-

Migration of Common Focal Point Gathers

Jan Thorbecke*

Tuesday February 10, 1998

~

<>

A Silicon Graphics Company

%

Part 1: CFP gathers'
‘Part 2: Algorithm optimization'
Part 3: CFP Migration examples'

Focusing integral for receiver array'

P % (x,x,) = / W;’*(w,wT)P_’S(wT,wS)dQ:UT,
0D

o0, V. ¥V V V % Y ¥V V'V

Q 0f)
0Dy

/ Focusing matrix for receiver array'

Focusing result:

|'5i— (va Zs) = IEi_ (va zr)P(2r, 25)

with operator
(va ZT‘) ~ Ti_ (Zf) [W+(Zfa ZT)})

F-
Fi (25, 20) W™ (20, 25) = 1, (2f)

and forward model

P(zr,25) = W™ (2, Zf>R+(Zf)W+(Zf> 25)S(2s)

gives

.

P (25, 25) =17 (2£)RT (25)W (2, 25)S(2s)

~

%

Migration of CFP gathers'

Focusing operator (source):

~

Fi(zp, 2r) =17 (25) [WH (21, 20)]

*

Focusing result (response):

Py (21, 25) = R (21)W ™ (21, 25) S(2s)

.

Migration steps I

e Forward extrapolation of source with W+ (2, z,) — F.” (2

e Inverse extrapolation of response with [W* (2, 2,)]” — P (2)

e Imaging at z; with extrapolated source and response

B F (zk) [P (z0)]
mage;(a) = ; Fif(z) [Fy; (1)) + e

Extrapolation I

pro) | (Wi ... Wi ... Win | [PT(Am) |
p+(]>kA$) (z1) = Ax Wit oo Wy WjN P+(]>I<A$)
ﬁ+(N>I<A£U) _WNl WNj WNN_ _ﬁ+(N>I<A£U)_

-

‘ Recursive Extrapolation I

~

~

/ ‘Implementation in Blas # 1.

Matrix-vector multiplication for general band matrix (Blas 2
cgbmv)

for (iom = iomin; iom <= iomax; iom++) {

get P(z_0) and S(z_0);

for (d = 1; d <= ndepth; d++) {
calculate W from operator table
call cgbmv(P(z_d), Wx, P(z_0));
call cgbmv(S(z_d), W , S(z_0));
calculate Image(z_d);
copy P(z_d) to P(z_0);
copy S(z_d) to S(z_0);

}
Qotal WallClock-time = 78.8 seconds. /

‘Implementation in Blas'

Using ’ssrun -fpcsamp’ to determine bottle-necks:

98 % of the code is spend in the extrapolation loop of the code
60 % of the code is spend in cgbmv

37 % of the code is spend in constructing W

.

‘Performance relative to peak.

Number of floating point operations with ’ssrun -ideal’ and ’prof
_Op’
11577475914: FLOATING POINT OPERATIONS (147 MFLOPS)

Note that the MIPS R10000 (195 MHz) is capable of doing an
addition and a multiplication in one clock cycle, giving a peak

performance of 390 Mflops.

.

10

-

.

index1

for (j

}

il
wa
da
i2
wa
da

+=

+=

+=

+=

‘Convolution loop #2'

The convolution loop:

ix + hopl2;

0; j < hopl; j++) {
index1+j;
locdat [i1] .r*opx[j];
locsrc[il] .r*opx[j];
index1-j;
locdat [i2] .r*opx[j];

locsrc[i2] .r*opx[j];

Total WallClock-time = 39.8 seconds.

11

-~

#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>
#<swps>

.

Compiling with ’cc -S’ gives information about Software Pipelining

#<swps> Pipelined loop line 171 steady state

100 estimated iterations before pipelining

16
32
16
16
10
10
36

2
15
21

Not unrolled before pipelining

cycles per iteration

flops (100%
flops (50%
madds (100%
mem refs (627
integer ops (31}

instructions (56Y%

of
of
of
of
of
of

short trip threshold

integer registers used.

float registers used

peak) (madds count as 2)
peak) (madds count as 1)
peak)
peak)
peak)
peak)

11453823230: FLOATING POINT OPERATIONS (288 MFLOPS)
A much higher number of flops, but is it the fastest code?

Note that the symmetry in the extrapolation operator is not used.

~

%

12

-

.

‘Symmetric Matrix-Vector multiplication #3.

The convolution loop:

index1

index?2

for (j

}

wa
da

+=

+=

ix + hopl2;

lenx-index1-1;

0; j < hopl; j++) {
(tmpl[index1+j] + tmp2[index2+j])*opx[j];
(tmp3[index1+j] + tmp4[index2+j])*opx[j];

Total WallClock-time = 33.0 seconds.

~

13

Software Pipelining:

#<swps> 100 estimated iterations before pipelining

#<swps> Not unrolled before pipelining

#<swps> 12 cycles per iteration

#<swps> 20 flops (83% of peak) (madds count as 2)
#<swps> 12 flops (50% of peak) (madds count as 1)
#<swps> 8 madds (66% of peak)

#<swps> 10 mem refs (83% of peak)

#<swps> 6 integer ops (25% of peak)

#<swps> 28 instructions (58 of peak)

#<swps> 1 short trip threshold

#<swps> 9 integer registers used.

#<swps> 19 float registers used.

7329160832: FLOATING POINT OPERATIONS (222 MFLOPS)

Less flops and faster code.

14

-

Symmetric operator # 4'

The convolution loop;

indexl = ix + hopl2;
for (j = 0; j < hopl; j++) {
11 = index1l+j;
12 = indexl1-j;
wa += (locdat[il]l+locdat[i2])*opx[j];
da += (locsrcl[il]+locsrc[i2])*opx[j];
}

Total WallClock-time = 31.6 seconds.

.

15

Mflop | Time (s) | Mflop/s
Blas 11577 | 78.8 147
Madds 11453 | 39.8 288
Vector 7329 33.0 222
Symmetric || 7328 | 31.6 232

16

/ Parallelization with directives' \

Around the frequency loop the compiler directives are inserted and
nothing else is changed in the code.

#pragma parallel
#pragma shared(image)
#pragma byvalue(hopl, velmod, lenx, iomin, iomax, taper, dom)
#pragma local(iom, tmpl, tmp2, cprev, d)
{ /* start of parallel region */

/* start extrapolation for all frequencies, depths and x-positions */

#pragma pfor iterate(iom=iomin;iomax;1)

\\\\i /* end of parallel region */ 4’///

17

CPU’s | Time (s)
1 31.6

2 16.9

4 9.9

8 6.4

16 4.3

Note that this code also includes a non-parallel part which takes

about 2 seconds.

.

%

18

depth [m]

depth [m]

Marmousi model

lateral position [m]
%000 3000 4000 5000 6000 7000 8000 9000

5004

1500

Marmousi model

lateral position [m]
5000 6000

Shot record migration with Azg,.. = 25 (all 240 shots)

19

depth [m]

depth [m]

record migration

lateral position [m]
5000 6000

Shot record migration with Azg,.. = 100 (61 shots)

lateral position [m]
5000 6000

Shot record migration with Azs,. = 1000 (7 shots)

9000

20

depth [m]

depth [m]

CFP gather migration

lateral position [m]
5000 6000

CFP gather migration with focus x=6000 and z=500

lateral position [m]
5000 6000

CFP gather migration with focus x=6000 and z=3000

21

depth [m]

depth [m]

CFP gather migration

lateral position [m]
5000 6000

lateral position [m]
5000 6000

Focus at = 8000 with Az = 500 (6 gathers)

22

depth [m]

depth [m]

CFP gather migration

lateral position [m]
6000

Focus at z = 3000 with Az.f, = 1000 (8 gathers)

lateral position [m]
5000 6000

Focus at z = 3000 with Az.f, = 250 (29 gathers)

23

depth [m]

depth [m]

vs shot migration

lateral position [m]
5000 6000

CFP gather migration with Az.f, = 100 (60 gathers)

lateral position [m]
5000 6000

Shot record migration with Azs,.. = 100 (60 shots)

24

depth [m]

depth [m]

CFP migration: addition

lateral position [m]
5000 6000

4 CFP gathers added together before migration.

lateral position [m]
5000 6000

25

26

depth [m]

depth [m]

Comparison CFP migrations

lateral position [m]
5000 6000

71 CFP gathers added together after migration

lateral position [m]
5000 6000

-~

.

~

Concluding remarks I

e CFP gather migration is an efficient alternative for pre-stack

shot record migration

e Other focal point distributions should be chosen to find an
optimum distrubution which gives the highest image quality at
the lowest computational cost (e.g a combination of shallow

and deep focal points in a staggered way).

e Addition of CFP gathers before migration is not a good

alternative if one considers the quality of the image.

J&ﬂﬁd PR

A Silicon Graphics Company

%

27

