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HPC architectures

Flynn’s classification of High Performance Computers is based on instruction-
and data-streams into a processor:

• SISD: Single Instruction Single Data Stream
most workstations

• SIMD: Single Instruction Multiple Data Stream
vector-processors act on arrays of data, and processors array

• MISD: Multiple Instruction Single Data Stream
not yet commercially build

• MIMD: Multiple Instruction Multiple Data Stream
each processors fetches its own instructions and operates on its own data

? Shared Memory2: address-space is shared, (N)UMA
? Distributed Memory: every CPU has its own address-space

2virtual shared-memory programming models are able to address the whole collective address space on
physically distributed memory systems.

Architectures
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HPC architectures: SIMD

Thinking Machines CM 2

• 12-D hypercube is a cube of 9-D hypercubes: 4096 chips

• processors were grouped 16 to a chip

• 65,536 1-bit processors that simultaneously perform the same calculation

• Operations on larger data elements (32-bit floats) required one cycle per bit

• local memory of 4K bits

Architectures: SIMD
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HPC architectures: SIMD

Cray MTA

• multithreaded machine (eliminate useless cycles)

• 1-256 CPU’s

• memory is physically distributed and globally addressable

• each processor is capable of storing the state of 128 separate threads.

announced that a 40-processor, all-CMOS Cray MTA-2(TM) system with a
revolutionary multithreaded architecture has completed customer acceptance

Architectures: SIMD



HPC 6

testing at the Washington, D.C. facilities of the Naval Research Laboratory
(NRL).

Cray provided the Cray MTA-2 system to NRL under a contract with Northrop
Grumman Information Technology, a premier provider of advanced IT
solutions, engineering and business services for government and commercial
businesses.

NRL is a leading-edge Distributed Center within the Department of Defense’s
High Performance Computing Modernization Program. NRL’s mission is to
explore and evaluate innovative computing and networking technologies.

Architectures: SIMD
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HPC architectures: DM-MIMD

Cray T3E:

• bi-directional 3D torus (480 MB/s each direction)

• E-registers

• adaptive routing: source and destination node coordinates

Architectures: DM-MIMD
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HPC architectures: DM-MIMD

Cray T3E Processor (EV-5, EV-6)

Architectures: DM-MIMD
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HPC architectures: SM-MIMD

Architectures: SM-MIMD
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HPC architectures: SM-MIMD

Most important differences in organization of memory

• Uniform Memory Access

• Non-Uniform Memory Access

• Cache Coherency

Architectures: SM-MIMD
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HPC architectures: SM-MIMD UMA

Uniform Memory Access

Architectures: SM-MIMD
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HPC architectures: SM-MIMD NUMA

Non-Uniform Memory Access

Architectures: SM-MIMD
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HPC architectures: SM-MIMD NUMA

Origin 3000 building block

Distrubuted shared memory is a model, for the user this is a shared memory
system.

Architectures: SM-MIMD
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HPC architectures: SM-MIMD NUMA

Origin 3000 building systems

Evert Hub and Router add bandwidth.

Architectures: SM-MIMD
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HPC architectures: SM-MIMD NUMA

Origin 3000 building systems

Architectures: SM-MIMD
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Architectures: SM-MIMD
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HPC architectures: Cache Coherency
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If multiple processors cache and update data concurrently, then inconsistency
may arise between the ”same” data in different caches

Architectures: SM-MIMD
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HPC architectures: Cache Coherency

There are two classes of cache coherency protocols

• snoopy protocol, monitoring all requests to memory, bus based architecture
(SUN)

• directory memory, cache state maintained in each memory block(SGI)

and two schemes:

• updates: write though can consume more system bandwidth (Cray)

• invalidates: can lead to false sharing optimized for uniprocessors
performance (SGI)

Architectures: SM-MIMD
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HPC architectures: SIMD/MIMD: Vector Processor

Vector supercomputers load data into vector registers, to hide latency, and
perform vector operations, to produce high computation rates.

Architectures: Vector
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HPC architectures: Vector

• Overcomes limitations of pipelining in scalar processors:

? deep pipelining can slow down a processor,
? limits on instruction fetch and decode.

• One single vector instruction executes an entire loop: control unit overhead
is greatly reduced.

• Vector instructions have a known access pattern to memory

• High memory bandwidth (interleaved) is needed to feed the vector
processors.

• memory-memory (70’s) and memory-register (Cray 1 ... C-90, Convex,
NEC) memory-cache-register (Cray SV1, X1)

Architectures: Vector
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HPC architectures: Pipelining

Clock Cycle Fetch Decode Execute Store
1 Inst. 1
2 Inst. 2 Inst. 1
3 Inst. 3 Inst. 2 Inst. 1
4 Inst. 4 Inst. 3 Inst. 2 Inst. 1
5 Inst. 5 Inst. 4 Inst. 3 Inst. 2

4-cycle instructions; using all the available hardware (ALU, Register, ..) within
one cycle. Balance between clocks/instructions and pipeline depth.

Architectures: Vector
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HPC architectures: Vector

Architectures: Vector
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HPC architectures: Vector

Architectures: Vector
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HPC architectures: Vector code

Vectorization inhibitors within loops are:

• function/subroutine calls

• I/O statements

• Backward branches

• Statement numbers with references from outside the loop

• References to character variables

• External functions that do not vectorize

• RETURN, STOP, or PAUSE statements

• Dependencies (recursive members)

Architectures: Vector
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HPC architectures: Vector code

Dependency within loop cannot be vectorized:

for (i=2; i<=5; i++) {
A[i-1] = B[i];
C[i] = A[i];

}

i b[i] A[i] c[i]
1
2 −→ →
3 −→ →
4 −→ →
5 −→ →

The correct computation requires the values of Ai to be stored in Ci before
they are updated in the next iteration.

Architectures: Vector
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HPC architectures: Vector code

for (i=2; i<=5; i++) {
A[i-1] = B[i];
C[i] = A[i];

}

Scalar mode: sequential through the loop

i B A C
1 B[2]
2 −→ B[3] → A[2]
3 −→ B[4] → A[3]
4 −→ B[5] → A[4]
5 −→ → A[5]

Architectures: Vector
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HPC architectures: Vector code

for (i=2; i<=5; i++) {
A[i-1] = B[i];
C[i] = A[i];

}

Vector mode: parallel through the loop

i B A C
1 B[2]
2 2 −→ B[3] → B[3]
3 3 −→ B[4] → B[4]
4 4 −→ B[5] → B[5]
5 5 −→ → A[5]

All the new values of Ai are fetched by the vector instruction before and stored
in Ci. This generates incorrect results.

Architectures: Vector
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HPC architectures: Vector code

Loop-linked Dependencies

do i=1,100
1 A(i+1) = A(i) + B(i);
2 B(i+1) = B(i) + A(i+1)

enddo

In the actual Iteration i+1, three Data Dependencies can be distinguished:

a Both Instructions 1 and 2 use values, which have been calculated by
themselves in an earlier Iteration.

b The Instruction 1 uses a value, which has been calculated by the following
Instruction 2 in an earlier Iteration.

c The Instruction 2 uses a value, which has been calculated by the preceeding
Instruction 1 in the same Iteration.

Architectures: Vector
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HPC architectures: Vector code

For example, the compiler will not vectorize the following loop

do i = 1, n
A(index(i)) = A(index(i)) + b(i)

enddo

potential dependency on the array A
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HPC architectures: Vector code

For example, the compiler will not vectorize the following loop

do i = 1, n
A(index(i)) = A(index(i)) + b(i)

enddo

potential dependency on the array A

!dir$ ivdep
do i = 1, n

A(index(i)) = A(index(i)) + b(i)
enddo

Adding this directive to a safe loop can improve the performance up to a factor
of 10.

Architectures: Vector
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HPC architectures: Vector code

In the following loop there is a vector dependency in both the inner and outer
loops:

do j = 1, n
do i = 1, m

temp = .25*(x(i,j-1)+x(i-1,j)
* + x(i+1,j)+x(i,j+1))-x(i,j)

x(i,j) = x(i,j) + omega * temp
if (abs(temp).gt.err1) err1=abs(temp)

enddo
enddo

x(i-1,j) is needed to update x(i,j). This loops runs at about 20 Mflops on the
Cray SV1.

Architectures: Vector
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HPC architectures: Vector code

A solution to this problem is to change the vectors to run diagonally through
the matrix X

do jd=2,n+m
!dir$ ivdep

do j=max(1,jd-m),min(n,jd-1)
i = jd - j
temp = .25*(x(i,j-1) + x(i-1,j)

* + x(i+1,j) + x(i,j+1)) - x(i,j)
x(i,j) = x(i,j) + omega * temp
if (abs(temp) .gt. err1) err1 = abs(temp)

enddo
enddo

This loop now vectorizes and runs at over 260 Mflop/s on a 1000x1000 grid.

Architectures: Vector



HPC 32

HPC architectures: Vector code

To Do: vector compiler examples hpm examples sustained peak performance
scalar-vector

Architectures: Vector
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Vector architectures: the Cray X1

Cray X1 = Cray T3E + Cray SV1ex

• 1 CPU: 8 vector pipes: 12.8 (25.6) Gflop/s

• 1 node board contains 4 CPU’s

• 200 GB/s from memory to CPU’s within a node board

• 8-32 (64) GB Memory per node board

• 1024 nodes→ 4096 CPU’s: peak 50 TeraFlop, max 64 TB memory

Cray X1
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Vector architectures: the Cray X1

Frame

Cray X1
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Vector architectures: the Cray X1

Node

Cray X1
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Vector architectures: the Cray X1

Detailed node

Cray X1
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architectures: future CPU’s

• Field Programmable Gate Array
FPGA’s allow computer users to tailor microprocessors to meet their own
individual needs.

• Intelligent RAM: processors and memory are merged onto a single chip.
narrow or remove the processor-memory performance gap

Cray X1
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Clusters and their interconnects

A Beowulf-class system is a cluster with nodes that are personal computers
(PC) or small symmetric multiprocessors (SM) of PCs integrated by COTS
local area networks (LAN) or system area networks (SAN), and hosting an
open source Unix-like node operating system.

Clusters



HPC 39

Clusters and their interconnects

Cluster Node Hardware

• Processor: P3, P4, Athlon, EV7, Itanium 2, Power4 , Ultra Sparc ...

• memory: SDRAM, DDR, RAMBUS

• secondary storage IDE, SCSI, CD-ROM

• external interface PCI, USB

Clusters
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Clusters and their interconnects

Cluster Network Hardware

• hubs: inexpensive limited amount of communication

• switches: increasing system throughput and reducing network contention

• Myrinet: custom network control processor that provides high bandwidth and
low latencies

• Fast Ethernet / Gigabit Ethernet: high latencies

• SCI (scalable coherent interface): high bandwidth

• VIA (Virtual Interface Architecture): very low latencies. moving data between
application processes without requiring the intervening copying of the data
to the node operating systems.

• Infiniband: latency even lower, directly connecting to the processor’s
memory channel interface.

Clusters
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Clusters and their interconnects

Four types of interconnections:

Connection Communication
Message Based Shared Storage

I/O
Attached

Most common type,
includes most high-
speed networks

Shared disk subsystems

Memory
Attached

Usually implemented in
software as optimization

Global and distributed
shared memory

I/O attached message-based systems are by far the most common. The I/O
bus provides a

Memory attached systems are less common, since the memory bus of an
individual computer generally has a design that is unique.

As network hardware became faster during the 1990’s, the overhead of the
communication protocols became significantly larger than the actual hardware
transmission time for messages,

Clusters
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HPC architectures Summary
High performance computers are achieved either by increasing the level of
parallelism in the CPU and in memory, or by using multiple CPUs. In practice,
there are 3 classes of HPC today:

• Vector

? Instructions with vector operands
? Memory is banked to increase the bandwidth between CPU and memory
? Compilers are able to transform certain loop structures into series of

vector operations

• SM-MIMD

? Memory is segmented, with each segment being attached to every
processor

? Ensure that the memory is consistent between processors.
? For large SMP systems, the cost of memory far outweighs the cost of

processors
? Programs can be incrementally parallelized (OpenMP)

Clusters
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• Clusters

? clusters are the ultimate in scalability – need more CPU power – just add
another PC

? the number of (expensive) networking components per CPU will increase
logarithmically with CPU number

? exploitation of parallelism must be handled explicitly by the programmer
and data needs to be distributed at the outset.

? can be used for overflow computing.
? apart from the speed of the processors and the software provided by the

vendors of DM-MIMD supercomputers, the distinction between clusters
and compute clusters becomes rather small and will undoubtly decrease
in the coming years.

Clusters
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HPC software tools
The software components that comprise the environment of a commodity
cluster may be described in two major categories:

• resource management

? system software

• programming tools

Software
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HPC software tools

Resource Management Software:

• Installation and Configuration

• Scheduling and Allocation

• System Administration

• Monitoring and Diagnosis

• Distributed Secondary Storage

• Availability

Software
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HPC software tools

Cluster Operating System:

• Stability

• Performance

• Extensibility

• Scalability Enabling low-overhead calls to access the interconnect (inter-
node scalability).

• Heterogeneity

• High availability

• Checkpoint restart

Software
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HPC software tools

Application Programming Tools:

• Numerical Libraries (BLAS, Lapack, Atlas, NAG) Mathematical software

• Compilers and Preprocessors

• MPI/PVM Implementations MPICH

• Development Environments

• Performance Analyzers

• Debuggers

• Middleware; RPC, CORBA, JAVA

Software
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HPC software tools

Single System Image (SSI) can be realized either using hardware or software
techniques.

• hardware-level
highest level of transparency, but due to its rigid architecture, it does not offer
the flexibility required during the extension and enhancement of the system.

• software-level

? kernel-level: expensive to develop and maintain
? application-level approach helps realize SSI partially and requires that

each application be developed as SSI-aware separately. HPF, PVM, MPI
? middleware-level appears to offer an economy of scale compared to other

approaches although it cannot offer full SSI like the OS approach.
MOSIX is a set of kernel extensions for Linux that provides support for
seamless process migration.

Software
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HPC software tools

File I/O is crucial for the performance of many types of applications, scientific
codes as well as databases.

• dedicated I/O nodes
Every shared resource represents a potential bottleneck in a system that
has to be scalable.

• node-local I/O
Reduces inter-node communication and I/O contention, while maintaining
a consistent global view of the I/O space. Examples of this approach are
PVFS (ROMIO).

Software
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HPC software tools

Suppose that a program running on a cluster needs 1 MByte of data to be
accessible by all the processors concurrently. Several strategies can be
considered:

• Put a copy of that data on each disk (replication);

• Read the data from a single disk, broadcast it to all the units and keep it in
the memory of each processor (caching)

• Distribute the data among the available disks. Whenever a part of the data
is needed during program run the processor owning the data reads that part
and broadcasts it to the other units (distribution);

• Various combinations of the above.

It is not easy to determine which solution is the best. Everything depends on
what the program actually is doing. Are there some other disk accesses too, is
there much communication over the network .....

Software
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PVFS tested by Dell

http://www.dell.com/us/en/esg/topics/power ps4q02-kashyap.htm

Conclusions and points for improvement from Dell test:

• Effectively provides a global scratch space for HPC clusters

• Dell cluster running PVFS efficiently uses the Myrinet network

• Limited by use of TCP

• Other interfaces can improve PVFS: Virtual Interface Architecture (VIA), GM

• Fault tolerance needs improvement

Software
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Break

Software
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Applications: Amdahl’s Law
Time to run a parallel program can be subdivided in 3 components

Tp =
αT1

P
+

(1− α)T1

P
+ Tc(P )

Fraction 1− α is ’essentially serial’, for most problems the serial fraction
decreases as the problem size grows. Note that T1 is the run time on 1
processor and Tc(1) = 0.

Speedup is defined as:

Sp =
T1

Tp
=

1

1− α+ α
P + Tc(P )

T1

≤ 1
1− α

Amdahl’s
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Applications: Amdahl’s Law

Speedup changes rapidly with decreasing parallel fraction.

Amdahl’s
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Applications: Amdahl’s Law

50% efficiency Sp
P = 0.5 as function of the parallel fraction.

α =
2P 2 − P

1− P

Amdahl’s
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Applications: Amdahl’s Law

Some conclusions from Amdahl’s law:



HPC 56

Applications: Amdahl’s Law

Some conclusions from Amdahl’s law:

• For better scalability use a slower CPU (Tc remains constant)



HPC 56

Applications: Amdahl’s Law

Some conclusions from Amdahl’s law:

• For better scalability use a slower CPU (Tc remains constant)

• Single CPU optimizations reduce the scalability (α larger)



HPC 56

Applications: Amdahl’s Law

Some conclusions from Amdahl’s law:

• For better scalability use a slower CPU (Tc remains constant)

• Single CPU optimizations reduce the scalability (α larger)

• Scalability is most of all a function of the application not of the hardware.

Amdahl’s
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HPC architectures

Two types of large scale computing:

• Capability computing
The system is employed for one or a few programs for which no alternative is
available in terms of computational capabilities. The system are not always
used with the greatest efficiency

• Capacity computing
Use the system with the highest possible throughput capacity using the
machine resources as efficient as possible. This may have adverse effects
on the performance of individual computing tasks.

Amdahl’s
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Classification of applications
Application Area’s:

• Government-Classified

• Government-Research

• Aerospace

• Automotive

• Bioinformatics

• Chemical/Pharmaceutical

• Petroleum

• Weather/Environmental

• Academic Research
Applications
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Classification of applications

Application Types:

• Forward Modeling

• Inversion

• Signal Processing

• Searching/Comparing

Applications
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Classification of applications

Area M
od

eli
ng

Inv
er

sio
n

Pro
ce

ss
ing

Sea
rc

hin
g

Government-Classified X
Government-Research X X

Aerospace X
Automotive X

Bioinformatics X X
Chemical/Pharmaceutical X

Petroleum X X X
Weather/Environmental X X X

Academic Research X X X X

Applications
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Application: Forward Modeling

• Grid based

• Finite element

• Finite difference methods

• Parallelization by domain decomposition

• many small messages: low latency network

Modeling
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Application: Forward Modeling

Finite Differences solution of (partial) differential equations

∂2G(x)
∂x2

+A(x)
∂G(x)
∂x

+B(x)G(x) = C(x)

Gi−1 − 2Gi +Gi+1

h2
+A(xi)

Gi−1 +Gi+1

2h
+B(xi)Gi = C(xi)

solve for Gi
d1 e1 0 . . . . . . . . . . . 0
c2 d2 e2 . . . . . . . . . . . 0
0 c3 d3 e3 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . cn−1 dn−1 en−1

0 . . . . . . . . . . . . . dn en




x1

x2

x3
...

xn−1

xn

 =


a1

a2

a3
...

an−1

an


Solve direct or by iterative methods.

Modeling
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Application: Forward Modeling
For 2D differential equations convolution with stencil

1
1 −2 1

1

Examples: Car crash simulation, Weather Prediction, Reservoir Simulation
(Fluid Flow in Porous and Fractured Media), Computational Fluid Dynamics,
Molecular Dynamics, n-body problem (Barnes Hut), ray-tracing, .....

Modeling
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Application: Forward Modeling

Numerical Simulation of Turbulence.

Reynolds number(Re) is used in momentum, heat, and mass transfer to
account for dynamic similarity.

Object Re grid flop Gflop/s3 Memory GB GB/s
square cylinder 104 107 1014 0.3 1
golf ball 105 3.109 1017 300 300 100
car 1012 1012 1020 3.105 1.105 1.105

Moore’s Law 2 x faster per 18 months = 100 x faster in 10 years.

Reynolds number 106 − 107 in 2017 !

3CPU runs for 300 hours
Modeling
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Application: Forward Modeling
Bio Informatics

• Molecular Dynamics: simulation of protein structures (folding/docking)

• Biophysics: prediction of structure from experimental data (X-ray)

• Structural BioInformatics: sequence comparison algorithms (BLAST)

Protein folding is fundamental to life and is of the utmost practical importance
for developing new medicines and getting insight in gene functions.

Modeling
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Application: Forward Modeling
Bio Informatics

The typical composition of potential energy functions for protein folding is

E(X) =
∑

bonds i

Sbi (bi − b̄i) +
∑

bond angles i

Sφi (φi − φ̄i)

+
∑

dihedral angles i

∑
n

(
V nτi

2
[1± cos (nτi)]

)
+

∑
atoms i<j

−
(
Aij/r

6
ij +Bij/rij

)
+

∑
atoms i<j

(QiQj/D(rij)rij) + . . .

In these expressions, the symbols b, φ, τ, and r represent, respectively, bond
lengths, bond angles, dihedral angles, and interatomic distances. All are
functions of the collective Cartesian positions X. The bar symbols represent
equilibrium, or target values.

Modeling



HPC 67

Application: Forward Modeling
Bio Informatics

NAMD: Domain decomposition of 3D structure block/domain replaced by
notional atom which interact with atoms in other blocks.

Note, Amber uses Force decomposition, replication of spatial data on every
node (Memory intensive)

Modeling
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Application: Forward Modeling
Bio Informatics

60.000 atoms NAMD 5 days on 64 CPU T3E to simulate 1 nanosecond,
Typical protein folding takes microseconds (1000 more !)

36.000 atoms of DNA proetin interaction femtoseconds modeling 6 seconds 1
workstation

The development of more efficient simulation algorithms and computational
strategies is continuously motivated by the remaining temporal gap needed to
describe protein folding or ligand binding more than three orders of magnitude.

Modeling
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Application: Inversion
From measurements (F) compute models (M) representing properties (d) of
the measured object(s).

F = Md+ ε

M−1F = d+ ε′

• Deterministic

? matrix inversions (hence the name inversion)
? conjugate gradient

• Stochastic

? Monte Carlo, Markov Chain
? Simulated annealing
? Genetic algorithms

• Requires large amounts of shared memory: low latency and high bandwidth

Examples: weather radar, seismic inversion, ...
Inversion
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Application: Inversion
Tomographic Statistical Inversion of Radar data

Memory usage is : ((xyz)2)/2 floating point numbers
Number of Flop : (xyz)3

2D 200x200 (3D 39x39x39) requires 3.2 GB of memory and about 64 Tflop.

Inversion
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Application: Signal Processing

• Convolution model (stencil)

• FFT’s http://www.fftw.org

• Matrix computations (eigenvalues, ...)

• Conjugate gradient methods

• not very demanding on latency and bandwidth

• some algorithms are embarrassingly parallel

Examples: seismic migration/processing, medical imaging, SETI, streaming
media

Signal Processing

http://www.fftw.org
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Application: Signal Processing
A 1D convolution is represented by:

P (x, zm+1) =
∫
∂D

W (x− x′)P (x′, zm)dx′



P (0)
P (1)

...
P (j∆x)

...
P ((N − 2)∆x)
P ((N − 1)∆x)


= ∆x



W (0) W (1) . . . . . . 0
W (−1) W (0) W (1) . . . 0

0
. . .

... . . . 0
0 . . . W (0) . . . 0

0 . . .
...

. . . 0
0 . . . W (−1) W (0) W (1)
0 . . . . . . W (−1) W (0)





P (0)
P (1)

...
P (j∆x)

...
P ((N − 2)∆x)
P ((N − 1)∆x)



Signal Processing
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Application: Signal Processing
Simple algorithm

hoplx = (oplx+1)/2;
hoply = (oply+1)/2;
for (iy = 0; iy < ny; iy++) {

starty = MAX(iy-hoply+1, 0);
endy = MIN(iy+hoply, ny);
for (ix = 0; ix < nx; ix++) {

startx = MAX(ix-hoplx+1, 0);
endx = MIN(ix+hoplx, nx);
dumr = dumi = 0.0;
k = MAX(hoply-1-iy, 0);
for (i = starty; i < endy; i++) {

l = MAX(hoplx-1-ix, 0);
for (j = startx; j < endx; j++) {

dumr += data[i*nx+j].r*opx[k*oplx+l].r;
dumr += data[i*nx+j].i*opx[k*oplx+l].i;
dumi += data[i*nx+j].i*opx[k*oplx+l].r;
dumi -= data[i*nx+j].r*opx[k*oplx+l].i;
l++;

}
k++;

}
convr[iy*nx+ix].r = dumr;
convr[iy*nx+ix].i = dumi;

}
}

Cache optimized algorithm is 2.5 times faster on RISC processors than simple
algorithm.

Signal Processing
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Application: Signal Processing

Seismic pre-stack depth migration.

Seismic shot: 12 * 6000/25 * 1024 * 4 = 11 MB/shot
Area: 2500 km2 = 400.106 shots

Total Data: 4.5 TB
Processing one shot: 5-60 minutes

Signal Processing
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Application: Searching/Comparing

• integer operations are more dominant than floating point

• IO intensive

• pattern matching

• embarrassingly parallel, suitable for grid computing

Examples: code encrypting, bio-informatics, data-mining

Searching
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Application: Searching/Comparing

Bio-informatics

The D-matrix for the alignment of AUGGAA to ACUGAUGUGA.

Cray’s Bit Matrix Multiply can be used in the search algorithms.

Searching
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Applications: Parallelization on cluster

Some guidelines:

• Applications with a minimum amount of communication will always run well

• Achieving low latency and high bandwidth requires efficient communication
protocols that minimize communication software overhead, and fast
hardware.

• Low-level details such as memory bus speed and PCI bus interfaces are just
as important as processor speed or cache sizes:

? On a code, which is memory-intensive, a system with a lower core
frequency but higher bus speed is probably the best choice.

? Single- or multiprocessor building blocks.
Memory-intensive applications are better of with single processor blocks
or crossbar-based memory connections (expensive).

Searching
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• Network interconnects

? Communication-intensive applications require efficient data transfers even
at low processor scales. Fine-grain algorithms that are sensitive to short
message latency, and coarse grain algorithms that are sensitive to peak
bandwidth of bulk transfers require balanced and efficient communication
systems.

? Technical applications often possess the ability to overlap communication
and computation. Network architectures with software stacks that support
user-to-user overlap of communication and computation can reduce
application run-times significantly.

? Large-scale clusters with number of processors exceeding 1,000 requires
highly optimized network interconnects and applications.

• The effective benefit of the increase in microprocessors speed may be
significantly diminished if the cluster is interconnected with an inadequate
network that may become a performance bottleneck, in latency, bandwidth,
and/or consumption of CPU cycles to deliver needed performance.

Searching
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Cray HPC project

Steps
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• Application is central
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Cray HPC project

Steps

• Application is central

• Intensive benchmarking and tuning
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Cray HPC project

Steps

• Application is central

• Intensive benchmarking and tuning

• System Hardware design

Differentiator is the application knowledge coupled to the hardware.

Project



HPC 80

References

• This presentation: HPC Overview
http://www.xs4all.nl/˜janth/Presentations/HPC Overview.pdf

• Aad van der Steen Overview of recent Supercomputers
http://www.phys.uu.nl/˜steen/web02/overview02.html

• Cray hardware and software manuals
http://www.cray.com/craydoc/

• Cluster Computing white paper
http://www.dcs.port.ac.uk/˜mab/tfcc/WhitePaper/

• Single System Image
http://www.mosix.org/
http://www.cs.rice.edu/˜willy/TreadMarks/overview.html

• Fast Fourier Transform
http://www.fftw.org
http://aurora.phys.utk.edu/˜forrest/papers/fourier/index.html

Project

http://www.xs4all.nl/~janth/Presentations/HPC_Overview.pdf
http://www.phys.uu.nl/~steen/web02/overview02.html
http://www.cray.com/craydoc/
http://www.dcs.port.ac.uk/~mab/tfcc/WhitePaper/
http://www.mosix.org/
http://www.cs.rice.edu/~willy/TreadMarks/overview.html
http://www.fftw.org
http://aurora.phys.utk.edu/~forrest/papers/fourier/index.html


HPC 81

• Origin 3000 architecture
http://www.sara.nl/Customer/systems/sgisn 1/qr/NCF cursus/index.html

• Molecular Dynamics
http://www.ks.uiuc.edu/Publications/Papers/PDF/SCHL99/SCHL99.pdf

• Hennessy, J. L. and Patterson, D. A. (2001) Computer Architecture: A Quantitative
Approach.
Morgan Kaufmann Publishers, Inc. San Mateo, CA. 3rd edition.

• Flynn, M.F. (1972). Some computer organizations and their effectiveness.
IEEE Trans. on Comp., C/21, 9, 948–960.

• Alan V. Oppenheim, Alan S. Willsky, S. Nawab Nawab, Syed ham Nawab
Signals and Systems, Prentice Hall, Hardcover, 2nd edition, Published August
1996.

Project

http://www.sara.nl/Customer/systems/sgisn_1/qr/NCF_cursus/index.html
http://www.ks.uiuc.edu/Publications/Papers/PDF/SCHL99/SCHL99.pdf

