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Introduction

In [1] it was shown that for 1-D acoustic media the reflection response can be synthesized by taking the auto-
correlation of the transmission response measured at the free surface. This method was coined ”Acoustic
Daylight Imaging”. In [2] this was mathematically generalized for a 3-D inhomogeneous medium, both
acoustic and elastic. In this paper, the relation between the reflection and the transmission responses were
derived making use of an one-way reciprocity theorem of the correlation type. Numerical acoustical mod-
elling confirmed these relations for the acoustical situation and we investigated the quality of the synthesized
reflection response depending on the source distribution and time duration ([3], [4]).

Here, we show modelling results for elastic media using a relation between the reflection and the transmis-
sion responses at the free surface derived from a two-way reciprocity theorem of the correlation type.

Theory

Consider an elastic inhomogeneous anisotropic lossless medium bounded by a free surface. In this medium
a volume D is taken such that part of its boundary ∂D consists of a piece of the free surface (∂D0) and of an
arbitrary shaped surface inside the medium (∂D1). The following relation between Green’s functions can
be written in the frequency domain ([5]):
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In equation (1) the first superscript (v - velocity) stands for the observed quantity and the second (t - traction,
f - force or h - deformation rate) - for the source quantity. The first subscript (p, q) describes the component
of the observed quantity, while the second (q, i) - the component of the source quantity. On the left-hand side
of equation (1) stands the real part of the Green’s function, which represents the particle velocity in the xp

direction measured at point xA from a traction source at point xB in the xq direction. The points xA and xB

are situated on ∂D0. The right-hand side of the above relation represent the cross-correlations between the
particle velocities measured in the xp and xq directions at the points xA and xB due to subsurface sources
at points x along the surface ∂D1.

If the medium outside ∂D1 is homogeneous and contains no sources, then it can be shown that equation (1)
can be approximated by
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In the right-hand side of relation (2) the Green’s functions again stand for measured particle velocities at
the free surface due to sources along ∂D1. The superscript φ stands for quasi P-wave sources (when k = 1)
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and quasi S-wave sources (when k = 2, 3). These quasi P- and S-sources are obtained by applying flux-
normalized decomposition at the source level. The accuracy of relation (2) depends on the curvature of the
boundary ∂D1. When ∂D1 is planar the only approximation is that the evanescent fields are not taken into
account.

Modelling results

Fig. 1 shows a two-layer model used to reconstruct the elastodynamic reflection response according to Eq.
2. The upper layer has a P-wave velocity of 2500 m/s, S-wave velocity of 2000 m/s and density of 1800
kg/m3. The seismic parameters of the lower layer are: P-wave velocity of 3300 m/s, S-wave velocity of
2500 m/s and density of 4000 kg/m3.
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Figure 1: Elastic model with free surface. There are impulsive P- and S- sources at depth level x3=800
m starting at x1=2100 m until x1=5700 m every 15 m. The receivers are situated at the free surface from
x1=2100 m until x1=5700 m every 15 m.

The receiver spread is placed at the free surface (x3=0 m) between horizontal coordinates x1=2100 m until
x1=5700 m every 15 m. The source positions were chosen at depth coordinate x3=800 m and with horizontal
positions every 15 m between the points x1=2100 m and x1=5700 m.

The wave propagation simulations were performed using a finite element code ([6]). At each source position
separate shots were simulated with a P-wave and a S-wave source. Fig. 2 depicts example transmission
responses showing the vertical particle velocity component from P-wave source at subsurface point with
coordinate x=(3900,800) (a) and the vertical particle velocity component from a S-wave source at the same
subsurface point (b).

To reconstruct the vertical particle velocity component reflection response from a traction source in the
vertical direction at the surface according to Eq. (2), we follow the procedure below. The trace at horizontal
position x1=3900 m in the P-wave transmission panel from Fig. 2 (a) is extracted and cross-correlated with
all the traces in the same panel. The same is done for vertical particle velocity components from the recorded
transmission panels due to all other P-wave sources in the subsurface. The results from the cross-correlation
are then summed. The end result, after muting the negative times, is shown in Fig. 3 (a).

The same procedure is repeated for the vertical particle velocity component transmission panels due to
S-wave subsurface sources (like the one in Fig. 2 (b)) and the result is shown in Fig. 3 (b).

As a last step, the two panels from Fig. 3 are summed together to produce the final simulated reflection
response of the layered medium from Fig. 1. The result is shown in Fig. 4 (a). Comparison of the simulated
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Figure 2: (a) Recorded vertical particle velocity transmission shot panel from a P-wave source at subsurface
point x with coordinates x1=3900 m and x3=800 m. (b) Recorded vertical particle velocity transmission
shot panel from a S-wave source at subsurface point x with coordinates x1=3900 m and x3=800 m.
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Figure 3: (a) Result from cross-correlating the vertical particle velocity component transmission data due to
P-wave subsurface sources and summing along the source positions in accordance with Eq. (2). (b) Result
from cross-correlating the vertical particle velocity component transmission data due to S-wave subsurface
sources and summing along the source positions in accordance with Eq. (2).
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reflection response in (a) with the directly modelled reflection response in (b) confirms the validity of relation
(2). Note, that the directly modelled reflection response in Fig. 4 (b) is shown after filtering out the direct
and the surface waves, while the simulated reflection response in Fig. 4 (a) is shown as it was produced (no
surface wave removal was applied). As explained in [5], when there are no subsurface sources close to the
free surface only the reflection response will be reconstructed after correlation.
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Figure 4: (a) Simulated reflection response for the model in Fig. 1 resulting from the summation of the
panels in Fig. 3 (a) and (b) according Eq. (2). (b) Directly modelled reflection response for the model in
Fig. 1 after filtering out the direct and the surface waves.

Conclusions

Here we showed that the elastodynamic reflection response of a 3-D inhomogeneous anisotropic lossles
medium can be reconstructed from its transmission response. This is done, in accordance with Eq. 2,
by cross-correlating separately the recorded transmissions from P- and S-wave sources in the subsurface.
When there are no subsurface sources close to the free surface, the reconstructed reflection response does
not contain surface waves.
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