
Type to enter text

Challenge the future

Delft

University of

Technology

Programming with MPI
Hybrid MPI + OpenMP

Jan Thorbecke

No overlapping

computation/communication

MPI only out of OpenMP code.

Only master thread with

MPI communication.

Hybrid systems programming hierarchy

Hybrid System

Pure MPI
Hybrid MPI/OpenMP

OpenMP in SMP nodes

MPI across the nodes

OpenMP

shared memory

Overlapping

computation/communication

MPI inside OpenMP code

3

What Is OpenMP?

• Compiler directives for multithreaded programming

• Easy to create threaded Fortran and C/C++ codes

• Supports data parallelism model

• Portable and Standard

• Incremental parallelism

➡Combines serial and parallel code in single source

Directive based

• Directives are special comments in the language

– Fortran fixed form: !OMP, COMP, *$OMP

– Fortran free form: !$OMP

Special comments are interpreted by OpenMP

compilers

 w = 1.0/n

 sum = 0.0

!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:sum)

 do I=1,n

 x = w*(I-0.5)

 sum = sum + f(x)

 end do

 pi = w*sum

 print *,pi

 end

4

Comment in
Fortran

but interpreted by

OpenMP compilers

C example

#pragma omp directives in C

– Ignored by non-OpenMP compilers

 w = 1.0/n;

 sum = 0.0;

#pragma omp parallel for private(x) reduction(+:sum)

 for(i=0, i<n, i++) {

 x = w*((double)i+0.5);

 sum += f(x);

 }

 pi = w*sum;

 printf(“pi=%g\n”, pi);

}

5

Data Environment

• OpenMP uses a shared-memory programming model  

• Most variables are shared by default. 

• Global variables are shared among threads 
 C/C++: File scope variables, static

• Not everything is shared, there is often a need for “local” data as
well

6

About Variables in SMP

• Shared variables 
Can be accessed by every thread thread. Independent read/write
operations can take place.

• Private variables 
Every thread has it’s own copy of the variables that are created/
destroyed upon entering/leaving the procedure. They are not
visible to other threads.

7

serial code

global

auto local

static

dynamic

parallel code

shared

local

use with care

use with care

18

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum
sum = Σ b[i=0][j]*c[j] sum = Σ b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum
sum = Σ b[i=1][j]*c[j] sum = Σ b[i=6][j]*c[j]

... etc ...

��������	��
�	����

�
������������	
�����������	��
�	����

������������������������	
�������������	

���

�������������������������� �����!�����
�"
����������������#�!���$�$���
��%��� ��$�$�$�$�

= *

j

i

Matrix-vector example

8

P0

C. BEKAS

T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T

9

P1

P2 P3

Suppose we wish to solve the PDE

Using the Jacobi method: the value of

u at each discretization point is given

by a certain average among its

neighbors, until convergence.

Distributing the mesh to SMP

clusters by Domain Decomposition, it

is clear that the GREEN nodes can

proceed without any comm., while

the Blue nodes have to communicate

first and calculate later.

Overlapping computation/communication:
Example

MPI/OpenMPI: Overlapping computation/
communication

10

Not only the master but other threads communicate. Call MPI
primitives in OpenMP code regions.

if (my_thread_id < #){
MPI_… (communicate needed data)

} else
/* Perform computations that to not need
communication */
.
.

}
/* All threads execute code that requires

communication */
.
.

11

for (k=0; k < MAXITER; k++){
/* Start parallel region here */
#pragma omp parallel private(){

my_id = omp_get_thread_num();

if (my_id is given “halo points”)
MPI_SendRecv(“From neighboring MPI process”);

else{
for (i=0; i < # allocated points; i++)

newval[i] = avg(oldval[i]);
}

if (there are still points I need to do) /* Thi
for (i=0; i< # remaining points; i++)

newval[i] = avg(oldval[i]);

}
for (i=0; i<(all_my_points); i++)

oldval[i] = newval[i];
}
MPI_Barrier(); /* Synchronize all MPI processes here */

}

12

Hybrid programming

• Parallel programming model combining:
– Parallelization over one SMP node with shared-

memory parallelization

– Parallelization over parallel computer with message
passing

• Here: MPI + OpenMP

Interconnect

OpenMP
MPI

Matrix vector OpenMP

13

#pragma omp parallel for \
 shared(A,y,x,n) private(i,j,asum) \
 schedule(guided,chunk)
 for (i=0;i<n;i++){
 asum=0.0;
 for (j=0;j<n;j++)
 asum += A[i][j]*x[j];
 y[i]=asum;
 }

#pragma omp parallel for \
 shared(A,x,n) private(i,j) \
 reduction (+:y) \
 schedule(guided,chunk)
 for (i=0;i<n;i++){
 for (j=0;j<n;j++)
 y[i] += A[i][j]*x[j];
 }

Exercise: MatrixVector part 2

• From directory MatrixVector

• Use MPI calls from previous exercise (solution: mvx_mpi.c / f90)

• Insert OpenMP directives

• insert OpenMP directives for local loop (see previous slide)

• compile with: mpicc -fopenmp mxv_mpi_hyb.c

• contains 2 OpenMP based solutions

• check performance running pure MPI and Hybrid, use job.slurm to

submit job to queue

• solution in mxv_mpi_hyb.c / f90

14

size=ndim

Collectives: Matrix-Vector

15

ndim
n

task=0

nd
im

ndim=n*ntasks

task=1

task=ntasks-1

Aloc

A XY

Thread support in MPI

16

Thread support in MPI

• MPI standard defines four levels of support

– MPI_THREAD_SINGLE

• Only one thread allowed

– MPI_THREAD_FUNNELED

• Only master thread allowed to make an MPI call

– MPI_THREAD_SERIALIZED

• All threads allowed to make MPI calls, but not concurrently

– MPI_THREAD_MULTIPLE

• No restrictions

Affinity

• Binding of MPI ranks and OpenMP threads to resources, core,
hypertherads

• TODO srun examples from UWCW…

17

© 2021 HEWLETT PACKARD
ENTERPRISE

A quick recap – glossary of terms

• Hardware
• Socket  

The hardware you can touch and insert into the mother board
• CPU  

The minimum piece of hardware capable of running a Software Task. It may share some
or all its hardware resources with other CPUs 
Equivalent to a single “Intel Hyperthread” or AMD SMT Thread.

• Core  
The individual unit of hardware for processing, part of the CPU. This can be called a
compute unit (CU)

• This terminology is used to cover hardware from multiple vendors

• Software
• Task  

A discrete software process with an individual address space. One task is equivalent to a
UNIX process, MPI Rank, Coarray Image, UPC Thread, or SHMEM PE. This can also be
called a Processing Element (PE)

• Threads 
A logically separate stream of execution inside a parent Task that shares the same
address space (OpenMP, Pthreads)

• Different software approaches also use different naming convention. This is the software-
neutral convention we are going to use

• The concept of mapping tasks or threads to hardware is crucial for optimal
performance.

18

Numa nodes AMD Milan

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

Memory/IO 
Die

2x 
D
D
R
2x 
D
D
R

2x 
D
D
R
2x 
D
D
R

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

Memory/IO 
Die

2x 
D
D
R
2x 
D
D
R

2x 
D
D
R
2x 
D
D
R

CCD

8 cores

CCD

8 cores

CCD

8 cores

CCD

8 cores

NUMA
node 0

xGMI

Socket 0

Socket 1

• Each node is divided into
eight NUMA nodes, associated
with the two sockets/dies.

• The design of the node means
that CPUs accessing data
stored on the other socket/die
must cross the xGMI inter-
processor bus.

• This is marginally slower than
accessing local memory and
creates “Non-Uniform Memory
Access” (NUMA) regions.

19

NUMA nodes Intel Skylake

20

NUMA nodes Intel Skylake

21

hyperthreads
• Each NUMA domain contains 16 cores (2 hyperthreads)

• The numbering of the ‘actual cores’ is from 0-127 while the
hyperthreads are numbered from 128-255.

• A hyperthread pair is also called compute unit (CU) or core

• Every core has 32kB (L1d and L1i) and 512kB (L2) cache.

• Every NUMA domain has a shared 32MB (L3) cache.

22

128 129 130 131 123 133 138 139

0 1 2 3 4 5 10 11

NUMA Node 0

140

12

141

13

142

14

143

15

144 145 146 147 148 149 151 152

16 17 18 19 20 21 26 27

153

28

154

29

155

30

156

31

…

…

 Hyperthread pair /
Compute Unit

128 129 130 131 123 133 138 139

NUMA Node 1

Hyperthreads and numbering (1)
• Each NUMA domain contains 16 cores (2 hyperthreads)

• The numbering of the ‘actual cores’ is from 0-127 while the
hyperthreads are numbered from 128-256.

• A hyperthread pair is also called compute unit (CU) or core

• Every core has 32kB (L1d and L1i) and 512kB (L2) cache.

• Every NUMA domain has a shared 32MB (L3) cache.

23

128 129 130 131 123 133 138 139

0 1 2 3 4 5 10 11

NUMA Node 0

140

12

141

13

142

14

143

15

144 145 146 147 148 149 151 152

16 17 18 19 20 21 26 27

153

28

154

29

155

30

156

31

…

…

 Hyperthread pair /
Compute Unit

128 129 130 131 123 133 138 139

NUMA Node 1

• It is not mandatory to use the hyperthreads
• This can be achieved by –-hint=nomultithread	or an

explicit binding lists.

• The hyperthreads are still there but not utilized.

• With or without hyperthreads, the software tasks and threads

can be pinned to single cores or allowed to migrate on group
of cores (like NUMA)

Hyperthreads and numbering (2)

29 30 3126 27 2816 17 18 19 20 21

10 11 12 13 14 150 1 2 3 4 5

NUMA Node 0

CPUs 128-156
Ignored

NUMA Node 1

…

…

140 141 142 143

144 145 146 147 148 149 151 152 153 154 155 156

128 129 130 131 123 133 138 139

24

SLURM default binding

• Assume that we have no threads and that we just run without
specifying the binding?
• >	srun	–n	${NPROCS}

• What happens?
• SLURM will spread the resources for you.

• For SLURM this default is to fill up one node after another,

whilst filling the NUMA regions of a node in alteration.

• This is the same as using the srun command (we will discuss

this more later)

• srun	–n	128	–-cpu-bind=cores	–-
distribution=block:cyclic

• This may not be what is most desirable for your application.

25

• The user can bind tasks in
“block mode”
• This will bind the task i to core mod(i,128)

• The mapping is the same for
all nodes.

1 Software task bound to 1
Hardware CPU

Binding to ranks

0
0

15
…

Node 0

15

NUMA Node
0

16 31
…

NUMA Node
1

32
32

47
… 47

NUMA Node
2

48 63
…

NUMA Node
3

16 31

48 63

… …

47 48 63

26

>>srun	-n	128	–-cpu-bind=rank	
./${EXE}

Binding to ranks: xthi output

27

Hello	from	rank	0,	thread	0,	on	nid001404.	(core	affinity	=	0)

Hello	from	rank	1,	thread	0,	on	nid001404.	(core	affinity	=	1)

Hello	from	rank	2,	thread	0,	on	nid001404.	(core	affinity	=	2)

Hello	from	rank	3,	thread	0,	on	nid001404.	(core	affinity	=	3)

Hello	from	rank	4,	thread	0,	on	nid001404.	(core	affinity	=	4)

Hello	from	rank	5,	thread	0,	on	nid001404.	(core	affinity	=	5)

Hello	from	rank	6,	thread	0,	on	nid001404.	(core	affinity	=	6)

Hello	from	rank	7,	thread	0,	on	nid001404.	(core	affinity	=	7)

Hello	from	rank	8,	thread	0,	on	nid001404.	(core	affinity	=	8)

Hello	from	rank	9,	thread	0,	on	nid001404.	(core	affinity	=	9)

Hello	from	rank	10,	thread	0,	on	nid001404.	(core	affinity	=	10)

Hello	from	rank	11,	thread	0,	on	nid001404.	(core	affinity	=	11)

Hello	from	rank	12,	thread	0,	on	nid001404.	(core	affinity	=	12)

Hello	from	rank	13,	thread	0,	on	nid001404.	(core	affinity	=	13)

Hello	from	rank	14,	thread	0,	on	nid001404.	(core	affinity	=	14)

Hello	from	rank	15,	thread	0,	on	nid001404.	(core	affinity	=	15)

Hello	from	rank	16,	thread	0,	on	nid001404.	(core	affinity	=	16)

...

Hello	from	rank	126,	thread	0,	on	nid001404.	(core	affinity	=	126)

Hello	from	rank	127,	thread	0,	on	nid001404.	(core	affinity	=	127)

Custom binding with a map
• The user can bind tasks

explicitly to specific CPUs
• Binds each task to the CPUs listed map

(in a round robin way if locations in map
less than tasks)

• The mapping is the same for
all nodes.

• This can be useful when you
have a very specific load
distribution in mind for your
application.

• Also, useful if you want to
underpopulate a node to
access more memory
bandwidth per task.

28

>>export	bind=0,2,16,18,32,34,48,50	

>>srun	-n	8	--cpu-bind=map_cpu:${bind}	./${EXE}

0 1 2 15…

NUMA Node 0

3

32 33 34 47…

NUMA Node 2

35

… …

16 17 18 31…

NUMA Node 1

19

48 49 50 63…

NUMA Node 3

51

0 2

4 6

31

5 7

Specifying a number of tasks per
socket

0 15
…

Node 0
NUMA Node

0

16 31
…

NUMA Node
1

32 47
…

NUMA Node
2

48 63
…

NUMA Node
3

0,8,16,24 1,9,17,25

2,10,18,26 3,11,19,27

… …

• The number of tasks per socket (or NUMA
domain) can be limited.
• --ntasks-per-socket=<>

• Places tasks on different NUMA domains in a
round robin way.

• The tasks are allowed to migrate on the NUMA
domain (actual cores and hyperthreads.)

• --ntasks-per-socket=<>	seems to have a
prevalence over --ntasks-per-core=<>.

• If you do not use --ntasks-per-socket=<>	
there can be a distribution over NUMA nodes,
but tasks/threads do not migrate over the
entire domain.

29

>>srun	-n	32	--ntasks-per-socket=16	./${EXE}

• You can use –c or --
cpus-per-task to define
how many threads you
want per task

• Make sure that
#threads divides the
#core on a socket.

• Otherwise, a single
task may spawn over 2
sockets.

• This can be fixed by
adding --ntasks-
per-socket=<>		to
force the task to
another socket.

Hybrid binding

0 1 2 15
…

NUMA Node 0

3

32 33 34 47
…

NUMA Node 2

35

… …

Task 0

Task 2

16 17 18 31
…

NUMA Node 1

19

48 49 50 63
…

NUMA Node 3

51

Task 1

Task 3

30

>>srun	-n	8	–c	4	./${EXE}

Openmp binding

31

• From OpenMP v4.0, OpenMP provides environment variables
to specify how OpenMP threads should be bound to the
system hardware.

• The variables are
• OMP_PLACES

• OMP_PROC_BIND

• Another useful variable to check for correctness is
• OMP_DISPLAY_AFFINITY=TRUE

Openmp binding

32

•A list of places that threads can be pinned on. The
possible values are:

• threads: Each place corresponds to a single hardware

thread on the target machine.
• cores: Each place corresponds to a single core

(having one or more hardware threads) on the target
machine.
• sockets: Each place corresponds to a single socket

(consisting of one or more cores) on the target
machine.
• A list with explicit values e.g., “{0:4}:4:4 = {0,1,2,3},
{4,5,6,7},{8,9,10,11},{12,13,14,15}”

•Each “Place” defines a location where a thread can “float”

Omp_places

33

•Sets the binding of threads to processors.

• spread: Bind threads as evenly distributed (spread)

as possible.
• close: Bind threads close to the master thread while

still distributing threads for load balancing.
•master: Bind threads to the same place as the

master thread.
• false: turns off OMP binding

Omp_proc_bind

34

Combining MPI tasks and OpenMP
threads: OMP binding

0 15
…

Node 0
NUMA Node

0

16 31
…

NUMA Node
1

32 47
…

NUMA Node
2

48 63
…

NUMA Node
3

Task 0

… …

Task 1

Task 2 Task 3

16 OpenMP threads on Task 3

48 49 50 6351

…

NUMA Node 3

• Here we specify 8 MPI tasks
with 16 OpenMP threads per
task

35

>>export	
OMP_PROC_BIND={true,close,spread}	

>>export	OMP_NUM_THREADS=16

>>srun	-n	8	-c	${OMP_NUM_THREADS}	./
${EXE}

3.0 3.1 3.2 3.3 3.15

Combining MPI tasks and OpenMP
threads: OMP binding

0 15
…

Node 0
NUMA Node

0

16 31
…

NUMA Node
1

32 47
…

NUMA Node
2

48 63
…

NUMA Node
3

Task 0

… …

Task 1

Task 2 Task 3

16 OpenMP threads on Task 3

48 49 50 6351

…

NUMA Node 3

• Here we specify 8 MPI tasks with 16
OpenMP threads per task

36

>>export	OMP_PROC_BIND=master

>>export	OMP_NUM_THREADS=16

>>	srun	-n	8	-c	${OMP_NUM_THREADS}	
./${EXE}

3.0
3.1
3.2
3.3

3.15…

© 2021 HEWLETT PACKARD
ENTERPRISE

Openmp vs slurm mechanisms

•OpenMP is a standard
•Will work with each compiler Run Time Environment
(RTE)

•However, OpenMP knows nothing about the MPI
ranks
• Still need SLURM (or another batch system) or an
MPI implementation to distribute the ranks

•The OpenMP standard added an abstraction layer
which can be useful when defining a complex
layout

37

• To control the distribution of the MPI ranks (tasks) across nodes,
use the ‘--distribution/-m’ argument to srun.

• --distribution=plane=X	–nodes=N 

Will distribute N/X blocks cyclic, each of the size of X tasks 
Note : No node will be empty of tasks 
srun	--nodes=5	-n	12		-m	plane=5	./{EXE} 
creates the distribution : 0 0 0 0 0 1 1 1 1 2 3 4

• --distribution=block 
Will distribute tasks such that consecutive tasks share a node : 
srun	--nodes=5	-n	12		--distribution=block	./{EXE} 
creates the distribution : 0 0 0 1 1 1 2 2 3 3 4 4

• --distribution=cyclic 
Will distribute tasks such that consecutive tasks are distributed over consecutive
nodes (round robin) : 
srun	--nodes=5	-n	12		--distribution=cyclic	./{EXE} 
creates the distribution : 0 1 2 3 4 0 1 2 3 4 0 1

SLURM Task distribution (level 1)

38

• For the second distribution method, the ranks collected in a
node in the first distribution step, can be distributed over
the sockets/NUMA nodes.

• --distribution=[block|cyclic]:block 
This will distribute allocated CPUs for binding to tasks such that consecutive tasks
share a socket, before moving to the next consecutive socket.

• --distribution=[block|cyclic]:cyclic 
This will distribute allocated CPUs for binding to a given task such that consecutive
tasks are distributed over consecutive NUMA regions (round robin). Any task
requiring more than one CPU will be given those from a single NUMA region

• --distribution=[block|cyclic]:fcyclic 
Same as cyclic but tasks requiring more than one CPU will have these allocated
cyclically across NUMA regions.

SLURM Task distribution (level 2)

39

• Other affinity-related, potentially useful srun options:

• --exclusive; A given job has exclusive access to a node's
resources, no other jobs have access

• --mem_bind=[{quiet,verbose}],type; Bind tasks to memory 
For example --mem_bind=local, will bind each task to use only its
own NUMA node memory

• Application hints:

• 	--hint=memory_bound, maximize memory bandwidth and use one

core per socket

• 	--hint=compute_bound , maximize compute and use all cores per

socket

Setting and controlling affinity,
slurm-srun

40

•srun	verbose

	 srun	–-cpu-bind=verbose,…. 

•MPI 
	 MPICH_CPUMASK_DISPLAY=1

•OpenMP 
 	 OMP_DISPLAY_AFFINITY=TRUE

Reporting binding

41

Exercise: Affinity

• Just to play around and learn.

42

