of it as an ordered list of processes

• Additional communicator(s) can co-exist
• A process can belong to more than one communicator
• Within a communicator, each process has a unique

rank

MPI_COMM_WORLD

0

1
2

5

3

4

6

7

14

Communicator

• Communication in MPI takes place with respect to
communicators

• MPI_COMM_WORLD is one such predefined communicator
(something of type “MPI_COMM”) and contains group and
context information

• MPI_COMM_RANK() and MPI_COMM_SIZE() return
information based on the communicator passed in as the
first argument

• Processes may belong to many different communicators

0 1 2 3 4 5 6 7

MPI_COMM_WORLD

Rank-->

17

Split communicator

18

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Split	a	Large	Communicator	Into	Smaller	Communicators

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Point to Point communication

19

MPI Basic Send/Receive
• Basic message passing process. Send data from one process

to another

• Questions
– To whom is data sent?
– Where is the data?
– What type of data is sent?
– How much of data is sent?
– How does the receiver identify it?

A:

Send Receive

B:

Process 1Process 0

20

•

•

21

MPI Basic Send/Receive

• Requires co-operation of sender and receiver
• Co-operation not always apparent in code
• Communication and synchronization are combined

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

• Data transfer plus synchronization

Message Organization in MPI

22

Day 2: MPI
 2010 – Course MT1

Message Envelope

• Communication across
processes is performed using
messages.

• Each message consists of a
fixed number of fields that is
used to distinguish them, called
the Message Envelope :
– Envelope comprises source,

destination, tag, communicator
– Message comprises Envelope +

data
• Communicator refers to the

namespace associated with the
group of related processes

21

MPI_COMM_WORLD

0

1
2

5

3

4

6

7

Source : process0
Destination : process1
Tag : 1234
Communicator : MPI_COMM_WORLD

• Message is divided into data and envelope

• data
– buffer
– count
– datatype

• envelope
– process identifier (source/destination)
– message tag
– communicator

MPI Basic Send/Receive
• Thus the basic (blocking) send has become:

MPI_Send (buf, count, datatype, dest, tag,
comm)
– Blocking means the function does not return until it is safe

to reuse the data in buffer. The message may not have
been received by the target process.

• And the receive has become:
MPI_Recv(buf, count, datatype, source, tag,
comm, status)

- The source, tag, and the count of the message actually
received can be retrieved from status

23

MPI C Datatypes

24

MPI Fortran Datatypes

25

Process Naming and Message Tags
• Naming a process

– destination is specified by (rank, group)

– Processes are named according to their rank in the group

– Groups are defined by their distinct “communicator”

– MPI_ANY_SOURCE wildcard rank permitted in a receive Tags are
integer variables or constants used to uniquely identify individual
messages

• Tags allow programmers to deal with the arrival of messages in
an orderly manner

• MPI tags are guaranteed to range from 0 to 32767 by MPI-1

– Vendors are free to increase the range in their implementations

• MPI_ANY_TAG can be used as a wildcard value

26

• Envelope information is returned from
MPI_RECV in status.

• C:
 status.MPI_SOURCE
 status.MPI_TAG
 count via MPI_Get_count()

• Fortran:
 status(MPI_SOURCE)
 status(MPI_TAG)
 count via MPI_GET_COUNT()

Communication Envelope

27

To:
destination rank

From: source rank
 tag

item-1
item-2
item-3 „count“
item-4 elements
...
item-n

28

Retrieving Further Information
• Status is a data structure allocated in the user’s program.
• In C:

int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

• In Fortran:
integer recvd_tag, recvd_from, recvd_count

integer status(MPI_STATUS_SIZE)

call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)

tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)

call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

Requirements for Point-to-Point
Communications

For a communication to succeed:

• Sender must specify a valid destination rank.

• Receiver must specify a valid source rank.

• The communicator must be the same.

• Tags must match.

• Message datatypes must match.

• Receiver’s buffer must be large enough.

29

Exercise: SendRecv (1)

Write a simple program where every processor sends data to the next one.
You may use as a starting point the basic.c or basic.f90. The program should
work as follows:
• Let ntasks be the number of the tasks.
• Every task with a rank less than ntasks-1 sends a message to task myid+1.
 For example, task 0 sends a message to task 1.
• The message content is an integer array of 100 elements.
• The message tag is the receiver’s id number.
• The sender prints out the number of elements it sends and the tag number.
• All tasks with rank ≥ 1 receive messages. You should check the
MPI_SOURCE and MPI_TAG fields of the status variable (in Fortran you
should check the corresponding array elements). Also check the number of
elements that the process received using MPI_Get_count.
• Each receiver prints out the number of elements it received, the message
tag, and the rank.
• Write the program using MPI_Send and MPI_Recv

30

Instructions

31

MPI_Init(&argc,&argv);

MPI-task

if (myid < ntasks-1) {
 MPI_Send(message,size,MPI_INT,myid+1,myid+1,MPI_COMM_WORLD);

???? 3210

-1- MPI_send MPI_send MPI_send

if (myid > 0){
 MPI_Recv(message,size,MPI_INT,MPI_ANY_SOURCE,MPI_ANY_TAG,
 MPI_COMM_WORLD,&status);

-2- MPI_recv MPI_recv MPI_recv

-3- MPI_Get_c MPI_Get_c MPI_Get_c

MPI_Get_count(&status,MPI_INT,&count); Is MPI Large or Small?

• Is MPI large (300+ functions) or small (6 functions)?
– MPI’s extensive functionality requires many functions
– Number of functions not necessarily a measure of complexity
– Many programs can be written with just 6 basic functions
MPI_INIT MPI_COMM_SIZE MPI_SEND
MPI_FINALIZE MPI_COMM_RANK MPI_RECV

• MPI is just right
– A small number of concepts
– Large number of functions provides flexibility, robustness,

efficiency, modularity, and convenience
– One need not master all parts of MPI to use it

32

You just learned MPI

• In principle we could stop here, all you need to know about MPI is
covered.

• The other topics covered during the course are tweaks and
extensions to this basic Send/Recv mechanism:

• make it more convenient to use
• write optimised functions for common problems (reduction)
• avoid common mistakes
• extension for work distribution
• parallel IO
• ….

33

Blocking Communication

• So far we have discussed blocking communication
– MPI_SEND does not complete until buffer is empty (available for reuse)
– MPI_RECV does not complete until buffer is full (available for use)

• A process sending data will be blocked until data in the send buffer is
emptied

• A process receiving data will be blocked until the receive buffer is filled
• Completion of communication generally depends on the message size

and the system buffer size
• Blocking communication is simple to use but can be prone to

deadlocks

34

Exercise: SendRecv/deadlock (2)

• Find out what the program deadlock (.c or .f90) is supposed to
do. Run it with two processors and see what happens.

a) Why does the program get stuck ?
b) Reorder the sends and receives in such a way that there is no

deadlock.
c) Replace the standard sends with non-blocking sends (MPI_Isend/

MPI_Irecv) to avoid deadlocking. See the man page how to use
these non-blocking

d) Replace the sends and receives with MPI_SENDRECV.
e) In the original program set maxN to 1 and try again.

35

Deadlocks

Processes wait for some
event or condition that will
never occur

Example: Traffic jam Cars
unable to turn or back up

36

• MPI uses multiple different protocols
• choice depends on message size

1. Eager messaging
• Buffers used on send and receive side, opportunity to send direct to

remote buffer
• Used for small messages
• Offers good potential for overlap

2. Segmentation And Reassembly (SAR)
• Similar to Eager, with multiple messages/buffers each side (new for

the Slingshot implementation)

3. Rendezvous messaging
• After an initial setup communication bulk data transfer happens in

the MPI_Recv
• Used for large messages

MPI Messaging Protocols

37

MPI Inter-Node Message type Eager

Mailbox size can changes with the number of ranks in the job

38

Sender Receiver

1. MPI_Send (MPI header + user data)

Mailboxes

 CQs

PE 1

 PE 82

PE 5
PE 22

PE 96

EAGER messages that fit in the MPI-Mailbox

2. Memcpy

MPI Inter-Node Message type R0

• No extra data copies
• Direct transfer from send-side user buffer to receive-side user buffer

39

Sender ReceiverSMSG Mailboxes

 CQs

Rendezvous messages using RDMA Get

2. GNI_SMSG Send (MPI header)

4. RDMA GET

5. GNI_SMSG Send (Recv done)

1. Register App Send Buffer

3. Register App Recv Buffer

PE 1

 PE 82

PE 5
PE 22

PE 96

MPI Inter-Node Message type R1

• Repeat steps 2-6 until all sender data is transferred
• Chunksize is MPI_GNI_MAX_NDREG_SIZE (default of 4MB)

40

Sender ReceiverSMSG Mailboxes

 CQs

Rendezvous messages using RDMA Put

1. GNI_SMSG Send (MPI header, RTS)

5. RDMA PUT

6. GNI_SMSG Send (Send done)

4. Register Chunk of App
 Send Buffer

2. Register Chunk of App
 Recv Buffer

3. GNI_SMSG Send (CTS msg)

PE 1

 PE 82

PE 5
PE 22

PE 96

41 42

• One way to improve performance
• send more messages on the eager protocol; potentially more overlap

• Do this by raising the value of the eager/SAR threshold
• set environment variable in jobscript
• export btl_sm_eager_limit=<value>
• value is in bytes: default is 4096 bytes. (~4 kB)

• When might this help
• If MPI takes a significant time in a profile
• If you have a lot of messages between 16kB and, say, 256 kB

• CrayPAT MPI tracing can tell you this

• Also try to post MPI_IRecv call before the MPI_ISend call
• can avoid unnecessary buffer copies

Making Messages more eager

43

Eager SAR Rendezvous

OpenMPI info and tuning

• Open MPI has many, many run-time tunable parameters (called
"MCA parameters"), and usually only a handfull of them are
useful to a given user.

• Application tuner
• Generally, these are parameters that can be used to tweak MPI

application performance. This even includes parameters that control
resource exhaustion levels (e.g., number of free list entries, size of
buffers, etc.), and could be considered "correctness" parameters if
they're set too low. But, really -- they’re tuning parameters.

• man-page of ompi_info

 ompi_info --param btl tcp

44

Tuning MPI message protocols

• btl_sm_eager_limit: If message data plus header information fits
within this limit, the message is sent “eagerly” — that is, a sender
attempts to write its entire message to shared buffers without
waiting for a receiver to be ready. Above this size, a sender will
only write the first part of a message, then wait for the receiver to
acknowledge its readiness before continuing. Eager sends can
improve performance by decoupling senders from receivers.

• btl_sm_max_send_size: Large messages are sent in fragments of
this size. Larger segments can lead to greater efficiencies, though
they could perhaps also inhibit pipelining between sender and
receiver.

• btl_sm_free_list_num: This is the initial number of fragments on
each (eager and max) free list. The free lists can grow in
response to resource congestion, but you can increase this
parameter to pre-reserve space for more fragments.

ompi_info --param btl all
45

The form of the environment variables that Open MPI sets is:

 OMPI_MCA_<key>=<value>

export OMPI_MCA_btl_sm_eager_limit=8192

46

47

• Send a large message from process 0 to process 1
• If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

• What happens with

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This is called “unsafe” because it depends on the availability
of system buffers.

48

Some Solutions to the “unsafe”
Problem

• Order the operations more carefully:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

• Use non-blocking operations:

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Blocking Send-Receive Diagram
(Receive before Send)

send side receive side

T1:MPI_Send

T4

T2

Once receive
is called @ T0,
buffer unavailable
to user

Receive
returns @ T4,
buffer filled

It is important to receive before sending,
for highest performance.

T0: MPI_Recv

sender
returns
@ T2,
buffer can
be reused T3: Transfer Complete

Internal completion is soon
followed by return of MPI_Recv

49

T7: transfer

finishes

sender
returns @ T3
buffer unavailable

Non-Blocking Send-Receive Diagram

send side receive side

T2: MPI_Isend

T8

T3

Once receive is called @ T0,
buffer unavailable to user

MPI_Wait, returns @ T8
here, receive buffer filled

High Performance Implementations
Offer Low Overhead for Non-blocking Calls

T0: MPI_Irecv

Internal completion is soon
followed by return of MPI_Wait

sender
completes @ T5
buffer available
after MPI_Wait

T4: MPI_Wait called

T6: MPI_Wait

T1: Returns

T5

T9: Wait returns

T6

50

Non-Blocking Communications

• Separate communication into three phases:
• Initiate non-blocking communication

– returns Immediately
– routine name starting with MPI_I…

• Do some work
– “latency hiding”

• Wait for non-blocking communication to
complete

51

Non-Blocking Communication
• Non-blocking (asynchronous) operations return (immediately)

‘‘request handles” that can be waited on and queried
MPI_ISEND(start, count, datatype, dest, tag,
comm, request)

MPI_IRECV(start, count, datatype, src, tag,
comm, request)

MPI_WAIT(request, status)
• Non-blocking operations allow overlapping computation and

communication.

• Anywhere you use MPI_Send or MPI_Recv, you can use the pair
of MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

• Combinations of blocking and non-blocking sends/receives can be
used to synchronize execution instead of barriers

52

Non-Blocking Examples

53

0

• Non-blocking send MPI_Isend(...)

doing some other work

MPI_Wait(...)

1

• Non-blocking receive MPI_Irecv(...)
doing some other work

MPI_Wait(...)

= waiting until operation locally completed

Message Completion and Buffering
• A send has completed when the user supplied buffer can be

reused

• Just because the send completes does not mean that the receive
has completed

– Message may be buffered by the system
– Message may still be in transit

*buf = 3;  
MPI_Send (buf, 1, MPI_INT, ...);  
buf = 4; / OK, receiver will always receive 3 */

*buf = 3;  
MPI_Isend(buf, 1, MPI_INT, ...);  
buf = 4; / Undefined whether the receiver will get 3 or 4 */  
MPI_Wait (...);

54

Fun with FLUPS
(Fourier-based Library of Unbounded Poisson

Solvers)

void	exchange_data()	{	
		for(int	ib	=	0	;	ib<send_nBlock;	ib++)	{		
				double	*data;	
				data	=	recvbuf[destTag[ib]];	
				for	(int	i0	=	0	;	i0<nmax;	i0++)	data[i0]	=	v[i0];	
				MPI_Isend(data,	…);	//	Actually,	from	within	MPI_Start()	
		}	
}	

• Failing	randomly	with:	

• SIGSEGV	in	data[i0]	=	v[i0]	

• PMPI_Start:	Invalid	MPI_Request	

• xpmem_attach	error:	No	such	file	or	directory

55

buffer[big]	

recvbuf[6]	
																									
																										0				1				2			3				4				5						

destTag[6]	
																								
																										0				1				2			3				4				5																		

56

 6 0 4 1 3 2

void	gather_tags()	
{	
		int	inb=onb=6;	
		for	(int	ib=0;ib<inb;ib++)	{	
				MPI_Irecv(&destTag[ib],1,MPI_INT,isrc[ib],0,comm,&irequest[ib]);	
		}	

		for	(int	ib=0;ib<onb;ib++)	{	
				MPI_Isend(&ib,1,MPI_INT,idst[ib],0,comm,&orequest[ib]);	
		}	

		MPI_Waitall(irequest,inb,MPI_STATUSES_IGNORE);	
		MPI_Waitall(orequest,onb,MPI_STATUSES_IGNORE);	
}

57

void	gather_tags()	
{	

		int	inb=onb=6;	
		for	(int	ib=0;ib<inb;ib++)	{	
				MPI_Irecv(&destTag[ib],1,MPI_INT,isrc[ib],0,comm,&irequest[ib]);	
		}	

		for	(int	ib=0;ib<onb;ib++)	{	
				MPI_Isend(&ib,1,MPI_INT,idst[ib],0,comm,&orequest[ib]);	
		}	

		MPI_Waitall(irequest,inb,MPI_STATUSES_IGNORE);	
		MPI_Waitall(orequest,onb,MPI_STATUSES_IGNORE);	
}

58

void	gather_tags()	
{	
		int	inb=onb=6;	
		for	(int	ib=0;ib<inb;ib++)	{	
				MPI_Irecv(&destTag[ib],1,MPI_INT,isrc[ib],0,comm,&irequest[ib]);	
		}	

		for	(int	ib=0;ib<onb;ib++)	{	
				MPI_Isend(&ib,1,MPI_INT,idst[ib],0,comm,&orequest[ib]);	
				//	Sometimes,	a	6	(onb)	was	being	sent!	
		}	

		MPI_Waitall(irequest,inb,MPI_STATUSES_IGNORE);	
		MPI_Waitall(orequest,onb,MPI_STATUSES_IGNORE);	
}

59

• MPI 3.1, section 3.7.2
• The sender should not modify any part of the send buffer after a on-

blocking send operation is called, until the send completes.

• Maybe worth checking with
• grep –r MPI_Isend src

• and make sure that buffers that should not change do not change

60

Multiple Completion’s

• It is often desirable to wait on multiple requests

• An example is a worker/manager program, where the manager waits for
one or more workers to send it a message

MPI_WAITALL(count, array_of_requests, array_of_statuses)

MPI_WAITANY(count, array_of_requests, index, status)

MPI_WAITSOME(incount, array_of_requests, outcount,
array_of_indices, array_of_statuses)

• There are corresponding versions of TEST for each of these

61

Send Modes
• Standard mode (MPI_Send, MPI_Isend)

• The standard MPI Send, the send will not complete until the send
buffer is empty

• Synchronous mode (MPI_Ssend, MPI_Issend)

• The send does not complete until after a matching receive has been
posted.

• Buffered mode (MPI_Bsend, MPI_Ibsend)

• User supplied buffer space is used for system buffering

• The send will complete as soon as the send buffer is copied to the
system buffer

62

Work distribution example

• Parallel sum

63

Parallel Sum

64

Case study 1: Parallel Sum

• Array is originally on process 0 (P0)
• Parallel algorithm
– Scatter
• Half of the array is sent to process 1

– Compute
• P0 & P1 sum independently their segment

– Reduction
• Partial sum on P1 sent to P0
• P0 sums the partial sums

P0 P1

Memory

Parallel Sum

65

Case study 1: Parallel Sum

P0 P1 Timeline

Memory

P0

P1

P1 posts a receive to receive half of the
array from process 0

Recv

Step 1: Receive operation in scatter

Parallel Sum

66

Case study 1: Parallel Sum

P0 P1 Timeline

Memory

P0

P1

P0 posts a send to send the lower part of
the array to P1

Recv

Send

Step 2: Send operation in scatter

Parallel Sum

67

Case study 1: Parallel Sum

P0 P1

∑=

∑=

Memory Step 3: Compute the sum in parallel

Timeline

Recv Compute

Send ComputeP0

P1

P0 & P1 computes their partial sums and
store them locally

Parallel Sum

68

Case study 1: Parallel Sum

P0 P1

∑=

∑=

Memory Step 4: Receive operation in reduction

Timeline

Recv Compute

Send ComputeP0

P1

P0 posts a receive to receive partial sum

Parallel Sum

69

Case study 1: Parallel Sum

P0 P1

∑=

∑=

Timeline

Recv Compute

Send Compute

Memory

P0

P1

P1 posts a send with partial sum

Step 5: Send operation in reduction

Parallel Sum

70

Case study 1: Parallel Sum

P0 P1 Timeline

Recv Compute

Send Compute

Memory

P0

P1

P0 sums the partial sums

Step 6: Compute final answer

∑=

Exercise: ParallelSum

71

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]){
 int i,N;
 double *array;
 double sum;
 N=100;
 array=malloc(sizeof(double)*N);
 for(i=0;i<N;i++){
 array[i]=1.0;
 }
 sum=0;
 for(i=0;i<N;i++){
 sum+=array[i];
 }
 printf("Sum is %g\n",sum);
}

Exercise: ParallelSum

1. Parallelize the sum.c program with MPI
• The relevant MPI commands can be found back in the README
• run this program with two MPI-tasks

2. Use MPI_status to get information about the message received
• print the count of elements received

3. Using MPI_Probe (details on next slide) to find out the
message size to be received
• Allocate an arrays large enough to receive the data
• call MPI_Recv()

*_sol.c contains the solution of the exercise.

72

Probing the Network for Messages

• MPI_PROBE and MPI_IPROBE allow the user to check for incoming
messages without actually receiving them

 
MPI_PROBE (source, tag, communicator, status)

• MPI_IPROBE returns “flag == TRUE” if there is a matching
message available. MPI_PROBE will not return until there is a
matching receive available

MPI_IPROBE (source, tag, communicator, flag, status)

73

Message Order Preservation

• Rule for messages on the same connection,
i.e., same communicator, source, and destination rank:

• Messages do not overtake each other.
• This is true even for non-synchronous sends.

• If both receives match both messages, then the order is
preserved.

74

0 1
5

2

4 3
6

Exercise: PingPong/Basic

Ping-pong is a standard test in which two processes repeatedly
pass a message back and forth.

Write a program that sends a ‘float’ array of fixed length, say, ten
times back (ping) and forth (pong) to obtain an average time for
one ping-pong.

Time the ping-pongs with MPI_WTIME() calls.

You may use pingpong.c or pingpong.f90 as a starting point for
this exercise.

Investigate how the bandwidth varies with the size of the
message.

75

rank=0 rank=1

Send (dest=1)
 (tag=17)
 Recv (source=0)
 Send (dest=0)
 (tag=23)
Recv (source=1)

if (my_rank==0) /* i.e., emulated multiple program */
MPI_Send(... dest=1 ...)
MPI_Recv(... source=1 ...)

else
MPI_Recv(... source=0 ...)
MPI_Send(... dest=0 ...)

fi

Basic Ping Pong

76

Timing MPI Programs

•MPI_WTIME returns a floating-point number of seconds,
representing elapsed wall-clock time since some time in the
past

double MPI_Wtime(void)  
DOUBLE PRECISION MPI_WTIME()

•MPI_WTICK returns the resolution of MPI_WTIME in
seconds. It returns, as a double precision value, the number
of seconds between successive clock ticks.

double MPI_Wtick(void)  
DOUBLE PRECISION MPI_WTICK()

77

Basic Ping Pong BW ameland

78

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 0 100000 200000 300000 400000 500000 600000 700000

Ba
nd

w
id

th
 B

yt
es

/s

communication size in Bytes

intra-node
inter-node

Basic Ping Pong BW XC40

79

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 1e+10

 0 100000 200000 300000 400000 500000 600000 700000

B
a
n
d
w

id
th

 B
y
te

s/
s

communication size in Bytes

intra-node
inter-node

 0

 1x109

 2x109

 3x109

 4x109

 5x109

 6x109

 7x109

 8x109

 9x109

 1x1010

 100000 200000 300000 400000 500000 600000 700000
Ba

nd
w

id
th

 B
yt

es
/s

communication size in Bytes

intra-node
inter-node

Basic Ping Pong BW DelftBlue

80

Ping-Pong time ameland

81

 9.53674e-07

 1.90735e-06

 3.8147e-06

 7.62939e-06

 1.52588e-05

 3.05176e-05

 6.10352e-05

 0.00012207

 0.000244141

 0.000488281

 0.000976562

 0 100000 200000 300000 400000 500000 600000 700000

Ti
m

e
s

communication size in Bytes

intra-node
inter-node

Ping-Pong time XC40

82

 9.53674e-07

 1.90735e-06

 3.8147e-06

 7.62939e-06

 1.52588e-05

 3.05176e-05

 6.10352e-05

 0.00012207

 0.000244141

 0.000488281

 0.000976562

 0 100000 200000 300000 400000 500000 600000 700000

T
im

e
 s

communication size in Bytes

intra-node
inter-node

0.0000010

0.0000019

0.0000038

0.0000076

0.0000153

0.0000305

0.0000610

0.0001221

0.0002441

0.0004883

 100000 200000 300000 400000 500000 600000 700000

Ti
m

e
s

communication size in Bytes

intra-node
inter-node

Ping-Pong time DelftBlue

83

Exercise: PingPong/Advanced

• latency = transfer time for zero length messages
• bandwidth = message size (in bytes) / transfer time
• No need to program yourself.
• Print out message transfer time and bandwidth

– for following send modes:
• standard send (MPI_Send: ping_pong_advanced2_send.c)
• synchronous send (MPI_Ssend: ping_pong_advanced2_ssend.c)

– Compare the following message sizes for send and ssend:
• 8 bytes (e.g., one double or double precision value)
• 512 B (= 8*64 bytes)
• 32 kB (= 8*64**2 bytes)
• 2 MB (= 8*64**3 bytes)

84

Standard mode

85

Standard mode

• Corresponds to the common send functions

– Blocking: MPI_Send

– Non-blocking: MPI_Isend

• It’s up to MPI implementation whether communication is buffered or not

• Buffered

– Can be buffered either locally or remotely

– The send (blocking) or the completion of a send (non-blocking) may complete

before a matching receive

• Non-buffered

– The send (blocking) or the completion of a send (non-blocking) only complete

once it has sent the message to a matching receive

• Standard mode is non-local

– Successful completion of the send operation may depend on the occurrence of a

matching receive.

T4: Transfer Complete
T3: Transfer Starts

Standard Send-Receive Diagram

receive side

T2: Sender
 Returns

Once receive is called @ T1,
buffer unavailable to user

Receiver returns @ T4,
buffer filled

T1: MPI_Recv

Sender returns @ T2,
buffer can be reused

T0: MPI_Send

send side

Internal completion is soon
followed by return of MPI_Recv

86

Synchronous mode

87

Synchronous mode

• Blocking: MPI_Ssend

– Blocking send only returns once the corresponding receive has been posted

– Same parameters as for standard mode send MPI_Send

• Uses

– Debugging - potential deadlocks in the program are found by using synchronous
sends

– If many processes send messages to one process its unexpected message
buffer can run out if it doesn’t pre-post receives. By using MPI_Ssend this can be
avoided! Typical example is IO where single process writes data

• Non-blocking: MPI_Issend

– The completion (wait/test) of the send only returns once the corresponding
receive has been posted

– Same parameters as for standard mode send MPI_Isend

– Useful for debugging - can be used to measure worst case scenario for how long
the completion command has to wait

Synchronous Send-Receive Diagram

receive side

T4: Transfer Complete
T3: Sender
 Returns

Once receive is called @ T1,
buffer unavailable to user

Receiver returns @ T4,
buffer filled

T1: MPI_Recv

Sender returns @ T3,
buffer can be reused
(receive has started)

T2: Transfer Starts

T0: MPI_Ssend

send side

Internal completion is soon
followed by return of MPI_Recv

88

ping-pong advanced DelftBlue

[jthorbecke@login03 Advanced]$ more send.dat
message size transfertime bandwidth
8 bytes 0.182850 usec 43.751709 MB/s
512 bytes 1.666010 usec 307.321085 MB/s
32768 bytes 6.379230 usec 5136.670100 MB/s
2097152 bytes 201.958690 usec 10384.064187 MB/s

[jthorbecke@login03 Advanced]$ more ssend.dat
message size transfertime bandwidth
8 bytes 0.932230 usec 8.581573 MB/s
512 bytes 0.618070 usec 828.385134 MB/s
32768 bytes 4.292960 usec 7632.961872 MB/s
2097152 bytes 205.652840 usec 10197.534836 MB/s

89

mpi4py: MPI use in Python

• Python Interface to MPI

• https://mpi4py.readthedocs.io/en/stable/

• Examples (4) are in directory Python/
• module load openmpi
• module load py-mpi4py
• README how to run the examples

90

Functionality

• Particular to mpi4py: no need to call MPI_Init() or MPI_Finalize

• run the Python script that uses mpi4py with the MPI launcher
• srun -n …
• mpirun -np …
• mpiexec -np …

• The same as you would do with a regular MPI program,

91

Example 1

• srun -n 5 python hello-mpi.py

92

A First Example

Hello | examples/4_mpi4py/hello.py

1 from mpi4py import MPI
2
3 comm = MPI.COMM_WORLD
4
5 print "Hello! I’m rank %02d from %02d" % (comm.rank , comm.size)
6
7 print "Hello! I’m rank %02d from %02d" % (comm.Get_rank (),

comm.Get_size ())
8
9 print "Hello! I’m rank %02d from %02d" %

(MPI.COMM_WORLD.Get_rank (), MPI.COMM_WORLD.Get_size ())

> ibrun python-mpi hello.py

A. Gómez 8 mpi4py

Data Communication

93

Data Communication

• Python objects can be communicated with the send and receive
methods of the communicator

send(data, dest, tag)
– data: Python object to send

– dest: destination rank

– tag: id given to the message

data = receive(source, tag)
– source: source rank

– tag: id given to the message

– data is provided as return value

• Destination and source ranks as well as tags have to match

A. Gómez 9 mpi4py

Example 2

94

Point to Point

examples/4_mpi4py/p2p.py

1 from mpi4py import MPI
2
3 comm = MPI.COMM_WORLD
4 assert comm.size == 2
5
6 if comm.rank == 0:
7 sendmsg = 123
8 comm.send(sendmsg , dest=1, tag =11)
9 recvmsg = comm.recv(source=1, tag =22)

10 print "[%02d] Received message: %s" % (comm.rank , recvmsg)
11 else:
12 recvmsg = comm.recv(source=0, tag =11)
13 print "[%02d] Received message: %d" % (comm.rank , recvmsg)
14 sendmsg = "Message from 1"
15 comm.send(sendmsg , dest=0, tag =22)

> ibrun -np 2 python-mpi p2p.py

A. Gómez 10 mpi4py

