Programming with MPI

Jan Thorbecke

%
TUDelft e

oooooooooo

Challenge the future




Hybrid systems programming hierarchy

]
TUDelft




What Is OpenMP?

e Compiler directives for multithreaded programming
e Easy to create threaded Fortran and C/C++ codes
 Supports data parallelism model

e Portable and Standard

» Incremental parallelism
= Combines serial and parallel code in single source

3
TUDelft
ST T T T TS




Directive based

» Directives are special comments in the language
— Fortran fixed form: ! SOMP, CS$SOMP, *SOMP
— Fortran free form: ! SOMP

Special comments are interpreted by OpenMP

compilers
w=1.0/n
sum = 0.0

1$OMP PARALLEL DO PRIVATE(x) REDUCTION (+:sum)
do I=1,n

= w*(I-0. :
x = wr(1-0.5) Comment in
sum = sum + f(x)
end do Fortran
pi = w*sum but interpreted by
print *,pi OpenMP compilers
end
7
TU Delft 4




C example

#pragma omp directives in C

— Ignored by non-OpenMP compilers

w=1.0/n;
sum = 0.0;
#pragma omp parallel for private(x) reduction(+:sum)
for(i=0, i<n, i++) {
X = w*((double)i+0.5);
sum += f(x);
}
pli = w*sum;
printf(“pi=%g\n”, pi);
}

%
TUDelft 5
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




Data Environment

* OpenMP uses a shared-memory programming model
e Most variables are shared by default.

e Global variables are shared among threads
C/C++: File scope variables, static

» Not everything is shared, there is often a need for “local” data as
well

%
TUDelft °
ST TS T ST T T




e Shared variables

e Private variables

Every thread has it's own copy of the variables that are created/
destroyed upon entering/leaving the procedure. They are not

visible to other threads.

About Variables in SMP

Can be accessed by every thread thread. Independent read/write
operations can take place.

serial code
global

auto local
static
dynamic

parallel code
shared

local

use with care
use with care

2
TUDelft




Matrix-vector example

#pragma omp parallel for default(none) \
private(i, j,sum) shared(m,n,a,b,c)
for (1=0; i<m; 1++) > i
J
{
sum = 0.0; _ I
for (j=0; j<n; j++) - ——% %
sum += b[i][j]*c[]]; -
afi] = sum; :
}
TID=0 TID=1
for (i=0,1,2,3,4) for (i=5,6,7,8,9)
i=0_ i=5
sum = 2 b[i=0][j]*c[j] sum = 2 b[i=5][j]l*c[F]
a[0] = sum a[5] = sum
i=1 i=6
sum = 2 b[i=1][j]1*c[F] sum = 2 b[i=6][j]*c[]]
a[l] = sum a[6] = sum
s atr
TUDelft 8




Overlapping computation/communication:
Example

eP Suppose we wish to solve the PDE

SR,
Ox> c')y2 o4

O

e Using the Jacobi method: the value of
u at each discretization point is given
by a certain average among its
neighbors, until convergence.

k. SR
- e
ss P3 . . |
Distributing the mesh to SMP
clusters by Domain Decomposition, it
R = I is clear that the

nodes can
proceed without any comm., while
the Blue nodes have to communicate
first and calculate later.

fupos ;

D & o ale o o 4

ol i b




MPI/OpenMPI: Overlapping computation/

communication

Not only the master but other threads communicate. Call MPI
primitives in OpenMP code regions.

if (my thread id < # ){
MPI .. (communicate needed data)
} else

/* Perform computations that to not need
communication */

}

/* All threads execute code that requires
communication */

%
TUDelft 10
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




for (k=0; k < MAXITER; k++){
/* Start parallel region here */
#pragma omp parallel private(){
my id = omp get thread num();

if (my_id is given “halo points”)
MPI_SendRecv(“From neighboring MPI process”);

else{
for (i=0; i < # allocated points; i++)
newval[i] = avg(oldval[i]);

}

if (there are still points I need to do) /* Thi
for (i=0; i< # remaining points; i++)

newval[i] = avg(oldval[i]);
}
for (i=0; i<(all_my points); i++)
oldval[i] = newval[i];
}
MPI Barrier(); /* Synchronize all MPI processes here */
}
3
TUDelft H




Hybrid programming 1L

 Parallel programming model combining:

— Parallelization over one SMP node with shared-
memory parallelization

— Parallelization over parallel computer with message

passing
 Here: MPI + OpenMP
4 ) 4 )

MPI
\OpenMP _/ _ J




Matrix vector OpenMP

#pragma omp parallel for \
shared(A,x,n) private(i,j) \
reduction (+:y) \
schedule(guided, chunk)
for (i=0;i<n;i++){

for (J=0;Jj<n;j++)
y[i] += A[1][J1*x[3]];

#pragma omp parallel for \
shared(A,y,x,n) private(i,j,asum) \
schedule(guided, chunk)
for (i=0;i<n;i++){
asum=0.0;
for (3j=0;j<n;j++)
asum += A[1][J]*x[]];
y[i]=asum;

}

%
TUDelft 13
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




Exercise: MatrixVector part 2

e From directory MatrixVector
» Use MPI calls from previous exercise (solution: mvx_mpi.c / f90)

Insert OpenMP directives
insert OpenMP directives for local loop (see previous slide)

* compile with: mpicc -fopenmp mxv mpi hyb.c
contains 2 OpenMP based solutions
check performance running pure MPI and Hybrid, use job.slurm to
submit job to queue

solution in mxv_mpi_hyb.c / f90

27
TUDelft 14
ST TS T ST T T




Collectives: Matrix-Vector

ndim
n
Y task=0 A X
_ Aloc
task=1 size=ndjm
£
©
C
task=ntasks-1

ndim=n*ntasks

%
TUDelft 15
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




Thread support in MPI

« MPI standard defines four levels of support
— MPl_THREAD_ SINGLE

* Only one thread allowed

— MPI_THREAD_FUNNELED

* Only master thread allowed to make an MPI call

— MPI_THREAD_SERIALIZED

 All threads allowed to make MPI calls, but not concurrently

— MPI_THREAD_MULTIPLE

* No restrictions

%
TUDelft 16
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




Affinity

e Binding of MPI ranks and OpenMP threads to resources, core,
hypertherads

e TODO srun examples from UWCW...

%
TUDelft 17
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




A quick recap — glossary of terms

» Hardware

* Socket : :
'(I;klgeuhardware you can touch and insert into the mother board
The minimum piece of hardware capable of running a Software Task. It may share some
or all its hardware resources with other CPUs
Equwalent to a single “Intel Hyperthread” or AMD SMT Thread.

* Core
The individual unit of hardware for processing, part of the CPU. This can be called a
compute unit (CU)

* This terminology is used to cover hardware from multiple vendors

. Soft1\!va|r(e
* Tas
A discrete software process with an individual address space. One task is equivalent to a

s
UNIX process, MPI Rank, Coarray Image, UPC Thread, or SHMEM PE. This can also be
called a Processing Element (PE)

* Threads
A logically separate stream of execution inside a parent Task that shares the same
address Space (OpenMP, Pthreads)

» Different software approaches also use different naming convention. This is the software-
neutral convention we are going to use

» The concept of mapping tasks or threads to hardware is crucial for optimal
performance.
© 2021 HEWLETT PACKARD
ENTERPRISE

%
TUDelft |1
G S ST ST ST ST ST ST S S S S S E eSS




Numa nodes AMD Milan

NUMA
node 0 — s— * Each node is divided into

= B D |t eight NUMA nodes, associated
- D — . .
Socket 0 o Memory/IO A - with the two sockets/dies.

that CPUs accessing data
stored on the other socket/die
must cross the xGMI inter-

% @ processor bus.
* This is marginally slower than
accessing local memory and
S cores m creates “Non-Uniform Memory
Access” (NUMA) regions.
D p—
D e
Memory/IO R
Die 2x
D
D -:Izm

2x I I I I * The design of the node means

8 cores

27
TU Delft 1o




NUMA nodes Intel Skylake

3x DDR4 2666

2
TUDelft

1x16/2x8/4x4
2x UPI x20 @ 1x16/2x8/4x4 PCle @ 8GT/s 1xUPIx20 @ 1x16/2x8/4x4
10.4GT/s PCle @ 8GT/s x4 DMI 10.4GT/s PCle @ 8GT/s
p 0 p 6 p 6 On Pkg P 0 PCle x16
» P D
: [
—
Core Core Core Core Core
CHA/SF/LLC CHA/SF/LLC CHA/SFLLC CHA/SF/LLC
Core Core Core Core
CHA/SF/LLC
Core Core Core Core Core
CHAJSF/LLC CHA/SF/LLC CHA/SF/LLC CHAJSF/LLC
Core Core Core Core Core
R e =B
Core Core Core Core Core

CHA - Caching and Home Agent ; SF— Snoop Filter; LLC- Last Level Cache;
Core — Skylake-SP Core; UPI - Intel® UltraPath Interconnect

20

3x DDR4 2666




NUMA nodes Intel Skylake

6 Channels DDR4

DDR4

DDR4

DDR4

DDR4 Core Core

DDR4 ; Shared L3

DDR4 Omni-Path HFI

48 Lanes
PCle* 3.0

%
TUDelft 21




hyperthreads

» Each NUMA domain contains 16 cores (2 hyperthreads)
* The numbering of the ‘actual cores’ is from 0-127 while the
hyperthreads are numbered from 128-255.
* A hyperthread pair is also called compute unit (CU) or core
* Every core has 32kB (L1d and L1i) and 512kB (L2) caCgperthread pair /
* Every NUMA domain has a shared 32MB (L3) cache. Compute Unit

_________________________________________________________________________________

" NUMA Node 0

Rofg1120304105 10 § 11
i 128 129 130 131 123 133 138 139

TUDelft 122




Hyperthreads and numbering (1)

» Each NUMA domain contains 16 cores (2 hyperthreads)
* The numbering of the ‘actual cores’ is from 0-127 while the
hyperthreads are numbered from 128-256.
* A hyperthread pair is also called compute unit (CU) or core
 Every core has 32kB (L1d and L1i) and 512kB (L2) cache. H%p:r::;‘t’:%ﬁ?‘t"
mmmmonme- «-Every NUMA-domain has-a shared 32MB-(L.3) cache. - ------. .
' NUMA Node 0 '

10111213 g 14 § 15

R%ZEIR%ZIEZIRY ’|g

-

_______________________________________________________________________________

’
4
1
1
1

NUMA Node 1
B 12 - 17 I 13 19l 20 | 21
AR ZARZdR YR %o

" TUDelft 73




Hyperthreads and numbering (2)

* It is not mandatory to use the hyperthreads
* This can be achieved by --hint=nomultithread or an
explicit binding lists.
* The hyperthreads are still there but not utilized.
* With or without hyperthreads, the software tasks and threads
can be pinned to single cores or allowed to migrate on group
____________ of cores (like NUMA) ...
NUMA Node O

BEEREE- BEEEEE

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = e e e e e e e e e e e e e e e e e e e e e e e e e

" NUMA Node




SLURM default binding

» Assume that we have no threads and that we just run without
specifying the binding?
« > srun -n ${NPROCS}

 What happens?

* SLURM will spread the resources for you.

* For SLURM this default is to fill up one node after another,
whilst filling the NUMA regions of a node in alteration.

 This is the same as using the srun command (we will discuss
this more later)

e Srun -n 128 --cpu-bind=cores --
distribution=block:cyclic
* This may not be what is most desirable for your application.

%
TUDelft 25
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




Binding to ranks

Node 0 * The user can bind tasks in

A Node A Node “block mode”

0 1 o

... . 31 « This will bind the task i to core mod(i,128)
15 31

* The mapping is the same for
- all nodes.

NUMA Node
48 B4 63
48 63

1'Software tasksbound to 1 >>srun -n 128 --cpu-bind=rank
Hardware CPU ./${EXE}

3
TUDelft 126




Binding to ranks: xthi output

Hello from rank @, thread ©, on nide@1404. (core affinity = @)
Hello from rank 1, thread 0, on nide01404. (core affinity = 1)
Hello from rank 2, thread 0, on nid@01404. (core affinity = 2)
Hello from rank 3, thread @, on nide@@1404. (core affinity = 3)
Hello from rank 4, thread 0, on nide01404. (core affinity = 4)
Hello from rank 5, thread 0, on nid@01404. (core affinity = 5)
Hello from rank 6, thread @, on nide@1404. (core affinity = 6)
Hello from rank 7, thread 0, on nide01404. (core affinity = 7)
Hello from rank 8, thread 0, on nid@01404. (core affinity = 8)
Hello from rank 9, thread 0, on nide01404. (core affinity = 9)
Hello from rank 10, thread ©, on nidee1404. (core affinity = 10)
Hello from rank 11, thread 0, on nidee1404. (core affinity = 11)
Hello from rank 12, thread 0, on nid@01404. (core affinity = 12)
Hello from rank 13, thread 0, on nidee1404. (core affinity = 13)
Hello from rank 14, thread 0, on nidee1404. (core affinity = 14)
Hello from rank 15, thread @, on nid@01404. (core affinity = 15)
Hello from rank 16, thread ©, on nide01404. (core affinity = 16)
Hello from rank 126, thread ©, on nid@01404. (core affinity = 126)
Hello from rank 127, thread @, on nid@01404. (core affinity = 127)

5
TUDelft 127
T




Custom binding with a map

 The user can bind tasks
explicitly to specific CPUs
* Binds each task to the CPUs listed map

(in a round robin way if locations in map
less than tasks)

The mapping is the same for
" all nodes.

. This can be useful when you
' have a very specific load

. distribution in mind for your
. application.

Also, useful if you want to
underpopulate a node to
access more memory
bandwidth per task.
>>export bind=0,2,16,18,32,34,48,50

>>srun -n 8 --cpu-bind=map _cpu:${bind} ./${EXE}

NUMA Node 2 NUMA Node 3

3
TUDelft 128




Specifying a number of tasks per

SOCket « The number of tasks per socket (or NUMA
domain) can be limited.

« --ntasks-per-socket=<>

* Places tasks on different NUMA domains in a

round robin way.
+ The tasks are allowed to migrate on the NUMA

domain (actual cores and hyperthreads.)

« --ntasks-per-socket=<> seems to have a
prevalence over --ntasks-per-core=<>.

« If you do not use --ntasks-per-socket=<>
there can be a distribution over NUMA nodes,
but tasks/threads do not migrate over the
entire domain.

>>srun -n 32 --ntasks-per-socket=16 ./${EXE

3
TUDelft 129




Hybrid binding

 You can use —c or --
cpus-per-task to define
how many threads you
want per task
Make sure that
#threads divides the
#core on a socket.
Otherwise, a single
task may spawn over 2

sockets.
« This can be fixed by
>>srun -n 8 -c 4 ./${EXE} adding --ntasks-

per-socket=<> to
force the task to
another socket.

3
TUDelft 130




Openmp binding

5
TUDelft |31
s



Openmp binding

e From OpenMP v4.0, OpenMP provides environment variables
to specify how OpenMP threads should be bound to the
system hardware.

e The variables are
o OMP_PLACES
« OMP_PROC_BIND

e Another useful variable to check for correctness is
o OMP_DISPLAY_ AFFINITY=TRUE

5
TUDelft 32
T




Omp_places

* A list of places that threads can be pinned on. The
possible values are:

* threads: Each place corresponds to a single hardware
thread on the target machine.

* cores: Each place corresponds to a single core
(having one or more hardware threads) on the target
machine.

» sockets: Each place corresponds to a single socket
(consisting of one or more cores) on the target
machine.

* A list with explicit values e.qg., "{0:4}:4:4 = {0,1,2,3},
{4,5,6,7},{8,9,10,11},{12,13,14,15}"

e Each “Place” defines a location where a thread can “float”

5
TUDelft 33
T




Omp_proc_bind

» Sets the binding of threads to processors.

* spread: Bind threads as evenly distributed (spread)
as possible.

* close: Bind threads close to the master thread while
still distributing threads for load balancing.

* master: Bind threads to the same place as the
master thread.

* false: turns off OMP binding

5
TUDelft |34
T




Combining MPI tasks and OpenMP
threads: OMP binding

* Here we specify 8 MPI tasks

Node 0 with 16 OpenMP threads per

NUMA Node
Task O

0 15

task
% 16 OpenMP threads on Task 3
NUMA Node 3

Task 3
48 63

iIﬁA Node

>>export
OMP_PROC_BIND={true,close,spread}

>>export OMP_NUM_THREADS=16

>>srun -n 8 -c ${OMP_NUM_THREADS} ./
${EXE}

]
TUDelft

I35



Combining MPI tasks and OpenMP
threads: OMP binding

* Here we specify 8 MPI tasks with 16
OpenMP threads per task

16 OpenMP threads on Task 3

/ NUMA Node 3

>>export OMP_PROC_BIND=master
>>export OMP_NUM_THREADS=16

>> srun -n 8 -c ${OMP_NUM_THREADS}
./${EXE}

%
TUDelft 136




Openmp vs slurm mechanisms

* OpenMP is a standard
* Will work with each compiler Run Time Environment
(RTE)

* However, OpenMP knows nothing about the MPI
ranks
» Still need SLURM (or another batch system) or an
MPI implementation to distribute the ranks

* The OpenMP standard added an abstraction layer
which can be useful when defining a complex
layout

© 2021 HEWLETT PACKARD
ENTERPRISE

5
TUDelft 137
T




SLURM Task distribution (level 1)

» To control the distribution of the MPI ranks (tasks) across nodes,
use the ‘--distribution/-m’ argument to srun.
e --distribution=plane=X -nodes=N
Will distribute N/X blocks cyclic, each of the size of X tasks
Note : No node will be empty of tasks
srun --nodes=5 -n 12 -m plane=5 ./{EXE}
creates the distribution: 000001111234

e --distribution=block
Will distribute tasks such that consecutive tasks share a node :
srun --nodes=5 -n 12 --distribution=block ./{EXE}
creates the distribution: 000111223344

e --distribution=cyclic
Will distribute tasks such that consecutive tasks are distributed over consecutive
nodes (round robin) :
srun --nodes=5 -n 12 --distribution=cyclic ./{EXE}
creates the distribution: 012340123401

5
TUDelft 38
T




SLURM Task distribution (level 2)

* For the second distribution method, the ranks collected in a
node in the first distribution step, can be distributed over
the sockets/NUMA nodes.

o --distribution=[block]|cyclic]:block
This will distribute allocated CPUs for binding to tasks such that consecutive tasks
share a socket, before moving to the next consecutive socket.

e --distribution=[block]|cyclic]:cyclic
This will distribute allocated CPUs for binding to a given task such that consecutive
tasks are distributed over consecutive NUMA regions (round robin). Any task
requiring more than one CPU will be given those from a single NUMA region

o --distribution=[block]|cyclic]:fcyclic
Same as cyclic but tasks requiring more than one CPU will have these allocated
cyclically across NUMA regions.

5
TUDelft 139
T




Setting and controlling affinity,
slurm-srun

o Other affinity-related, potentially useful srun options:

e --exclusive; Agiven job has exclusive access to a node's
resources, no other jobs have access

e --mem_bind=[{quiet,verbose}],type; Bind tasks to memory
For example --mem_ bind=local, will bind each task to use only its

own NUMA node memory

 Application hints:

e --hint=memory_bound, maximize memory bandwidth and use one
core per socket
e --hint=compute_bound, maximize compute and use all cores per
socket
2
TUDelft 140




Reporting binding

esrun verbose
srun --cpu-bind=verbose,...

* MPI
MPICH CPUMASK DISPLAY=1

s OpenMP
OMP_DISPLAY_ AFFINITY=TRUE

5
TUDelft 41
s




Exercise: Affinity

» Just to play around and learn.

%
TUDelft 42
G S ST ST ST ST ST ST S S S S S EEEEEEEEEiiiiiiiihihihieeeee=




