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Summary

Most approaches to inverse wavefield extrapolation have in com-
mon that the operator is defined as the time-reversed (or com-
plex conjugated) forward operator. Despite the time-symmetry
of the wave equation, this time-reversal introduces errors even
for the simple situation of a homogeneous medium and an infi-
nite aperture. In strongly inhomogeneous media the kinematical
aspects of multi-valued events are handled correctly, but angle-
dependent errors occur in their dynamical behaviour.

Introduction

Inverse wavefield extrapolation plays a central role in seismic
migration. Independent of the actual numerical implementation,
most approaches have in common that the inverse extrapolation
operator is defined as the time-reversed or, in the frequency do-
main, complex conjugated forward operator. This stems from
the simple fact that the acoustic wave equation is symmetrical in
time. In this paper we analyze the limitations of inverse extrap-
olation with time-reversed forward operators.
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Fig. 1: ‘Results’ of forward (a) and inverse (b) wavefield extrapolation
of a point source response recorded on a finite aperture. Note that both
results contain artefacts as a result of the finite aperture.

The infinite aperture paradox

It is well known that wavefield extrapolation of data recorded
on afiniteaperture is not exact. The extrapolated wavefield con-
tains artefacts that can be kinematically explained as ghost wave-
fields radiated by secondary sources located at the endpoints of
the aperture, see Figure 1. Suppose now that the data would
be recorded on an infinite aperture. Thenforward wavefield
extrapolation would be exact: the ghost wavefield of the sec-
ondary sources at the ‘endpoints’ would vanish when these end-
points were moved towards infinity, see Figure 2a. Since the
wave equation is symmetrical in time, one would expect a sim-
ilar conclusion forinverseextrapolation from an infinite aper-
ture. However, it will appear that the artefacts do not vanish in
this case, see Figure 2b. First we show this with a numerical ex-
periment. Consider the configuration in Figure 3. A monopole
point source (0 to 60 Hz) is situated atzs = 400 m below the
center of a circular aperture with radius�max; the propagation
velocity is c = 1200 m/s. The response of this point source
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Fig. 2: ‘Results’ of forward (a) and inverse (b) wavefield extrapolation
of a point source response recorded on an infinite aperture. The inverse
extrapolation result contains artefacts, despite the infinite aperture.
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Fig. 3: The response at the surface of the source atzs = 400 m will be
inversely extrapolated to the indicated point atzr = 200 m.
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Fig. 4: Inverse extrapolation result at the indicated point (zr = 200

m) in Figure 3 for increasing values of the aperture radius. Note the
persistent artefact att = 0.

is inversely extrapolated to a point atzr = 200 m below the
center of the aperture. Figure 4 shows the result for increas-
ing values of the aperture radius�max. Apart from the expected
event att = (zs � zr)=c = 166 ms we observe an artefact with
opposite sign that gradually moves towardst = 0 as�max ap-
proaches infinity. To understand what causes this artefact, con-
sider the curvets�tr in Figure 5, wherets =

p
z2s + �2=c and

tr =
p

z2r + �2=c represent the traveltimes of the point source
response and the operator, respectively (see Figure 3). In the in-
verse extrapolation procedure, events along the traveltime curve
ts� tr are integrated. The stationary behaviour of this curve for
� ! 1 is responsible for the artefact att = 0 in Figure 4 for
�max ! 1. For an analytical justification, see [9]. Since the
curvets + tr does not become stationary for� ! 1, forward
extrapolation to a point above the aperture does not yield this
artefact.
Another way to explain this fundamental difference between for-
ward and inverse wavefield extrapolation is based on an analyis
of the representation integral [5, 11, 3]

P (xr; !) =

I
S

[GrP � PrG] � ndS: (1)
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Fig. 5: Traveltime curves in forward and inverse extrapolation. The
stationary behaviour ofts � tr for � ! 1 explains the artefacts in
Figures 2b and 4.
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Fig. 6: The evaluation of the integral in equation (2) along the closed
surfaceS yields the exact wavefield atxr .

HereS is a closed integration surface with outward pointing nor-
mal vectorn, P is the acoustic wavefield in the space-frequency
(x; !) domain related to sources outsideS andG is the forward
propagating (or causal) Green’s wavefield of a point source at
xr inside S. Exploiting the time symmetry of the wave equation
we may also write

P (xr; !) =

I
S

[G
�

rP � PrG
�

] � ndS; (2)

whereG� (the complex conjugate ofG) is a backward prop-
agating (or anti-causal) Green’s wavefield. Representation (1)
is the basis for forward and (2) for inverse wavefield extrapo-
lation; both representations are exact. The reason why inverse
wavefield extrapolation yields artefacts, despite the exactness of
representation (2), is because in this representation the closed
surface cannot be replaced by an infinite planar surface without
approximation. Figure 6 shows the appropriate closed surface
for the configuration considered above (Figure 3). The contribu-
tion of the integral in equation (2) over the side surface vanishes
when�max ! 1. However, analyzing the contribution of the
integral over the lower surface (betweenxr andxs) learns that
the two termsG�

rP �n and�PrG�

�n cancel, except for the
evanescent wavefield [11]. Hence, integrating only along the up-
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per surface (as in Figure 3) is equivalent to ignoring evanescent
waves. This is in agreement with Berkhout and van Wulfften
Palthe [1], who derived inverse wavefield extrapolation as a spa-
tial deconvolution process that ignores evanescent waves.

In conclusion, the artefacts of inverse wavefield extrapolation
from an infinite aperture can be explained as non-vanishing
‘endpoint’ contributions or as erroneously handled evanescent
waves.

Limitations of multi-valued operators

Recently the effect of multi-valued traveltimes on migration and
inversion has received a lot of attention [4, 8, 6, 2, 7]. In this
section we apply a similar analysis as above to inverse wavefield
extrapolation with time-reversed multi-valued operators.

Consider the configuration in Figure 7, which contains a syn-
clinal structure that gives rise to triplications. Figure 8 shows
the response at the surface of a dipole source atzs = 1400 m,
vertically below the center of the aperture. For the inverse ex-
trapolation from the surface to the indicated point atzr = 1200

m we use an operator based on the Green’s wavefield related
to a monopole source at this point. Figure 9 shows this Green’s
wavefield (convolved with a wavelet to get a better display). Ap-
plying the time reversed version of this operator to the data in
Figure 8, i.e., cross-correlating Figures 8 and 9 trace by trace,
one would expectquintuplesappearing in the result. On the
other hand, from the configuration in Figure 7 we would ex-
pect that the inverse extrapolation result atzr is single valued,
because the medium betweenzr andzs is homogeneous.

Figure 10 shows the trace by trace cross-correlation. Note that
this result indeed contains quintuple events. The extrapolation
result at the indicated point atzr in Figure 7 is obtained by
adding these traces, see Figure 11a. The main contribution
comes from the stationary event att = (zs � zr)=c = 66 ms in
Figure 10; the other contributions of the quintuples cancel and
the endpoint contributions are much weaker than in our ‘infi-
nite aperture’ example (dipole instead of monopole source; 2-D
instead of 3-D configuration). For comparison, Figure 11b con-
tains the direct modeled result, scaled to the same maximum
amplitude; Figure 12 shows the inverse extrapolation result for
all points atzr = 1200 m. From this numerical example it is
clear why we obtain a single event at the correct travel time.

Next, for the amplitude analysis, we consider again the represen-
tation (2). Also for inhomogeneous media this representation
yields the exact wavefield atxr, provided the integral is taken
over a closed surfaceS. Figure 13 shows the appropriate closed
surface for the considered configuration. The contribution of the
integral in equation (2) over the side surface vanishes again when
�max ! 1. From Figure 13 we observe that the contribution
from the lower integration surface (the dashed line betweenxr

andxs) contains, amongst others, the correlation of thescattered
wavefield and thescatteredGreen’s function. Since both these
wavefields are single valued (in this example), their correlation
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Fig. 7: The response at the surface of the source atzs = 1400 m will
be inversely extrapolated to the indicated point atzr = 1200 m.
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Fig. 8: The response at the surface of the source atzs = 1400 m. Note
the triplications. (Modeled with finite differences).
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Fig. 9: The Green’s wavefield at the surface (convolved with a wavelet),
due to the Green’s source atzr = 1200 m. (Modeled with finite diff.).

is also single valued. Figure 14 shows the result of the integral
along the lower surface for allxr with zr = 1200 m. Note that
this result should be added to that of Figure 12 in order to obtain
the full wavefield atzr = 1200 m. The first event in Figure 14 is
the single-valued correlation result we just discussed. It occurs
at the same time as the inverse extrapolation result in Figure 12;
its amplitude is proportional toR2

(�), whereR(�) is the angle-
dependent reflection coefficient of the synclinal interface. The
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Fig. 10: The trace by trace cross-correlation of Figures 8 and 9. Note
the quintuple events.
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Fig. 11: (a) Sum of the traces of Figure 10. This is the inverse extrapo-
lation result at the indicated point atzr = 1200 m. (b) For comparison,
direct modeled response.
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Fig. 12: Inverse extrapolation result at all points atzr = 1200 m.

second event in Figure 14 is the reflected downgoing wavefield
atzr = 1200 m.
From this analysis we may conclude that the inverse extrapola-
tion result in Figure 12 represents the upgoing wavefield only
and that it contains an angle-dependent amplitude error.

Conclusion and discussion

Despite the time-symmetry of the acoustic wave equation, in-
verse wavefield extrapolation with time-reversed (or complex
conjugated) operators is not exact, even for the simple situation
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Fig. 13: The contribution of the integral (2) over the lower surface (the
dashed line) is ignored in the inverse extrapolation result of Figure 12.
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Fig. 14: Contribution of the integral along the dashed line in Figure 13
for all points atzr = 1200 m.

of a homogeneous medium and an infinite aperture.
In strongly inhomogeneous media the kinematical aspects of
multi-valued events are handled correctly, but angle-dependent
errors occur in their dynamical behaviour. In [11, 10] we pro-
pose improved operators that correct for these errors. Using
reciprocity, the required modifications can be derived from the
cross-correlation of the seismic reflection measurements.
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