

[]		your logo here
	E	Basic serial algorithm
		The basic serial algorithm looks as follows:
		Input
		Initialize grid Initialize boundary values
		while ((no convergence) .and. (no_max_iter))
		Sweep over red points Sweep over black points Determine convergence uold = unew
		end while
		Output
	10	Cray T3E parallelization of grid–based applications course – © HPaC 1998

\square	_					
ſ	E	Detailed parallel algorithm				
		"MPI initialization" call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr) numprocs comes from: mpirun –np numprocs executable myid is the id of the process/processor				
	24	Cray T3E parallelization of grid-based applications course – © HPaC 1998				

F	C	Detailed parallel algorithm
		"Communicate red values at internal boundaries"
		nsouth = neighbours(2) id of MPI-instance that takes care of south neighbour
		$length = nxend+1-(nxstart-1)+1 \qquad determine number of values to receive \\ itag = 4^{*}(niter-1)+103$
		call MPI_RECV(rbufsouth,length,MPI_DOUBLE_PRECISION,nsouth,itag, & MPI_COMM_WORLD,istat,ierr)
		do i = istart,nxend,2 store the received values in the appropriate unew(i,nystart-1) = rbufsouth(i) array
		Note that the value of itag should correspond with the value in the corresponding MPI_send message
		nsouth is the source of the message
		Note: this code is executed in the north subdomain
IL	20	
L	. 3 9	Cray I SE parahelization of grid-based applications COURSE - @ HPac 1998

T	your lopo here				
	Exercise 2				
	Copy the directory with the example red-black solver to your own directory. In subroutine "rbcomm", the communication between the subdomains takes place, as described earlier. As you can see, this is the safe strategy.				
	Change the strategy to, e.g., a less safe strategy by having each subdomain sending to all its neighbours, and then receiving from all its neighbours.				
	Determine whether this influences the elapsed execution time.				
4	9 Cray T3E parallelization of grid-based applications course – ® HPαC 1998				