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ABSTRACT

Deblending of simultaneous-source data is usually con-
sidered to be an underdetermined inverse problem, which
can be solved by an iterative procedure, assuming additional
constraints like sparsity and coherency. By exploiting the
fact that seismic data are spatially band-limited, deblending
of densely sampled sources can be carried out as a direct
inversion process without imposing these constraints. We
applied the method with numerically modeled data and it
suppressed the crosstalk well, when the blended data con-
sisted of responses to adjacent, densely sampled sources.

INTRODUCTION

The simultaneous-source method involves the recording and pro-
cessing of responses to sources that are ignited with relatively short
time intervals (i.e., shorter than the time it takes to record the re-
flections from the deepest reflectors of interest). After the pioneer-
ing work by Garotta (1983), Womack et al. (1990) and Beasley et al.
(1998), research of this method has gained real momentum in the
past five years. Several approaches have been developed to deal
with the crosstalk that occurs when processing simultaneous-source
data. These methods involve the use of phase-encoded sources
(Bagaini, 2006; Ikelle, 2007; Neelamani et al., 2010), randomiza-
tion of the time interval between the sources (Akerberg et al., 2008;
Hampson et al., 2008), prediction and subtraction of the crosstalk
(Spitz et al., 2008; Mahdad et al., 2011), or unraveling the simul-
taneous-source data using sparseness constraints (Berkhout, 2008;
Abma et al., 2010, Mansour et al., 2011).
Simultaneous-source acquisition is also known as blended acqui-

sition; hence, the process of unraveling the data is also called de-
blending (Berkhout, 2008). In the situation of deterministic
transient sources, deblending of simultaneous-source data into sin-
gle-source responses seems to be an underdetermined problem.

Therefore the methods mentioned above use additional constraints,
like sparseness and coherency, which implies that those methods are
iterative. Our aim is to show that sparsity or coherency constraints
are not necessary if one utilizes the fact that seismic data are spa-
tially band-limited, and if the sources are densely sampled. With
intuitive arguments and a numerical example, we show that by tak-
ing the spatial band-limitation into account, deblending of densely
sampled sources can be implemented as a direct (i.e., noniterative)
inversion of the blending operator.

THE BLENDING MATRIX

We define the unblended data as PðxðkÞR ; xðiÞS ; tÞ, where xðiÞS
denotes the ith source position, xðkÞR the kth receiver position,
and t denotes time. For simultaneous-source acquisition we define
source groups σðmÞ, each containing a subset of the source positions
xðiÞS . The sources within each group are ignited with relatively short
delay times ti. For source-group σðmÞ, the simultaneous-source re-
sponse is thus given by

PsimðxðkÞR ;σðmÞ; tÞ ¼
X

xðiÞS ∈σðmÞ

PðxðkÞR ; xðiÞS ; t − tiÞ; (1)

where xðiÞS ∈ σðmÞ denotes that the summation takes place over all
source positions xðiÞS in group σðmÞ. After a temporal Fourier trans-
formation, equation 1 becomes

PsimðxðkÞR ;σðmÞ;ωÞ ¼
X

xðiÞS ∈σðmÞ

PðxðkÞR ; xðiÞS ;ωÞ expð−jωtiÞ; (2)

where ω denotes the angular frequency, and j ¼ ffiffiffiffiffiffi
−1

p
. Using

Berkhout’s matrix notation, we can write for each frequency
component,

Psim ¼ PB: (3)

The element at the kth row and ith column of matrix P contains the
unblended response PðxðkÞR ; xðiÞS ;ωÞ. When there are K receivers and
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N sources, P is a K × N matrix; B is the blending matrix. As a point
of clarification, we note that Berkhout (2008) uses the symbol Γ to
denote the blending matrix; however, to avoid confusion with the
point-spread matrix Γ introduced in equation 9 (which is also used
in our interferometry papers) we denote the blending matrix by B.
When each source group contains n sources, B is a N × ðN∕nÞ ma-
trix. For example, for source groups of two adjacent sources (i.e.,
n ¼ 2), matrix B is defined as:

B ¼

0
BBBBBBBB@

b1 0 : : : 0

b2 0 : : : 0

0 b3 : : : 0

0 b4 : : : 0

..

. ..
. ..

.

0 0 : : : bN−1
0 0 : : : bN

1
CCCCCCCCA
; (4)

where bi ¼ expð−jωtiÞ. The matrix product PB in equation 3
yields the K × ðN∕nÞ matrix Psim, its elements containing the
blended response PsimðxðkÞR ;σðmÞ;ωÞ.

DEBLENDING BY BAND-LIMITED
LEAST-SQUARES INVERSION

Deblending involves solving equation 3 for P. Formally,
deblending is formulated as

P̂ ¼ PsimB̂inv; (5)

where B̂inv is in some sense the inverse of the blending matrix B.
The number of elements in P is n times as large as in Psim. If we
were to follow the least-squares approach for underdetermined sys-
tems (Menke, 1989), B̂inv would be defined as

B̂inv ¼ ðB†BÞ−1B†; (6)

where the dagger (†) denotes transposition and complex conjuga-
tion. Mahdad et al. (2011) observe that, if the blending matrix B
only contains phase terms, the least-squares inverse corresponds
to the transpose complex conjugate B†. They call this the pseudo-
deblending operator. We may conclude that straightforward least-
squares inversion of blending equation 3 does not give a satisfactory
solution. It aims to find an inverse for the blending matrix B; hence,
it aims to unravel blended point sources into independent point
sources. The question arises whether we really need to retrieve point
sources: The answer is no. Because the response to a point source is,
in the far-field, spatially band-limited, it suffices to retrieve spatially
band-limited point sources.
In the wavenumber-frequency domain, the spatial bandwidth of

the far-field response is limited by plus and minus jωj∕ca, with
ca ¼ c∕ sin αmax, where c is the propagation velocity and αmax is
the maximum propagation angle in the upper layer. The correspond-
ing filter in the space-frequency domain is given by the following
sinc function:

γðx1;ωÞ ¼ sinðjωjx1∕caÞ∕ðπx1Þ. (7)

Here we consider the 2D situation; in 3D we would have a Bessel
function divided by its argument. Analogous to the terminology in

seismic interferometry, we call γðx1;ωÞ the basic point-spread func-
tion. The response to a point source δðx1 − xðiÞ1;SÞ, spatially con-
volved with γðx1;ωÞ, is in the far-field indistinguishable from
the point-source response. Hence, instead of aiming to unravel
the blended point sources into independent point sources, it suffices
to unravel the blended point-source responses into independent re-
sponses to smeared point sources, characterized by the point-spread
function γðx1 − xðiÞ1;S;ωÞ. Because seismic data are always spatially
band-limited, exploiting the band-limitation is essentially different
from imposing additional coherency or sparsity constraints.
The band-limitation helps us to solve the seemingly underdeter-

mined problem of equation 3, i.e., to resolve the K × N matrix P
from the K × ðN∕nÞmatrix Psim. This can be intuitively understood
as follows: Assuming the blended source groups are formed of n
adjacent sources, then the source-group interval equals nΔs, where
Δs is the unblended source interval. The source groups are sampled
unaliased when

jωj
ca

<
π

nΔs
: (8)

Unaliased sampling allows interpolation. Hence, when equation 8 is
fulfilled, interpolation between the source groups is possible, mean-
ing that the K × ðN∕nÞ matrix Psim could be interpolated to form a
K × N matrix, from which the K × N matrix P could subsequently
be resolved. This explains why, for spatially band-limited data,
equation 3 is not an underdetermined problem. In our implementa-
tion, however, we do not first interpolate Psim and then solve for P,
but we construct a band-limited version of the deblending matrix
B̂inv and apply this directly to the blended data matrix Psim, accord-
ing to equation 5.
We define the band-limited deblending matrix B̂inv by inserting

the point-spread function γðx1;ωÞ in the definition of the
deblending matrix (equation 6), as follows:

B̂inv ¼ ðB†ΓBÞ−1B†Γ; (9)

where Γ contains the discretized version of the point-spread func-
tion, according to

Γ ¼

0
BB@

γ0 γ1 γ2 : : :
γ−1 γ0 γ1 γ2 : : :
γ−2 γ−1 γ0 γ1 γ2 : : :

. .
. . .

. . .
. . .

. . .
.

1
CCA; (10)

with γp ¼ γðpΔs;ωÞ. The specific form of the band-limited deble-
nding operator in equation 9 is motivated by the analogy between
seismic interferometry and the simultaneous-source method (Wape-
naar et al., 2012). We call N × N matrix Γ the basic point-spread
matrix. We introduce a ðN∕nÞ × ðN∕nÞ point-spread matrix Γsim for
simultaneous-source acquisition as

Γsim ¼ B†ΓB: (11)

With this definition we rewrite equation 9 as

B̂inv ¼ Γ−1
simB

†Γ: (12)

As an example, we analyze matrix Γsim where the blending matrix B
creates identical source groups of two adjacent sources with a
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constant time interval. Hence, B is again defined by equation 4, but
with b1 ¼ b3 ¼ · · ·¼ bN−1 ¼ expð−jωt1Þ and b2 ¼ b4 ¼ · · ·¼
bN ¼ expð−jωt2Þ. Upon substitution of equations 4 and 10 into
equation 11, we obtain

Γsim ¼ 2

0
BBBBB@

γ0 γ2 γ4 : : :

γ−2 γ0 γ2 γ4 : : :

γ−4 γ−2 γ0 γ2 γ4 : : :

. .
. . .

. . .
. . .

. . .
.

1
CCCCCA

þ expð−jωΔtÞ

0
BBBBB@

γ1 γ3 γ5 : : :

γ−1 γ1 γ3 γ5 : : :

γ−3 γ−1 γ1 γ3 γ5 : : :

. .
. . .

. . .
. . .

. . .
.

1
CCCCCA

þ expðþjωΔtÞ

0
BBBBB@

γ−1 γ1 γ3 : : :

γ−3 γ−1 γ1 γ3 : : :

γ−5 γ−3 γ−1 γ1 γ3 : : :

. .
. . .

. . .
. . .

. . .
.

1
CCCCCA
; (13)

with Δt ¼ t2 − t1. The first term on the right-hand side is a re-
sampled version of the basic point-spread matrix Γ of equation 10
(sampling interval 2Δs). The second and third terms are also re-
sampled point-spread matrices, but shifted over a distance �Δs.
Moreover, the factors expð∓jωΔtÞ account for a temporal shift
�Δt of the basic point-spread function in the time domain. The sec-
ond and third terms in equation 13 account for the crosstalk of the
simultaneous-source method. For this analysis of Γsim, we consid-
ered source groups of two adjacent sources. For source groups of n
adjacent sources we would obtain an expression similar to equa-
tion 13, but with 2n − 1 shifted, and resampled basic point-spread
matrices on the right-hand side, each sampled with an interval nΔs.
Hence, as long as equation 8 is fulfilled, Γsim is sampled unaliased.
Note that the insertion of Γ between B† and B in equation 11 has

entirely changed the character of this matrix product. Observe that
B†B in equation 6 is nothing but n-times an identity matrix, which
plays no role in the deblending process. On the contrary,
Γsim ¼ B†ΓB contains shifted versions of the basic point-spread
function, which account for the crosstalk of the simultaneous-
source method. Hence, the inversion of Γsim in equation 12 sup-
presses the effects of crosstalk.

NUMERICAL EXAMPLE

We illustrate the method with a numerical example of irregularly
blended data. Figure 1a shows a subsurface configuration with a
laterally and vertically varying propagation velocity. The lowest ve-
locity (which occurs in the upper layer) is c ¼ 2000 m∕s. We model
the responses to 384 sources at the surface, with a source spacingΔs

of 5 m. The source function is a Ricker wavelet with a central fre-
quency of 23 Hz. The reflection responses are registered at the sur-
face by 128 receivers with a receiver spacing of 15 m. We blend the
data by forming 48 source groups of eight adjacent sources (hence,
n ¼ 8). The ignition times within each source group are chosen ran-
domly from a uniform distribution between 0 and 2 s. Figure 1b
shows the blended response to a source group in the middle of
the acquisition surface.

With the chosen parameters, the Nyquist wavenumber related to
the blended source-group sampling is π∕nΔs ≈ 0.08 m−1. The max-
imum propagation angle in the upper layer is 78°; hence, ca ¼
2045 m∕s. At the central frequency fc, we have ωc∕ca ¼ 2πfc∕
ca ≈ 0.07 m−1, which is smaller than the Nyquist wavenumber.
Hence, for the central frequency equation 8 is fulfilled. At the
maximum frequency (60 Hz), we have ωmax∕ca ≈ 0.18 m−1; hence,
equation 8 is not fulfilled. We will see that, despite the violation of
the source-group sampling criterion for the higher frequencies, the
deblending algorithm performs remarkably well.
Now we construct the spatially band-limited point-spread func-

tion needed to deblend the data of Figure 1b. Figure 2a shows the
passband in the wavenumber-frequency domain, and Figure 2b
shows the corresponding filter γðx1;ωÞ (i.e., the basic point-spread
function) in the space-frequency domain (equation 7). For conve-
nience we took ca ¼ c ¼ 2000 m∕s; hence, the filter passes all pro-
pagating waves and suppresses the evanescent waves. This filter is
stored in the basic point-spread matrix Γ according to equation 10
(one matrix per frequency component). Next, using equation 11, the
point-spread matrix Γsim for simultaneous-source acquisition is con-
structed. This matrix is shown in Figure 2c for the central frequency

a)

b)

Figure 1. (a) Inhomogeneous subsurface model. (b) Simultaneous-
source response to a group of eight adjacent sources in the middle of
the acquisition surface (only every fourth trace is shown).
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Figure 2. Construction of the point-spread function. (a) Pass band
of the basic point-spread function in the wavenumber-frequency do-
main. (b) Basic point-spread function γðx1;ωÞ in the space-fre-
quency domain. (c) Point-spread matrix Γsim at 23 Hz. (d) Same
point-spread function, in space-time domain.
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of 23 Hz. Figure 2d shows another cross section of the point-spread
function. It is obtained by taking the central column of Γsim for all
frequency components and applying an inverse Fourier transform
from the frequency domain to the time domain. The event around
t ¼ 0 and zero offset is the basic point-spread function γðx1; tÞ (i.e.,
the inverse Fourier transform of equation 7), sampled with
nΔs ¼ 40 m. The dispersed events between −2 and þ2 s account
for the crosstalk and are essential in the deblending process. Note
that these dispersed events would be absent if the filter in Figure 2a
would be an all-pass filter.
Next we add a small frequency-independent stabilization

parameter to the diagonal of the point-spread matrix Γsim. This
parameter is 10−4 times the maximum of this matrix over all fre-
quencies. The stabilized matrix is inverted and the deblending
matrix B̂inv is formed for each frequency component, using equa-
tion 12. This matrix (for each frequency component) is applied
to the blended data matrix Psim, giving, according to equation 5,
the deblended data P̂. Taking the central column of P̂ for all
frequency components and applying an inverse temporal Fourier
transform gives the deblended data for the central source position
in the space-time domain (see Figure 3a). This result accurately
resembles the directly modeled response of the central source,
shown in Figure 3b. Some noise remains, but this is negligible
compared with the blending noise in Figure 1b.

CONCLUSIONS

Solving the deblending problem by standard least-squares inver-
sion is equivalent to pseudodeblending: it unfolds the blended data
and moves events to their correct position in space and time, but it
does not remove the blending noise (i.e., the crosstalk). We have
inserted a filter in the least-squares inversion algorithm, which hon-
ors the spatial band-limitation of the seismic response. This filter
transforms the pseudodeblending operator into a true deblending
operator, in the sense that it also suppresses the crosstalk. Unlike
iterative deblending methods discussed in the literature, our method
is implemented as a direct matrix inversion and does not make
assumptions about coherency or sparsity of the blending noise.
Instead, our method puts restrictions on the source sampling. With
a numerical example, we have shown that the method suppresses
the crosstalk well when the blended data consist of responses to

adjacent densely sampled sources. Because the method requires
densely sampled sources, it can be applied in situations where
the simultaneous-source method is used to improve quality (rather
than to reduce acquisition time) by inserting sources between the
regular source positions. The method breaks down when the
point-spread matrix looses its band structure, which is, for instance,
the case when the sources in each group are randomly distributed
along the acquisition surface. The blending conditions and the reg-
ularization of the inversion of the point-spread matrix need further
investigation. For practical situations, the method will probably
benefit from imposing additional constraints to the matrix inversion.
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Figure 3. (a) Deblended data for the central source position at the
acquisition surface in Figure 1a (only every fourth trace is shown).
(b) For comparison, directly modeled response of the central source.
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