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Extrapolation techniques discussed I

2-dimensional convolution, Blacquiére et al. (1989)

e Hale-McClellan recursion, Hale (1991)

Slide 1

e series expansion in cos(kr) Thorbecke (1997)
phase screen Stoffa et al. (1990)
finite-difference Li (1991)

- j

Every method is explained briefly and implementation details of the algorithms are
discussed. Numerical examples are given for impulse responses. Finally, we demonstrate
how each of the algorithms can benefit from the use of multiple processors.
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Rayleigh II integral: I

P (z,w) = Gt (z, 2/ ,w)P(x' w)d?z’
Slide 2 op

Phase shift operator'

~ 2

Cw
Gt (ky, ky,w, Az) = exp (j = (k2 +k2)Az)

N )

where PT(x’,w) represents the measured wave field at the surface 9D and GT (z, ', w)
represents the extrapolation operator (Greens function) from the surface 9D to a point in
the subsurface 7.

In homogeneous media the one-way extrapolation operator in the k — w (wavenumber-
frequency) domain is a simple analytical function which is given by ?:

2

= -
with Az being a small extrapolation step and ¢ the propagation velocity of the medium. The
advantage of using the phase shift operator in the k,, k, —w domain is that the extrapolation
result is obtained by multiplication of the data with the phase shift operator. However,
multiplication in the k;,k, — w domain rules out the possibility of applying a laterally
varying operator. To allow laterally varying medium functions a convolution operator in
the x,y — w (space-frequency) domain should be used. This spatial convolution operator
must be designed in such a way that it gives accurate and stable results within a reasonable
computational time. To arrive at this goal two steps must be taken; the first step is an
optimum design of the spatial operator and the second step deals with a fast implementation
of the spatial convolution. The most efficient algorithms combine these two steps and a
spatial operator is designed in such a way that it can be implemented in a fast way. Note
that the extrapolation operator is circular symmetric which makes an efficient optimization
and implementation possible.
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Approximations to the phase-shift operator'

G(ky, ky) = exp (jk.Az)
M N
Slide 3 ~ Z Z Gmn cos (kzmAz) cos (kynAy)

m=0n=0
L

~ Z GiTi(cos (krAx))

N )

Most spatial extrapolation methods can be expressed in the wavenumber domain as an
approximation to the phase shift operator of equation (1). Different approximations can
be based on a power series or on an expansion with respect to the cosine terms of the
Fourier transform. Transforming these expansions, with a limited number of terms and in
an optimal way, to the spatial domain gives the spatial convolution operator. Three types
of expansions are discussed:

G(ky, ky) = exp (jk.Az)

M N
~ Z Z G cos (kymAzx) cos (kynAy) (2)
m=0n=0
L
A Z GiT(cos (k- Ax)) (3)
1=0
J
~ Y;[cos (k.Ax)} (4)
=0
with k. = |/(kZ +k2) and k. = /k? — k2. Note that there are many more expansions

possible like the expansions in Laplacian (k2 + k7)? or k. terms.

Equation (2) represents the inverse Fourier transform of a symmetric (in z and y) spa-
tially limited operator. G,,, are the coefficients of the 2-D spatial convolution operator. The
coefficients G, used in this paper are obtained by a Weighted Least Squares optimization
method. The spatial dimensions of the convolution operator are (2M — 1)2).

In equation (3) the 2-dimensional problem is reduced to a 1-dimensional filter problem
using the circular symmetry of the 2-D phase shift operator Hale (1991). This method is
represented by an Chebychev polynomial (77) in 1-dimensional cosine terms. The coeffi-
cients G represent the 1-D phase-shift operator and are obtained with any preferred 1-D



optimization method. The cosine terms cos (k. Az) are approximated by small (SzS) 2-D
convolution filters. The spatial size of the operator is (L(S — 1) — S + 2)2.

Equation (4) is a series expansions in cos (k,-Ax). The cosine terms are approximated by
small (SxS) 2-D convolution filters. The coefficients Y; in the series expansions are obtained
by numerically optimizing the coeflicients given the approximation of the cosine terms. Note
that the number of expansion terms is more limited by the accuracy of the floating point
implementation than the Chebychev recursion. The spatial size of the operator is also
(J(S—1)— S +2).

Approximations to the one-way wave equation'
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Impulse response (25x25)'
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Impulse response (21x21—|—13x(5x5))' \
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Conv 21221 I McC 13z (5z5) Series 132

Impulse response I \
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Fin. Dif. + filtgr Phase Screen
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To check the accuracy of the extrapolation method an impulse response is calculated
with Az = Ay = Az = 10 m, ¢ = 1000m/s and a Ricker wavelet with a time delay of 1.0
seconds and a frequency peak at 10 Hz. The impulse response shows us three things; the
circularity of the operator, the numerical artifacts and the result at high angles.

To have a fair comparison between the different methods the footprint of the spatial
operator is chosen to be the same. For the 2D convolution we have used a 33x33 convolution
operator and for the Chebychev recursion and series expansion we used a 3x3 operator for the
cosine operator and 17 terms in the expansion. In Figure 77 the impulse responses are shown
for the three spatial convolution methods. Note that all methods give comparable results;
the depth slice at 67° of the 2D convolution shows a higher (more accurate) amplitude than
the other methods. Note that a higher accuracy for the cosine methods can be achieved by
optimizing the cosine terms for every wavenumber k = <. However, the performance will
suffer from the fact that the cos(kr) stencil depends on the local velocity. Using a larger
stencil (5x5) and less terms (9,) to have the same footprint, gives non-accurate results. A
13x(5x5) operator gives comparable results but has a much larger footprint.

In recursive depth extrapolation the (complex) computations are carried out from the xy
plane at depth z to the xy plane at depth z + Az. The secondary cache of the MIPS R10k,
which is used in the Origin 2000, has a size of 4 MB and can contain one xy plane (of complex
numbers) of 724 x 724 samples or 2 planes of 512 x 512. Larger or more depth planes will
cause cache misses and introduces a higher latency on load/store operations. The R10K has
32 64-bit floating point registers and can do one multiply-add and one load/store operations
at every clock-cycle. Taking these hardware constraints into account the implementation of

the different extrapolation methods was carried out:

e The implementation of the 2D spatial convolution operators uses the symmetry in x
and y explicitly. To reduce misses from the cache the data is rearranged in such a way
that the convolution can be done within the cache.
for (iy = 0; iy < ny; iy++) {

for (ix = 0; ix < nx; ix++) {
for (j = 0; j < opersize; j++) {
datal[iy*nx+ix] += (tmp3[index3+j] + tmp4[index4+j])*hopx[j];
Yy 3

e The Hale McClellan method is implemented as a Chebychev recursion scheme as shown
in Figure ??. The recursion scheme is not very cache friendly because three copies of
the xy planes are needed to calculate the plane at z + Az. The basic scheme is given
by:
for (o = 0; o < order; o++)

for (iy = 0; iy < ny; iy++)
for (ix = 0; ix < nx; ix++)
term3[iy*nx+ix] = 2.0xterm2[iy*nx+ix] - terml[iy*nx+ix];
datal[iy*nx+ix] += opl[o]*term3[iy*nx+ix];

o}

Note that all arrays in these calculations are complex. The term[1,2,3] arrays contain
the pre-computed results of the small 2D convolutions of cos (k- Ax) at different orders.

e The series expansion in cos (k.Az), also shown in Figure ??, is a straightforward
implementation of the small 2D convolutions without the extra storage as needed in
the Chebychev recursion scheme.

for (o = 0; o < order; o++) {
for (iy = 0; iy < nyo; iy++) {
for (ix = 0; ix < nxo; ix++) {
datal[iy*nx+ix] += a_m[o]l*terml[iy*nx+ix];

o}
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for (iy = 0; iy < mny; iy++) {

2D-Convolution I

| SR G_wlsq(x,y) — Pin

for (ix = 0; ix < nx; ix++) {
for (j = 0; j < opersize; j++) {
datal[iy*nx+ix] += (tmp3[index3+j] + tmp4[index4+j])*hopx[j];

)

3

el ™

}

-

for (o = 0; o < order; o++) {

Hale McClellan I

O
P; 4 h(x,y) [+{2h(x,y)H

G, 2G, 2G,
Y \

@ @)
&) )

for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++) {
term3[iy*nx+ix] = 2.0*term2[iy*nx+ix] - terml[iy*nx+ix];
datal[iy*nx+ix] += oplol*term3[iy*nx+ix];

L

_
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i h(XQy) h(x;y) ............

for (o = 0; o < order; o++) {
for (iy = 0; iy < nyo; iy++) {
for (ix = 0; ix < nxo; ix++) {
dataliy*nx+ix] += a_m[o]*terml[iy*nx+ix];

Y r 3
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Phase-Screen I

P, FTX — exp(jk,Az) — FTk —e

— exp(jkAcAz)

Ac = 1/e(x,y,z)-1/c(z)
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Finite Difference I
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The table above shows the kind and number of operations for every (x,y) point in the
xy plane of the most inner-loop in the convolution. From this table it can be concluded
that the 2D convolution is bound by the number of load/store operations. Note that it is
possible to implement the 2D convolution in such a way (by not using the symmetry in
the operator) that it will be floating point bound. Although this code will run closer to
maximum performance, it will also use more operations and it will take more time for the
same task. The Hale McClellan scheme is also bound by the number of load/store operations
and can only be run at 50% of the floating point peak performance. The series expansion

is the only scheme which is bound by the number of floating point operations.

In the migration the extrapolation takes 95 % of the total migration time. The other
5% is taken by the computation of the operator table and I0. In the table below the number

of flops are shown for the impulse response calculation for the different methods:

10
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model size: 201 % 201 % 111(nz * ny * nz)

Results small model on R10K 195 MHZI

~

‘ Method ‘ Size H table (s) ‘ migr (s) ‘ misc (s) ‘ tot (s) ‘ Mf/s ‘
Conv 25x25 286.3 2104.5 0.7 2391.5 | -
McC 13x(3x3) || 0.1 9462 | 0.7 946.9 | -
Series 13x(3x3) || 44.6 802.5 0.7 8478 | -
Conv 33x33 625.0 3480.7 0.7 4106.4 | -
McC 9x(5x5) 0.1 906.1 0.7 906.9 | -
Series 9x(5x5) 30.6 812.1 0.6 843.3 | -
PSPC | - 0.0 532.3 0.7 533.0 | -
FinDif | - 0.0 672.3 0.7 673.0 | -

=

/sgi‘

model size: 2001 * 1201  7(nx * ny * nz)

Results medium model on R10K 195 MHZ' \

‘ Method ‘ Size H table (s) ‘ migr (s) ‘ misc (s) ‘ tot (s) ‘ Mf/s ‘
Conv 25x25 293.3 7786.9 13.1 8093.3 | -
McC 13x(3x3) || 0.1 5172.4 12.5 5185.0 | -
Series 13x(3x3) || 218.4 4313.9 12.9 4545.2 | -
Conv 33x33 640.7 11971. 12.8 12625. | -
McC 9x(5x5) 0.1 4454.6 12.6 4467.3 | -
Series 9x(5x5) 142.9 3852.7 12.6 4008.2 | -
PSPC - 0.0 2324.1 13.0 2337.1 | -
FinDif | - 0.0 3594.5 14.8 3609.3 | -

N

11
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Slid Compare single CPU: R10K 195, 250 + R12K 300 MIHz
ide 16

model size: 2001 % 1201 * 7(nz * ny * nz)

S8 ~

small medium
fethod | Size || 195 | 250 | 300 (vs250) || 195 | 250 | 300 (vs250
Conv | 25x25 || 1.0 | 1.40 | 1.65 (1.18) || 1.0 | 1.27 | 1.65 (1.29)
1cC | 13x(3x3) || 1.0 | 1.35 | 1.76 (1.30) || 1.0 | 1.54 | 1.26 (0.82)
Slide 17beries | 13x(3x3) || 1.0 | 137 | 174 (1.26) || 10 | 152 | 1.31 (0.86)
Conv | 33x33 || 1.0 | 143 | 1.65 (1.15) | 1.0 | 1.25 | 1.64 (1.31)
1eC | 9x(5x5) || 1.0 | 1.33 | .71 (1.28) || 1.0 | 1.29 | 1.33 (1.03)
Beries | 9x(5x5) || 1.0 | 1.29 | 1.74 (1.34) | 1.0 | 1.44 | 1.43 (1.00)
bSPC | - 1.0 | 128 | 167 (1.30) || 1.0 | 1.23 | 1.47 (1.19)
FinDif | - 1.0 | 142 | 181 (1.27) || 1.0 | 1.31 | 1.50 (1.14)

- j
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Results small model on R10K 250 MHZI

model size: 201 * 201 * 111(nz * ny * nz)

~

‘ Method ‘ Size H table (s) ‘ migr (s) ‘ misc (s) ‘ tot (s) ‘ Mf/s ‘
Conv 25x25 115.5 1596.9 0.7 1713.1 | 290
McC 13x(3x3) || 0.1 699.9 0.6 700.7 | 165
Series 13x(3x3) || 33.2 581.7 0.7 615.6 | 200
Conv 33x33 253.8 2612.3 | 2.2 2868.3 | 305
McC 9x(5x5) || 0.1 680.2 0.7 681.0 | 180
Series 9x(5x5) 22.9 630.9 0.6 654.4 190
PSPC - 0.0 414.8 0.6 415.4 175
FinDif | - 0.0 471.1 0.6 471.7 | 200

N

_/
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nxv=201 dxv=10 nyv=201 dyv=10 nzv=11 dzv=10 fmin=5 fmax=5 dstep=10

cycles flops seconds
Conv  25x25 1389070136 1659536661 2.293
McC 13x(3x3) 257262027 181424747 1.040
Series 13x(3x3) 489700519 371343254 0.818
Conv  33x33 2647420950 3466367284 3.733
McC 9x (5x5) 241696370 192538144 1.016
Series 9x(5x5) 413381696 313259119 0.918
Phase screen 1556578346 108577671 0.595
Finite Difference 159197841 148239311 0.715

nxv=201 dxv=10 nyv=201 dyv=10 nzv=21 dzv=10 fmin=5 fmax=5 dtsep=20

cycles flops seconds
Conv  25x25 2031708960 2358601265
McC 13x(3x3) 509045729 362559134
Series 13x(3x3) 700171619 543454491
Conv  33x33 3698230648 4654437895
McC 9x (5x5) 477980469 384835411
Series 9x(5x5) 631730703 494245936
Phase screen 305982404 217037153

Finite Difference 313223405 296360433
nz=10 nw=1

flops migr flops table MF/s
Conv  25x25 699064604 960472057 291
McC 13x(3x3) 181134387 290360 166
Series 13x(3x3) 172111237 199232017 200
Conv  33x33 1188070611 2278296673 303
McC 9x (5%5) 192297267 240877 181
Series 9x(5x5) 180986817 132272302 188
Phase screen 108459482 118189 173
Finite Difference 148121122 118189 197

14
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Parallel results small model on R10K 250 MHZI

model size: 201 * 201 * 111(nz * ny * nz)

‘ CPU’s H table (s) ‘ migr (s) ‘ comm (s)

tot (s) ‘ scaling ‘

1 115.5 1596.9 0.2 1713.1 | 1.00
2 58.0 801.2 0.5 860.2 1.99
4 29.3 400.9 2.2 433.0 | 3.96
8 15.6 198.3 2.4 216.8 7.90
16 8.8 101.9 2.3 113.7 15.0
32 5.5 51.4 2.8 60.5 28.3

/sgi‘

~

Results medium model on R10K 250 MHZ'
model size: 2001 * 1201  7(nx * ny * nz)

‘ Method ‘ Size table (s) ‘ migr (s) ‘ misc (s) ‘ tot (s) ‘ Mf/s ‘
Conv 25x25 448.6 5889.4 13.7 6351.7 | 260
McC 13x(3x3) || 0.1 3360.0 14.2 3374.3 | 110
Series 13x(3x3) || 166.4 2789.1 18.6 2074.1 | 125
Conv 33x33 972.2 9096.2 13.4 10082 | 285
McC 9x(5x5) 0.1 3447.2 13.6 3460.9 | 130
Series 9x(5x5) 111.9 2643.3 14.4 2769.6 | 140
PSPC - 0.0 1871.4 22.3 1893.7 | 130
FinDif | - 0.0 2735.2 18.7 2753.9 | 135

N

_/
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nxv=2001 dxv=10 nyv=1201 dyv=10 nzv=2 dzv=10 fmin=5 fmax=b

Conv 25x25
McC 13x(3x3)
Series 13x(3x3)
Conv 33x33
McC 9x (5x5)

Series 9x(5x5)
Phase screen
Finite Difference

nxv=2001 dxv=10 nyv=1201 dyv=10 nzv=3 dzv=10 fmin=5 fmax=b

Conv 25x25
McC 13x(3x3)
Series 13x(3x3)
Conv 33x33
McC 9x (5x5)

Series 9x(5x5)
Phase screen
Finite Difference

cycles

6474333504
1497153863
2554199170
11966326268
1370365146
2170610967
784997848

944664815

cycles
10257457988
2967973902
3804178606
18150526816
2714435379
3450707766
1543911914
1863245629

nz=1 nw=1

flops

7922247490
1065195911
1844055181
15938236438
1137305603
1625743155
609343983
961634138

flops
12071459860
2125267290
2851069970
22991455023
2269537798
2690518819
1213735299
1918315609

seconds

seconds

flops migr
Conv 25x25 4149212370
McC 13x(3x3) 1060071379
Series 13x(3x3) 1007014789
Conv  33x33 7053218585
McC 9x (5x5) 1132232195
Series 9x(5x5) 1064775664
Phase screen 604391316
Finite Difference 956681471

sec
15
9

7.

23

(o2 S B 00)

MF/s
258
108
125
284
132
139
130
133

onds
.291
.363
646
.705
.166
.327
.416
.823

16
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Parallel results medium model on R10K 250 MHz .

model size: 2001 * 1201 * 7(nx * ny * nz) for Convolution (25x2

CPU’s H table (s)

migr (s) ‘ comm (s)

tot (s) ‘ scaling ‘

1 448.6 5889.4 11.8 6351.7 | 1.00
2 229.6 2979.6 34.1 3247.0 | 1.96
4 117.7 1486.4 12.1 1618.1 | 3.93
8 63.9 749.4 37.7 853.9 | 7.44
16 34.3 378.3 26.2 440.9 14.4
32 19.6 196.1 31.3 249.2 | 255

Speed up for R10K250 MHZI

linear

99 %

r——Asmall
o—o—o medium

30

~
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Results small model on R12K 300 MHZI

model size: 201 % 201 % 111(nz * ny * nz)
‘ Method ‘ Size H table (s) ‘ migr (s) ‘ misc (s) ‘ tot (s) ‘ Mf/s ‘
Conv 25x25 173.3 1270.8 0.8 1444.9 | 365
Slide 24 McC 13x(3x3) || 0.1 537.3 0.7 538.1 | 260
Series 13x(3x3) || 26.5 460.5 0.7 487.7 | 245
Conv 33x33 394.3 2087.4 0.8 2482.5 | 385
McC 9x(5x5) 0.1 529.9 0.7 530.7 225
Series 9x(5x5) 18.1 466.0 0.7 484.8 251
PSPC | - 0.0 317.7 0.7 3184 | 200
FinDif | - 0.0 370.0 1.0 371.0 245

= _

nz=10 nw=1 flops migr time Conv 25x25 699064604 1.816 McC 13x(3x3) 181134387 0.668
Series 13x(3x3) 172111237 0.675 Conv 33x33 1188070611 2.943 McC 9x(5x5) 192297267
0.816 Series 9x(5x5) 180986817 0.687 Phase screen 108459482 0.515 Finite Difference 148121122
0.577

18
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model size: 201 * 201 * 111(nz * ny * nz)

Parallel results small model on R12K 300 MHZI

‘ CPU’s H table (s) ‘ migr (s) ‘ comm (s)

tot (s) ‘ scaling ‘

1 173.3 1270.8 0.0 1444.9 | 1.00
2 87.1 634.7 0.5 723.2 2.00
4 44.5 319.4 1.5 366.4 | 3.94
8 22.8 162.0 2.7 188.4 7.67
16 12.2 82.6 3.5 99.3 14.6
32 7.9 47.1 5.2 61.7 234
64 8.2 234 5.8 39.4 36.7

/sgi‘

model size: 2001 * 1201  7(nx * ny * nz)

Results medium model on R12K 300 MHZ'

~

‘ Method ‘ Size H table (s) ‘ migr (s) ‘ misc (s) ‘ tot (s) ‘ Mf/s ‘
Conv 25x25 175.4 4718.7 12.6 4905.7 | 325
McC 13x(3x3) || 0.1 4094.4 17.9 4112.4 | 120
Series 13x(3x3) || 140.9 3303.4 13.4 3457.7 | 140
Conv 33x33 403.0 7261.2 | 13.8 7678.0 | 360
McC 9x(5x5) || 0.1 3333.8 | 184 3352.3 | 150
Series 9x(5x5) 84.2 2678.4 15.0 2777.6 | 165
PSPC - 0.0 1567.3 15.4 15682.7 | 150
FinDif | - 0.0 2383.9 13.3 2397.2 | 155

N

_/
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nz=1 nw=1 flops migr seconds MF /s Conv 25x25 4149212370 12.158 325 McC 13x(3x3)
1060071379 8.300 122 Series 13x(3x3) 1007014789 6.951 138 Conv 33x33 7053218585 18.570
362 McC 9x(5x5) 1132232195 7.162 151 Series 9x(5x5) 1064775664 6.158 165 Phase screen
604391316 3.903 148 Finite Difference 956681471 5.796 157

s \
Parallel results medium model on R12K 300 MHz

model size: 2001 x 1201 x 7(nz * ny * nz) for Convolution (25x25)

‘ CPU’s H table (s)

migr (s) ‘ comm (s) ‘ tot (s) ‘ scaling ‘

1 1754 4718.7 0.0 4905.7 | 1.00
Slide 27 2 87.6 2376.2 2.1 2481.8 | 1.98
4 45.3 1212.6 5.0 1282.2 | 3.82
8 23.2 602.7 6.9 642.5 | 7.63
16 11.7 310.6 9.9 345.9 14.2
32 7.0 167.9 13.9 203.8 | 24.1
64 6.5 101.1 17.3 139.5 | 35.2

20
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‘ method H accuracy ‘ circular | table | impl ‘ perf ‘
Conv (33x33) + + - 4t O
Conv (25x25) + + O ++ +
Slide 30 McC 13x(3x3) o/+ O + O O
McC 9x(5x5) - O ++ O o/+
Series 13x(3x3) o/+ O/+ O 4+ 4+
Series 9x(5x5) - O + ++ ++
PSPC ++ ++ |+ |+
FinDif ++ + ++ - -
kNote; accuracy is defined in homogeneous medium. /

In the table below a simplified summary is given. The columns in this table have the
following meaning;:
e circular: the circularity of the impulse response.
e table: the amount of cycles needed to compute all the operator coefficients needed in the
convolution scheme. In the table ++ means a minimum time.
e implementation: the simplicity of the implementation.
e performance: the performance of the scheme on the Origin 2000.

22
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Conclusions '

e the 2D convolution requires the most multiplications and
additions but also makes best use of the hardware

e the performance of the Hale McClellan method suffers from the
extra copy needed in the Chebychev recursion scheme

e the series expansion overcomes this problem and can be
implemented more efficiently

e PSPC and Finite Difference needs to be tested in inhomogeneous

model

N )

S8t ~
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