
Efficient computation of passive seismic

interferometry

Jan Thorbecke, and Guy Drijkoningen

Delft University of Technology, Department of Geotechnology, The Netherlands

Abstract

Seismic interferometry is from a computationally point of view based on
cross-correlating two signals. One application of seismic interferometry lies
in passive seismics. In passive seismic recorders are placed on the surface
of the earth and signals are continuously measured. In this abstract we in-
vestigated an efficient way of computing the cross-correlation, of a limited
number of output samples, for continuously measured signals. Efficiency
tests are carried out on two types of common of the shelf 64-bit CPU’s: Intel
Xeon and AMD Opteron, and IBM’s 440d.

Introduction

We have a number of passive measurement stations which are continuously
recording (with for example 1 ms sampling in 24 bit) signals from the sur-
face and subsurface of the earth. These recordings are being correlated with
each-other to simulate seismic reflection data. In this abstract we mainly
concentrate on an efficient implementation of the correlation kernel and how
to deal with the data being recorded continuously.
For a good response after the cross-correlation a very long recording time
and many spatially uncorrelated white-noise sources are needed. The longer
the recorded response, the better it approximates diffuse fields. At the same
time, with longer recording times the response from more noise sources is
recorded, and as a result, one obtains better illumination of the subsurface.
The theory of seismic interferometry has gained a lot of attention in the past
5 years and is for example derived and explained in Draganov et al. (2006);
Wapenaar and Fokkema (2006). The basic correlation relation, which is of
our interest, is given by:

R(xA,xB, t) + R(xA,xB,−t) = δ(xH,B − xH,A)δ(t)−

Tobs(xA, t)Tobs(xB,−t) (1)

where xH denotes the horizontal coordinates (x1, x2). Here R(xA,xB, t)
is the reflection response of an inhomogeneous medium in D, including all
internal multiples, for a source at xB = (xH,B, x3,0) and a receiver at
xA = (xH,A, x3,0). Tobs(xA, t) is the transmission response of uncorrelated
(noise) sources in the subsurface, including all free surface multiples, with
receivers at xA on the surface of the earth. Equation (1) shows that the
correlation of transmitted signals measured at different position at the sur-
face of the earth gives reflection data. The information contained in this
reflection data is one of the main goals in passive seismics.

The measured ’noise’ signal

The measured signals ai(t) at position xi are assumed to contain transmis-
sion events from small earthquakes (caused by layer slides, reservoir deple-
tion) in the subsurface. Besides these transmission events, from deeper parts
in the subsurface, the signals will also contain a lot of surface waves caused
by ’disturbances’ at the surface (traffic, sheeps, people, wind,). Our main
interest are the transmission events from the deep subsurface. The initia-
tion time of the transmission events is unknown, we assume/hope this will
happen a few times a day. By summing over long intervals different events
are added together and will enhance the constructed reflection series. We
assume that the response of the earth of the top layers we are interested in
does not change during the (long) time of the measurements. The events we
are interested in will always occur in a short time window (e.g. 10 s.). In
Figure 1 a signal with the transmission events occurring at different times
tie is shown.

t1e t2e t3e t4e time t

Figure 1: The simplified measured signal contains transmission
events which occurs at unpredictable times tie. Each event contains
a series of back-reflections from the surface of the earth, and in-
ternal reflections between layers within the subsurface.

Correlation

Given the two real signals a(t) and b(t), we can compute the cross-correlation
as:

cab(t) = a(t) ∗ b(−t) =

∫ ∞

−∞
a(τ)b(τ + t) dτ (2)

∀ t ∈ (0, Tc)

where the correlated signal has a length Tc. This length must be long enough
to contain the reflections we are interested in, e.g. 10 seconds. This length is
bound by the physical position of the reflectors. Note that cross-correlation
is not commutative and cab 6= cba.

The length of the original input data to be correlated is infinitely long, ex-
pressed by the bounds of the integral above. In practice we will have to start
somewhere, say at time 0, and we can only correlate up to a certain large
time, which we call Tα. Then we have:

cab(t) =

∫ Tα

0
a(τ)b(τ + t) dτ (3)

∀ t ∈ (0, Tc)

Due to the end points of the total correlation window it is clear that we make
an error here.
Our aim is to design a correlation algorithm which continuously computes
the correlation result. In this way we can avoid the storage of very long
signals. This approach is possible because we are only interested in a short
output time-window (Tc). Using the limited number of output samples, the
integral above can be written as a finite sum of smaller windows, i.e.:

cab(t) =

Nw−1∑
k=0

∫ (k+1)Tk

kTk

a(τ)b(τ + t) dτ (4)

∀ t ∈ (0, Tc)

where Nw is the number of windows and Tk is the smaller window in which
a correlation is calculated.
The discrete version of equation (4) is

cab[i∆t] =

Nw−1∑
k=0

(k+1)Nk−1∑
j=kNk

a[j∆t]b[(j + i)∆t] (5)

i ∈ [0, Nc − 1]

where Nk is the number of samples in the window Tk and Nc is the number
of time samples of the output signal, i.e., in the window Tc. Equation (5)
shows that, using smaller Nk windows, Nc output samples can be correlated
as accurate as equation 3.
The number of windows times the number of samples in each window should
be equal to the number of samples in the window from 0 to Tα, which we
call Nα. We then have:

NwNk = Nα (6)

Equation (5) makes an efficient data processing scheme possible. In this
scheme data is buffered for a short period (Tk), as can be seen in equa-
tion (5). The buffered data is used to compute the correlation. During the
compute time of the correlation new data is buffered.
Note that we have defined four N ’s, so four lengths:

1. Nα used for the number of samples in total correlation window (0, Tα);

2. Nw used for the total number of smaller windows in the correlation;

3. Nk used for the number of samples in the small correlation window with
length Tk;

4. Nc used for the number of samples after the correlation, i.e., of the output
signal.

Choice of Nk: We know that the number of output points Nc is limited, so
a convenient choice for Nk is: Nk = 2 ∗Nc. For this choice we can generate
Nc output points with the buffered signals. After the computation of the
first Nc samples the buffers can be refilled with Nc new samples.
Two straightforward numerical implementations have been made, one which
uses copies and one which uses pointer references, to use the data in the
buffered arrays. Of course, it is expected that the pointer references will be
the faster way, given that the used compiler can generate efficient code with
pointer references.

CPU Efficient Correlation

A simple correlation kernel has been used to determine the optimal block
size for a certain CPU. We tested the efficiency on three types of hardware,
namely on the 64-bit Opteron of AMD, the 64-bit Xeon of Intel, and on the
IBM 440d as used in the BlueGene architecture. The main difference lies
in how the caches are connected and linked to main memory. On the Intel
system, a North Bridge links the two while in the AMD-system this North
Bridge is avoided and an on-die memory controller is used. The IBM 440d
has a very small L1 and L2 cache and is placed on a 2 core node which share
a L3 cache and main memory.
The correlation kernel we used to test the performance is simply:

for (l=0; l<ntout; l++) {

for (j=0; j<nt; j++) {

C[l] += A[j]*B[j+l];

}

}

We would like to find the value for nt which gives the best performance.
The code has been tested with values for nt varying between 2 and 8388608
points. The ntout has also been changed, but does not influence the per-
formance. In Figure 2 the results are show for Xeon, Opteron and 440d.
From this figure we can see that the Opteron gives the best performance if
the (combined) size of nt fits in the L1-cache. The Xeon performs better
when the size of nt fits in L2-cache. When the data has to come from main
memory different results are obtained. The IBM 440d peak performance
is below that of the Xeon and Opteron. Note that during these tests the

second CPU, which was also present on the boards we used, has not been
used. Using this second CPU will give completely different results due to
the differences in memory architecture. A detailed explanation about the
performance of the CPU’s is given in the Appendix (see the second poster).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8e+06 262144 16384 2048 512 128 32 8 2

pe
rf

or
m

an
ce

 [M
flo

p/
s]

nt samples

Xeon 1024
Xeon 4096

Xeon 16384

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8e+06 262144 16384 2048 512 128 32 8 2

pe
rf

or
m

an
ce

 [M
flo

p/
s]

nt samples

Opteron 1024
Opteron 4096

Opteron 16384

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8e+06 262144 16384 2048 512 128 32 8 2

pe
rf

or
m

an
ce

 [M
flo

p/
s]

nt samples

BlueGene 2FPU
BlueGene 1FPU

Figure 2: Computational efficiency of a correlation kernel. The
performance (in Mflop/s) results for a Xeon 3.0 GHz, an Opteron
2.2 GHz 64K and IBM 440d at 0.7 GHz.

Some thoughts about other hardware: Besides the standard CPU’s we tested
there is also a range of other hardware which could be of interest for cal-
culating the correlation: FPGA’s, GPU’s or special ASIC’ like Cell and
Clearspead. The main bottleneck in the correlation kernel will be the num-
ber of loads (2) of data per the number of floating point operations (2). This
means that the connection to main memory or caches must be fast enough
to keep up with the floating point calculation rate. For example if an FPGA
can do 30 flop at 400 Mhz, it means that the data must be delivered to the
FPGA at 48 GB/s!

Conclusion and Discussion

For continuously measured signals the correlation, with a limited number of
output samples, can be computed during the recording of new data. Buffers
with a limited number of time samples are used to store incoming data during
the time the correlation is computed.
To make optimal use of compute hardware the correlation loop should be
blocked on the size of the L1/2 cache of the CPU. Different hardware like
GPU, FPGA, Cell has not been taken into account, but due to the small
flop/load ratio we do not think that this hardware can be efficiently used for
the correlation kernel.

Acknowledgment

We would like to acknowledge Advanced Micro Devices (AMD) for giving us
an Opteron based server.

References

Draganov, D., Wapenaar, C., and Thorbecke, J. (2006). Seismic inter-
ferometry: Reconstructing the earth’s reflection response. Geophysics,
71(4):SI61–SI70.

Wapenaar, K. and Fokkema, J. (2006). Green’s function representations for
seismic interferometry. Geophysics, 71(4):SI33–SI46.

Efficient computation of passive seismic

interferometry

Jan Thorbecke, and Guy Drijkoningen

Delft University of Technology, Department of Geotechnology, The Netherlands

Appendix: CPU details

The correlation kernel used to determine the optimal block size for the CPU
is

for (l=0; l<ntout; l++) {

for (j=0; j<nt; j++) {

C[l] += A[j]*B[j+l];

}

}

The code needs to load three 4 Byte floats (assuming load-store architecture)
and performs an add and a mult per compute step. This means that the
code is limited by the memory bandwidth. For the most inner loop only two
loads are needed. The Intel and Pathscale compiler produced code which
did not use a load for C[l] in this inner loop. The IBM xlc compiler did
use a load for the C array. The total number of loads for the inner and outer
loop are: nt ∗ ntout + ntout.
The performance results are shown in Figure 2 (see other poster). To com-
pute the code the Intel compiler (version 9.0) has been used for the Xeon
and the Opteron. The IBM xlc C compiler was used to compile for the 440d.
The code has been run for three different values of the ntout parameter:
1024, 4096 and 16384. The differences in cache size and memory latencies
between the three CPU’s are shown in Figure 3.

CPU

Main Memory
~4 GB

Level 2 cache
~2 MB

Level 1 cache
~ 64 KB

Registers 64

~100 PC

~10 PC

Feature Xeon Opteron 440d
Clock (MHz) 3.0 2.2 0.7
L1-cache 16KB 64KB 32KB
L2-cache 2MB 1MB 2KB
L3-cache - - 4MB
latency L1 4 3 8
latency L2 10 12 8
latency L3 - - 40
latency main 100 150 85
latency main ns 125 (0.8) 68 (2.2) 242 (.35)
peak Gflops 6.0 4.4 2.8

Figure 3: A general block-diagram of a modern CPU showing the
memory hierarchy. The differences in cache size, latency and peak per-
formance between the three tested CPU’s.

Let us first focus on the Xeon chip from Intel. We used the Intel compiler
icc with options -O3 -axP. We assume the code can load one 4 Byte float
per cycle (1/(3 GHz) s.) from the L1-cache. The maximum peak for this
code on the Xeon is then 1/2*peak performance = 3.0 Gflop/s. In Figure 2
the maximum observed peak is 3.6 Gflop/s. The observed performance peak
indicates that the compiler produced vectorised code (SSE instructions) and
computes 2 floats in 1 cycle. This vectorization is also reported back by the
compiler:

corrOpt.c(103) : (col. 4) remark: LOOP WAS VECTORIZED.

corrOpt.c(110) : (col. 4) remark: loop was not vectorized:

not inner loop.

corrOpt.c(112) : (col. 5) remark: LOOP WAS VECTORIZED.

In Figure 2 we see a first drop in performance above 1024 samples. This is
due to the L1-cache whose size is 16K and can contain 3x1365 4 Byte floats.
The next drop in performance is from L2 (2 MB) to main memory, occur-
ring above 131072 samples. For the correlation we should aim at block-sizes
between the L1 and L2 cache, in this case 1024 samples.
Pseudo code generated by the Intel compiler is shown below. In this pseudo
code the use of xmm register and <..>ps instructions indicates that the
SSE instruction set has been used. (the ps extension of the instruction name
indicates parallel (SIMD) use).

..B2.73: # Preds ..B2.72

movl 140(%esp), %edi

LOE eax edx ecx ebx esi edi xmm0 xmm1

..B2.74: # Preds ..B2.74 ..B2.73

movaps (%edi,%esi,4), %xmm2

movaps 16(%edi,%esi,4), %xmm3

mulps (%ebx,%esi,4), %xmm2

mulps 16(%ebx,%esi,4), %xmm3

addps %xmm2, %xmm0

addps %xmm3, %xmm1

addl $8, %esi

cmpl %edx, %esi

jb ..B2.74 # Prob 97%

jmp ..B2.79 # Prob 100%

.align 4,0x90

LOE eax edx ecx ebx esi edi xmm0 xmm1

..B2.76: # Preds ..B2.72

movl 140(%esp), %edi

.align 4,0x90

Let us next focus on the Opteron 248 (2.2GHz) from AMD, as shown in the
middle graph in Figure 2. The Opteron has a similar L1/L2 cache structure
as the Xeon, but the connection to main memory is different. Where the
Xeon has to go to the NorthBridge to go to main memory, the Opteron uses
an on-die memory controller. Two HyperTransport ports to the DDR 400
memory dimms gives a bandwidth of 6.4 GB/s. The L1 cache of the Opteron
is 64K and the L2 cache is 1 MB.
For the compilation Intel’s IA-32 compiler (/opt/intel/cc/9.0/bin/icc -O3 -
axN -vec-report2 -c corrOpt.c) was used (some dummy intel functions were
defined and the produced .o file was linked using the Pathscale compiler). As
can be seen on the figure, the performance reached (above 4.0 Gflop/s) is not
only higher than the Xeon, but it also reached at larger block size, namely
at 8192 samples. The next drop drom the L2 cache to the main memory
occurs above 65536, so earlier than for the Xeon. So from this graph it can
be seen that the correlation runs optimally at 8192 samples.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8e+06 262144 16384 2048 512 128 32 8 2

pe
rf

or
m

an
ce

 [M
flo

p/
s]

nt samples

Opteron 4096
Xeon 4096

Figure 4: Computational efficiency of correlation using pathscale
compiler

For the generation of the results in Figure 4 the Pathscale compiler has been
used for both the Xeon and the Opteron. The compiler is pathcc (2.4) with
options -O3 -OPT:Ofast -OPT:alias=disjoint This compiler does not
vectorize the most inner loops, while the Intel compiler does vectorize these
loops. The Pathscale compile does show nicely (see below) how it optimise
the inner loop. It is noteworthy that the performance is now well below the
performance with the compiler from Intel; it reaches a peak performance be-
low 1.5 Gflop/s. Interestingly the peak performance of the Opteron is around
1 Gflop/s when the data has to come from main memory. This is the same
performance as the code the Intel compiler produced for the Xeon. Note
that using compiler directives in the code the Pathscale compiler should also
be able to vectorise the most inner loops.

#<loop> Loop body line 108, nesting depth: 5

#<sched>

#<sched> Loop schedule length: 31 cycles

(ignoring nested loops)

#<sched>

#<sched> 15 flops (24% of peak)

#<sched> 7 mem refs (11% of peak)

#<sched> 4 integer ops (6% of peak)

#<sched> 20 instructions (16% of peak)

#<sched>

#<freq>

#<freq> BB:58 frequency = 52857164.00000 (heuristic)

#<freq> BB:58 => BB:59 probability = 0.01000

#<freq> BB:58 => BB:58 probability = 0.99000

#<freq>

movaps %xmm9,%xmm5 # [0]

mulss 0(%r8),%xmm5 # [2]

addss 0(%rcx),%xmm5 # [8]

movaps %xmm7,%xmm4 # [6]

mulss 4(%r8),%xmm4 # [8]

movaps %xmm8,%xmm3 # [10]

mulss 8(%r8),%xmm3 # [12]

addss %xmm5,%xmm4 # [14]

movaps %xmm6,%xmm2 # [13]

mulss 12(%r8),%xmm2 # [16]

addss %xmm4,%xmm3 # [18]

movaps %xmm1,%xmm0 # [17]

mulss 16(%r8),%xmm0 # [20]

addss %xmm3,%xmm2 # [22]

addss %xmm2,%xmm0 # [26]

addq $4,%rcx # [28]

addq $4,%r8 # [29]

cmpq %r9,%rcx # [29]

movss %xmm0,-4(%rcx) # [30]

The Blue Gene 440d CPU results are shown in the bottom graph of Figure
2. A zoom of the results is shown in Figure 4. The 440d has an second FPU

unit which can be used for the computations. This second FPU can only be
used if the computations are done in double precision and the arrays aligned
on 16-bit boundaries. A quadword (i.e., 128 bits) datapath between the PPC
440s Data Cache and the PPC 440 FP2 allows for dual data elements (either
double-precision or single precision) to be loaded or stored each cycle.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 8e+06 262144 16384 2048 512 128 32 8 2

pe
rf

or
m

an
ce

 [M
flo

p/
s]

nt samples

BlueGene 2FPU
BlueGene 1FPU

Figure 5: Zoom in of the Blue Gene results

As mentioned before the IBM xlc compiler also load the C[l] element in the
inner loop, to avoid this load a temporary variable has been introduced (see
below for the changed loop). With this change, and making the arrays dou-
ble precision, the code could use the 2’nd FPU. The peak obtained with the
2’nd FPU is at 0.8 Gflop/s. In the compiled block shown below it is observed
that in the inner loop the compiler generated code with 8 LFPL(U) (load)
and 4 FPMADD instructions. The latency of the FPMADD instruction in
5 cycles and has a repeat rate of 1 cycle. This explains the 0.8 Gflop/s. The
quadword load instructions have been used (instruction lfpdx), but cache
misses of the B[j+l] will slow down the performance. If the loop changes
to cr += A[j]*B[j] the performance increased to 1.2 Gflop/s. Interesting
is that in using only one FPU the code performs better (0.4 Gflop/s) than
using 2 FPU’s (0.3 Gflop/s), when it has to get data outside the cache . The
virtual node mode has not been tested.

for (l=0; l<ntout; l++) {

cr = 0.0;

for (j=0; j<nt; j++) {

cr += A[j]*B[j+l];

}

C[l] = cr;

}

mpixlc -O5 -qarch=440d -qhot -qfloat=norngchk \

-qlist -qlistopt -qreport -c corrOpt.c

(I) <SIMD info> SIMDIZABLE (Loop index 4 on line 131

with nest-level 3 and iteration count 100.)

Examine loop <4> on line 132 in file "corrOpt.c"(simdizable)

[reduct][versioned(relative-align natural-align tripcount)]

CL.745:

0006E4 lfpdx 7C34239C 1 LFPL

fp1,fp33=$.V.A[]0.rns42.1(gr20,gr4,0,trap=16)

0006E8 fpmadd 010A4760 1 FPMADD

fp8,fp40=fp8,fp40,fp10,fp42,fp29,fp61,fcr

0006EC lfpdx 7D96239C 1 LFPL

fp12,fp44=$.V.B[]0.rns41.0(gr22,gr4,0,trap=16)

0006F0 lfpdx 7C142B9C 1 LFPL

fp0,fp32=$.V.A[]0.rns42.1(gr20,gr5,0,trap=32)

0006F4 fpmadd 00E53B60 1 FPMADD

fp7,fp39=fp7,fp39,fp5,fp37,fp13,fp45,fcr

0006F8 lfpdx 7D762B9C 1 LFPL

fp11,fp43=$.V.B[]0.rns41.0(gr22,gr5,0,trap=32)

0006FC lfpdx 7D54339C 1 LFPL

fp10,fp42=$.V.A[]0.rns42.1(gr20,gr6,0,trap=48)

000700 fpmadd 01214B20 1 FPMADD

fp9,fp41=fp9,fp41,fp1,fp33,fp12,fp44,fcr

000704 lfpdx 7FB6339C 1 LFPL

fp29,fp61=$.V.B[]0.rns41.0(gr22,gr6,0,trap=48)

000708 lfpdux 7CB43BDC 1 LFPLU

fp5,fp37,gr20=$.V.A[]0.rns42.1(gr20,gr7,0,trap=64)

00070C fpmadd 00C032E0 1 FPMADD

fp6,fp38=fp6,fp38,fp0,fp32,fp11,fp43,fcr

000710 lfpdux 7DB63BDC 1 LFPLU

fp13,fp45,gr22=$.V.B[]0.rns41.0(gr22,gr7,0,trap=64)

000714 bc 4320FFD0 0 BCT

ctr=CL.745,taken=100%(100,0)

CL.744:

In the performed tests only one CPU was used and competing for main
memory by other processors is not taken into account. Also parallelization
was not considered. However, the algorithm can easily be made parallel
without large communication costs between the processors. During parallel
correlation the data throughput through the machine will be significant and
the interconnect architecture of the hardware will become much more im-
portant. We expect that the Blue Gene architecture will be an advantage
compared to standard Linux clusters.

	EAGE2007poster1.pdf
	EAGE2007poster2.pdf

