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ABSTRACT
In seismic interferometry the response to a virtual source is created from responses to
sequential transient or simultaneous noise sources. Most methods use crosscorrela-
tion, but recently seismic interferometry by multidimensional deconvolution (MDD)
has been proposed as well. In the simultaneous-source method (also known as blended
acquisition), overlapping responses to sources with small time delays are recorded.
The crosstalk that occurs in imaging of simultaneous-source data can be reduced
by using phase-encoded sources or simultaneous noise sources, by randomizing the
time interval between the shots, or by inverting the blending operator. Seismic inter-
ferometry and the simultaneous-source method are related. In this paper we make
this relation explicit by deriving deblending as a form of seismic interferometry by
MDD. Moreover, we discuss a deblending algorithm for blended data acquired at the
surface.

1 INTRODUCT I ON

In seismic interferometry the response to a virtual source is
created from responses to sequential transient sources (Schus-
ter et al., 2004; Bakulin and Calvert, 2006; Mehta et al.,
2007) or simultaneous noise sources (Shapiro and Campillo,
2004; Larose et al., 2006; Draganov et al., 2007; Gouédard
et al., 2008). Most methods use crosscorrelation, but re-
cently seismic interferometry by multidimensional deconvo-
lution (MDD) has been proposed as well (Wapenaar, Slob
and Snieder, 2008; van der Neut et al., 2011).

In the simultaneous-source method (also known as blended
acquisition), overlapping responses to sources with small time
delays are recorded (Beasley, Chambers and Jiang, 1998;
Beasley, 2008). The crosstalk that occurs in imaging of
simultaneous-source data can be reduced by using phase-
encoded sources (Bagaini, 2006; Ikelle, 2007; Neelamani
et al., 2008; Herrmann, Erlangga and Lin, 2009; Schuster
et al., 2011) or simultaneous noise sources (Howe et al.,
2008), by randomizing the time interval between the shots
(Stefani, Hampson and Herkenhoff, 2007; Hampson, Stefani
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and Herkenhoff, 2008) possibly followed by a noise filter-
ing process (Akerberg et al., 2008; Moore et al., 2008; Huo,
Luo and Kelamis, 2009), by prediction and subtraction (Spitz,
Hampson and Pica, 2008; Kim et al., 2009; Mahdad, Doul-
geris and Blacquière, 2011), by inverting the blending opera-
tor using sparseness constraints (Berkhout, 2008; Abma et al.,
2010) or by integrating the deblending process with seismic
migration (Romero et al., 2000; Dai and Schuster, 2009; Tang
and Biondi, 2009; Verschuur and Berkhout, 2011).

Seismic interferometry and the simultaneous-source method
are related. In this paper we make this relation explicit
by deriving deblending as a form of seismic interferom-
etry by multidimensional deconvolution. The setup is as
follows. In section 2 we review seismic interferometry by
MDD. In section 3 we derive deblending by MDD as a
form of seismic interferometry by MDD. The resulting al-
gorithm combines redatuming (an essential aspect of seis-
mic interferometry) with deblending. In section 4 we dis-
cuss the least-squares inversion aspects of deblending by
MDD in more detail. In section 5 we compare our algo-
rithm for combined redatuming and deblending with existing
algorithms that apply deblending directly at the surface. We
show that there are some essential differences and use this
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Figure 1 Configuration for the convolution-type Green’s function
representation (equation 1). The medium does not need to be loss-
less. The rays represent full responses, including primary and multiple
scattering due to inhomogeneities inside as well as outside S.

insight in the derivation of a deblending algorithm that oper-
ates directly on blended data at the surface.

2 S E ISMIC INTER FER OMET R Y BY
MULTIDIMENSIONAL D ECONVOLUTION

2.1 Convolution-type Green’s function representation

We consider an arbitrary inhomogeneous acoustic medium,
which may be either lossless or dissipative. In this medium
we define a surface S with outward pointing normal vector n,
enclosing a volume V (Figure 1). Outside V there is a source
located at xS and inside V we consider a receiver at xB. The
Green’s function between this source and receiver is defined
as G(xB, xS, t), where t denotes time. For this configuration
we consider the following convolutional Green’s function rep-
resentation (Wapenaar et al., 2011)

G(xB, xS, t) =
∮

S

Ḡd(xB, x, t) ∗ Gin(x, xS, t) dx (1)

(the asterisk (∗) denotes temporal convolution). Gin(x, xS, t)
is the part of the Green’s function G(x, xS, t) that propa-
gates inward into V. Ḡd(xB, x, t) is the response to a dipole
source (indicated by the subscript ‘d’) at x. It is related to the
monopole response Ḡ(xB, x, t) via

ρ
∂Ḡd(xB, x, t)

∂t
= −2 n · ∇Ḡ(xB, x, t). (2)

The bar denotes that Ḡd(xB, x, t) is defined in a reference
medium, which is identical to the actual medium in V

and which is homogeneous outside S, with mass density ρ

and propagation velocity c (equivalently, S is an absorb-
ing boundary for Ḡd(xB, x, t)). In the derivation of equa-
tion (1) it has been assumed that S is smooth and ρ is
constant on S. Apart from that, equation (1) involves no
approximations.

We consider Ḡd(xB, x, t) as the unknown quantity, hence
equation (1) is an implicit representation of the convolution
type for Ḡd(xB, x, t). If it were a single equation, the inverse
problem would be ill-posed. However, equation (1) holds for
each source position xS (outside V), which we will denote
from here onward by x(i)

S , where i denotes the source num-
ber. Solving the ensemble of equations for Ḡd(xB, x, t) in-
volves MDD, which will be discussed in more detail later.
Because the bar denotes a reference situation, the retrieved
Green’s function Ḡd(xB, x, t) is correct for the medium in V

but it does not include scattering from inhomogeneities out-
side S. This only improves the interpretability of the retrieved
Green’s function (assuming one is interested in the proper-
ties in V only). Note that the reference medium does not
restrict the method, because the “measured” Green’s func-
tions G and Gin in equation (1) are defined in the actual
medium.

Note that the integration in equation (1) takes place along
x, which is the receiver coordinate of the “measured” Green’s
functions Gin(x, x(i)

S , t). In most practical situations, receivers
are not available on a closed boundary, so the integration
in equation (1) is necessarily restricted to an open receiver
boundary. As long as the source positions x(i)

S are located
at the appropriate side of S (i.e., outside V), it suffices to
take the integral over an (infinite) open receiver boundary
(the integral over the remaining boundary vanishes because of
Sommerfeld’s radiation condition).

Equation (1) has been derived for the situation that xB lies
inside V. In several applications xB is a receiver on S. For those
applications we take xB just inside S to avoid the complica-
tions of taking xB on S. Moreover, for those applications it is
often useful to consider only the outward-propagating part of
the field at xB. Applying decomposition at xB at both sides of
equation (1) gives

Gout(xB, x(i)
S , t) =

∫
S

Ḡout
d (xB, x, t) ∗ Gin(x, x(i)

S , t) dx. (3)

This equation is nearly the same (except for a different nor-
malization) as our previously derived one-way representation
for MDD (Wapenaar et al., 2008).

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–22



Relation between seismic interferometry and the simultaneous-source method 3

Figure 2 Modified configuration for the convolution-type Green’s
function representation. This configuration is the basis for data-driven
redatuming by MDD.

2.2 Sequential transient sources

For sequential transient sources we may write for the re-
sponses at x and xB

uin(x, x(i)
S , t) = Gin(x, x(i)

S , t) ∗ s(i)(t − ti ), (4)

uout(xB, x(i)
S , t) = Gout(xB, x(i)

S , t) ∗ s(i)(t − ti ). (5)

For the moment we assume that the “ignition times” ti are suf-
ficiently separated, so that the responses to different sources
are not overlapping each other. We define the autocorrelation
of the source signals as

s(i)(t − ti ) ∗ s(i)(−t − ti ) = s(i)(t) ∗ s(i)(−t) = S(i)
seq(t). (6)

By convolving both sides of equation (3) with s(i)(t − ti) we
obtain

uout(xB, x(i)
S , t) =

∫
S

Ḡout
d (xB, x, t) ∗ uin(x, x(i)

S , t) dx, (7)

see Figure 2. Solving equation (7) in a least-squares sense is
equivalent to solving its normal equation (Menke 1989; van
der Neut et al., 2010). We obtain the normal equation by
crosscorrelating both sides of equation (7) with uin(xA, x(i)

S , t)
(with xA on S) and taking the sum over all sources, according
to∑

i

uout(xB, x(i)
S , t) ∗ uin(xA, x(i)

S , −t)

=
∫

S

Ḡout
d (xB, x, t) ∗

∑
i

uin(x, x(i)
S , t) ∗ uin(xA, x(i)

S , −t) dx.

(8)

We define the correlation function and the point-spread func-
tion for sequential transient-source responses as

Cseq(xB, xA, t) =
∑

i

uout(xB, x(i)
S , t) ∗ uin(xA, x(i)

S , −t) (9)

Figure 3 Illustration of the point-spread function �seq(x, xA, t).

and

�seq(x, xA, t) =
∑

i

uin(x, x(i)
S , t) ∗ uin(xA, x(i)

S , −t), (10)

respectively. With these definitions, we rewrite equation (8)
as

Cseq(xB, xA, t) =
∫

S

Ḡout
d (xB, x, t) ∗ �seq(x, xA, t) dx. (11)

Equation (11) states that the correlation function Cseq(xB, xA,
t), defined by equation (9), is proportional to the Green’s
function Ḡout

d (xB, x, t), with its source smeared in space and
time by the point-spread function �seq(x, xA, t). This point-
spread function is defined, according to equation (10), as the
crosscorrelation of the inward propagating fields at xA and
x, summed over the source positions x(i)

S , see Figure 3. Under
ideal circumstances the point-spread function approaches a
temporally and spatially band-limited delta function (Wape-
naar et al., 2011, Appendix). Hence, under ideal circum-
stances the correlation function Cseq(xB, xA, t) is a tempo-
rally and spatially band-limited version of the Green’s func-
tion Ḡout

d (xB, x, t). In more realistic situations the point-spread
function can deviate significantly from a band-limited delta
function, as we will see in sections 2.4, 3.2, etc. For a ran-
dom medium, de Hoop et al. (2012) quantify the point-
spread function in terms of the statistical parameters of the
medium.

In order to retrieve the Green’s function from the correla-
tion function, the effect of the point-spread function needs to
be removed by inverting equation (11). Because equation (11)
represents a multidimensional convolution process along the
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temporal and spatial axes1, inversion of this equation is
equivalent to multi-dimensional deconvolution (MDD). This
will be further discussed in section 2.4.

2.3 Simultaneous noise sources

For simultaneous noise sources we write for the responses at
x and xB

uin(x, t) =
∑

i

Gin
(
x, x(i)

S , t
)

∗ N(i)(t), (12)

uout(xB, t) =
∑

i

Gout
(
xB, x(i)

S , t
)

∗ N(i)(t). (13)

We define the crosscorrelation of the noise as

〈N(i)(t) ∗ N( j)(−t)〉 = S(i j)
noise(t), (14)

where Si j
noise(t) represents the spatial (ij) and temporal (t) corre-

lation function (we consider uncorrelated sources as a special
case in Appendix A). Furthermore, 〈 · 〉 denotes ensemble av-
eraging. In practice, the ensemble averaging is replaced by
integrating over sufficiently long time.

By convolving both sides of equation (3) with N(i)(t) and
summing over i we obtain

uout(xB, t) =
∫

S

Ḡout
d (xB, x, t) ∗ uin(x, t) dx. (15)

Crosscorrelating both sides with uin(xA, t) (with xA on S) and
averaging over time gives〈
uout(xB, t) ∗ uin(xA,−t)

〉
=

∫
S

Ḡout
d (xB, x, t) ∗ 〈uin(x, t) ∗ uin(xA, −t)〉 dx. (16)

We define the correlation function and the point-spread func-
tion for noise source responses as

Cnoise(xB, xA, t) = 〈uout(xB, t) ∗ uin(xA, −t)〉 (17)

and

�noise(x, xA, t) = 〈uin(x, t) ∗ uin(xA, −t)〉, (18)

respectively. With these definitions, we rewrite equation (16)
as

Cnoise(xB, xA, t) =
∫

S

Ḡout
d (xB, x, t) ∗ �noise(x, xA, t) dx. (19)

1 The terminology “spatial convolution” is loosely used to denote the
integral along S. For a laterally invariant medium and a horizontal
surface S it would be a true spatial convolution because in that case
the point-spread function �seq(x, xA, t) would depend only on the
distance between x and xA (and on time t, of course). For a laterally
varying medium it would be more accurate to speak of a space-variant
spatial convolution, but for convenience we simply call it (spatial)
convolution.

This equation has the same form as equation (11) for se-
quential transient sources. A more detailed comparison of the
correlation and point-spread functions appearing in equations
(11) and (19) is presented in Appendix A.

2.4 Interferometric redatuming by multi-dimensional
deconvolution

As an application of interferometry by multidimensional de-
convolution, we consider the situation of data-driven reda-
tuming, because this will provide a natural link with the
simultaneous-source method, discussed in section 3. Figure 2
shows the configuration. Receivers are situated in a near-
horizontal well, below a complex overburden. They record
the responses to sources at x(i)

S at the surface. The aim is to
redatum the sources of the field uout(xB, x(i)

S , t) from the ac-
quisition surface to the well in the subsurface, by using the
measured response uin(x, x(i)

S , t) as the redatuming operator,
hence the name “data-driven redatuming” or “interferomet-
ric redatuming” (Schuster and Zhou 2006). Because this mea-
sured redatuming operator accounts for all complexities of the
overburden between the surface and the well, the redatumed
response is expected to be significantly simpler than the orig-
inal response uout(xB, x(i)

S , t), particularly when the middle-
overburden between the well and the target is simpler than the
overburden above the well (Bakulin and Calvert 2004, 2006).

We illustrate the method of data-driven redatuming by
MDD with a numerical example. Figure 4a shows the config-
uration: 128 sources, indicated by the red stars, are regularly
distributed along the surface, with a lateral spacing of �s =
15 m. These sources emit Ricker wavelets with a central fre-
quency of 23 Hz. The modeling is done without free-surface
effects. The responses are recorded by equidistantly spaced
receivers (�r = 15 m), indicated by the black triangles, in a
horizontal borehole at a depth of 200 m. The medium con-
sists of a complex overburden with strong vertical and lateral
variations between the acquisition surface and the borehole,
a synclinal structure below the borehole and a target interface
with a pinchout at a depth of 1200 m. Figure 4b shows the
directly modeled response to a source at the central position
of the receiver array. This response serves as a reference for
data-driven redatuming.

First we evaluate the correlation function Cseq(xB, xA,
t), defined by equation (9). To this end we crosscorrelate
uin(xA, x(i)

S , t) for fixed xA (the central receiver) with
uout(xB, x(i)

S , t) for all xB along the borehole. We repeat this
for all source positions x(i)

S and sum the correlation results
over the sources (equation 9). The result, shown in Figure 4c,
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Figure 4 Numerical example of data-driven redatuming by multidimensional deconvolution. (a) Inhomogeneous medium configuration. The
sources are situated at the surface (red stars) and the receivers in a horizontal borehole (the black triangles at a depth of 200 m) below a complex
overburden. (b) Response to a source at the center of the receiver array, indicated by the red dot in (a). This response serves as a reference for
the redatumed data in Figures 4c and 4e. (c) Correlation function. (d) Point-spread function. (e) Result of data-driven redatuming by MDD.
(Figures (b) − (e) show every fourth trace.)
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is an approximation of the response to a virtual source at
xA (the central receiver in the borehole, indicated by the red
dot in Figure 4a), observed by all receivers xB in the borehole
(Bakulin and Calvert 2004, 2006; Mehta et al., 2007). If we
compare this correlation function with the reference response
in Figure 4b, we see indeed that the main events are present,
but there are also spurious events in the correlation function
and the amplitudes are distorted.

The relation between the reference response and the corre-
lation function is quantified by equation (11). The right-hand
side of this equation states that the source of the Green’s func-
tion (the reference response) is smeared in space and time by
the point-spread function �seq(x, xA, t). For the configuration
of Figure 4a, the point-spread function is obtained, according
to equation (10), by crosscorrelating the inward (downward)
propagating fields at xA and x, and summing over the sources
at the surface. It is shown in Figure 4d for fixed xA and vari-
able x. Note that for the inversion of equation (11) it is re-
quired that point-spread functions like the one in Figure 4d
are evaluated for all positions xA along the borehole.

For the actual inversion we transform equation (11) from
the time domain to the frequency domain and discretize the
integral, according to

Ĉseq

(
x(k)

B , x(m)
A , ω

)
= �r

∑
l

ˆ̄Gout
d

(
x(k)

B , x(l), ω
)

�̂seq(x(l), x(m)
A , ω),

(20)

where ω denotes the angular frequency and the circumflex de-
notes the frequency domain.The system of equations (20) can
be solved for each frequency component separately. In practice
this is done by a matrix inversion per frequency component.
Because the point-spread function is temporally and spatially
band-limited, this matrix inversion must be stabilized, see van
der Neut et al. (2011). Transforming the end-result back to the
time domain gives a band-limited estimate of Ḡout

d (x(k)
B , x(l), t),

which completes the MDD process. The result is shown in
Figure 4e for fixed x(l) and variable x(k)

B . Note that the match
with the reference response (Figure 4b) is very good.

3 D EBLENDING BY MULTIDIMENSIONAL
DECONVOLUTION

3.1 Convolutional model for the simultaneous-source
method

Our starting point for the derivation of the convolutional
model for the simultaneous-source method is the convolution-
type Green’s function representation (equation 3), which is

Figure 5 Convolutional model for the simultaneous-source method.
This configuration is the basis for deblending by MDD.

repeated here for convenience

Gout
(
xB, x(i)

S , t
)

=
∫

S

Ḡout
d (xB, x, t) ∗ Gin(x, x(i)

S , t) dx. (21)

Consider the configuration depicted in Figure 5, where σ (m)

denotes a group of source positions x(i)
S . The sources within

a group emit delayed source wavelets s(i)(t − ti), with igni-
tion times ti closely following one after another, so that the
responses are measured with overlap. This is called “blended
acquisition”. We will assume that the ignition times of sources
in different groups are sufficiently separated, so that the re-
sponses to different source groups can be measured without
overlap. For source group σ (m), the simultaneous-source re-
sponses at S are given by

uin(x, σ (m), t) =
∑

x(i)
S ∈σ (m)

Gin
(
x, x(i)

S , t
)

∗ s(i)(t − ti ), (22)

uout(xB, σ (m), t) =
∑

x(i)
S ∈σ (m)

Gout
(
xB, x(i)

S , t
)

∗ s(i)(t − ti ), (23)

where x(i)
S ∈ σ (m) denotes that the summation takes place over

all source positions x(i)
S in group σ (m). We define the crosscor-

relation of the source signals as

s(i)(t − ti ) ∗ s( j)(−t − tj ) = S(i j)
sim(t − ti + tj ) (24)

(subscript “sim” stands for simultaneous). By convolving both
sides of equation (21) with s(i)(t − ti) and summing over all
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sources in σ (m) we obtain, analogous to equation (7),

uout(xB, σ (m), t) =
∫

S

Ḡout
d (xB, x, t) ∗ uin(x, σ (m), t) dx. (25)

We obtain the normal equation by crosscorrelating both sides
of equation (25) with uin(xA, σ (m), t) (with xA on S) and taking
the sum over all source groups σ (m), according to∑

m

uout(xB, σ (m), t) ∗ uin(xA, σ (m), −t)

=
∫

S

Ḡout
d (xB, x, t) ∗

∑
m

uin(x, σ (m), t) ∗ uin(xA, σ (m), −t) dx.

(26)

We define the correlation function and the point-spread func-
tion for the simultaneous-source responses as

Csim(xB, xA, t) =
∑

m

uout(xB, σ (m), t) ∗ uin(xA, σ (m),−t) (27)

and

�sim(x, xA, t) =
∑

m

uin(x, σ (m), t) ∗ uin(xA, σ (m), −t), (28)

respectively. With these definitions, we rewrite equation (26)
as

Csim(xB, xA, t) =
∫

S

Ḡout
d (xB, x, t) ∗ �sim(x, xA, t) dx. (29)

This equation has the same form as equation (11) for sequen-
tial transient sources and equation (19) for simultaneous noise
sources. A more detailed comparison of the correlation and
point-spread functions appearing in equations (11), (19) and
(29) is presented in Appendix A. Equations (A8) − (A11)
describe the correlation function and point-spread function
for blended acquisition. The terms denoted as “crosstalk” ac-
count for all crosscorrelations of responses to different sources
within a group, summed over the groups. They are propor-
tional to the crosscorrelations S(i j)

sim(t − ti + tj ), defined in equa-
tion (24). For phase-encoded sources (Bagaini, 2006; Ikelle,
2007; Neelamani et al., 2008, Herrmann et al., 2009; Schus-
ter et al., 2011) or uncorrelated noise signals (Howe et al.,
2008) these crosscorrelations for i �= j are small. On the
other hand, when the ignition times ti are randomized, the
crosscorrelations S(i j)

sim(t − ti + tj ) for i �= j do not add coher-
ently, which also helps to reduce the crosstalk (Stefani et al.,
2007; Hampson et al., 2008). For those cases the correla-
tion function Csim(xB, xA, t) is a reasonable approximation
of the unblended response Ḡout

d (xB, xA, t) ∗ S(i i)
sim(t). For other

situations, in which the crosstalk is not small, the unblended
virtual-source response Ḡout

d (xB, x, t) can be obtained from the
blended data by inverting equation (29) by MDD. This is the
subject of the next section.

3.2 Deblending by multi-dimensional deconvolution

In section 2.4 we discussed interferometry as a form of
data-driven redatuming, which brings the sources of the
fields uout(xB, x(i)

S , t) from the acquisition surface to the re-
ceiver positions in the horizontal borehole, using the re-
sponse uin(x, x(i)

S , t) as a measured redatuming operator. In
a similar way we could redatum the sources of the blended
fields uout(xB, σ (m), t) from the surface to the borehole, using
uin(x, σ (m), t) as the measured operator. Ideally this would give
the deblended response Ḡout

d (xB, x, t) for any virtual-source
position x in the borehole, hence, with this procedure we
would combine data-driven redatuming with source deblend-
ing. Of course this would require the availability of data ac-
quired with receivers in a borehole. However, simultaneous-
source acquisition is usually done with sources and receivers at
the surface. For this more common situation we combine more
traditional model-driven redatuming with source deblending.
For this situation we do not aim to remove complex over-
burden effects, like in section 2.4, but the main purpose is to
apply source deblending with similar algorithms as developed
for seismic interferometry by MDD (in section 5 we discuss
a related deblending-by-MDD method which circumvents the
redatuming step altogether and leads to deblended data with
sources and receivers at the surface).

For combined model-driven redatuming and source-
deblending we assume that a macro model of the overburden,
through which the redatuming will take place, is available.
Using this macro model, the receivers of the blended data
are downward extrapolated from the surface to a datum S in
the subsurface, giving uout(xB, σ (m), t). Moreover, the source
groups are downward extrapolated to the same datum, giving
uin(x, σ (m), t).

From here onward we assume that uin(x, σ (m), t) and
uout(xB, σ (m), t) are available and we leave undetermined
whether these fields are decomposed blended wave fields mea-
sured in the borehole, or downward extrapolated blended
data and source groups, originally acquired at the surface.
We illustrate with a numerical example how we obtain the
deblended virtual-source response Ḡout

d (xB, x, t) from these
blended fields. Consider the configuration in Figure 6a. There
are 128 sources, indicated by the red stars, regularly dis-
tributed along the surface, with a lateral spacing of �s = 15
m. The sources emit Ricker wavelets with a central frequency
of 23 Hz. The black triangles at a depth of 200 m represent
equidistantly spaced receivers (�r = 15 m) at which the fields
uin and uout are measured or to which they have been down-
ward extrapolated. Because in this example the emphasis is
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Figure 6 Numerical example of deblending by MDD. (a) Inhomoge-
neous medium configuration. The sources are situated at the surface
(red stars, source interval �s = 15 m) and the receivers in the subsur-
face at a depth of 200 m (black triangles, receiver interval �r = 15
m). The data are blended by forming 32 source groups σ (m) of four
adjacent sources. (b) Directly modeled response to a source at the po-
sition of the red dot in (a). This response (which shows every fourth
trace) serves as a reference for the deblended data in Figures 7d, 8d,
10d, 11d and 12d.

on deblending, the medium between the sources and receivers
consists of a simple homogeneous layer with a propagation
velocity of 2000 m/s. Below the receivers the medium is inho-
mogeneous in the lateral as well as in the vertical direction.
The red dot denotes the position of the virtual source for

which we will evaluate the redatumed deblended responses.
Figure 6b shows a directly modeled response to a source
at the position of the red dot. This response will serve as a
reference.

First we consider the situation of regular blending. We form
32 source groups σ (m), each containing four adjacent sources
which emit transient wavelets, 0.25 s after one another. The
blended data uout(xB, σ (m), t) are shown in Figure 7a for a
source group σ (m) at the center of the acquisition surface. We
crosscorrelate uin(xA, σ (m), t) for fixed xA (the red dot) with
uout(xB, σ (m), t) for all xB along the receiver array. We repeat
this for all source groups σ (m) and sum the individual corre-
lation results obtained for the different source groups (equa-
tion 27). The resulting correlation function Csim(xB, xA, t) is
shown in Figure 7b for fixed xA and variable xB. In this figure
we recognize the reference response of Figure 6b as well as
significant crosstalk, conform equations (A8) and (A10). Be-
cause this correlation function contains the correct response,
results like this are sometimes called “pseudo-deblended data”
(Berkhout 2008; Mahdad et al., 2011). Next the point-spread
function is computed by crosscorrelating the downward prop-
agating fields uin at the receiver array and summing over the
source groups (equation 28). The result �sim(x, xA, t) for
fixed xA and variable x is shown in Figure 7c. It exhibits a
temporally and spatially band-limited delta function at zero
time and zero offset, as well as crosstalk, conform equations
(A9) and (A11). According to equation (29), the correlation
function in Figure 7b is proportional to the Green’s function
Ḡout

d (xB, x, t), with its source temporally and spatially con-
volved with the point-spread function of Figure 7c. In other
words, the crosstalk in the point-spread function explains the
crosstalk in the correlation function. The Green’s function
Ḡout

d (xB, x, t) can be resolved by inverting equation (29). This
inversion is a multidimensional deconvolution (MDD) pro-
cess. Analogous to the inversion of equation (11) for inter-
ferometric redatuming, we implement deblending by MDD
as a least-squares inversion (the details are discussed in sec-
tion 4). The deblending result is shown in Figure 7d. Note
that the crosstalk has been largely suppressed and that the
remaining events accurately match the reference response in
Figure 6b.

Next we consider the situation of irregular blending. We
form again 32 source groups σ (m), each containing four adja-
cent sources which emit transient wavelets, but this time the
ignition times within one source group are chosen randomly
from a uniform distribution between 0 and 1 s. Figures 8a, 8b
and 8c show the blended data, the correlation function and the
point-spread function, respectively. Obviously the crosstalk
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Figure 7 Results for regularly blended data (the time interval between the sources in a group equals 0.25 s). (a) Blended data uout(xB, σ (m), t)
for a source group σ (m) at the center of the acquisition surface. (b) Correlation function Csim(xB, xA, t) (also known as pseudo-deblended data).
(c) Point-spread function �sim(x, xA, t). (d) Result of deblending by MDD. (These figures show every fourth trace.)

is much more dispersed than in Figures 7b and 7c. The de-
blended result in Figure 8d again accurately matches the ref-
erence response in Figure 6b. The result is somewhat better
than in Figure 7d, probably because the notches in the spec-
trum of the point-spread function in Figure 8c are less severe
than those in the spectrum of Figure 7c.

4 D ISCUSS ION OF L EA ST - SQUA R E S
INVERS ION A SPECTS OF DEBLENDING BY
MULTI -DIMENSIONAL D ECONVOLUTION

In section 2.2 we introduced interferometric redatuming by
MDD as a form of least-squares inversion. In section 3.2 we

showed that deblending by MDD is also implemented as a
least-squares inversion. Here we discuss the least-squares in-
version aspects of deblending by MDD in more detail.

4.1 Convolutional model in matrix notation

We start by reformulating the convolutional model of sec-
tion 3.1 into matrix notation (Berkhout 1982). Transforming
equation (21) to the frequency domain and discretizing the
integral gives

Ĝout(x(k)
B , x(i)

S , ω) = �r

∑
l

ˆ̄Gout
d (x(k)

B , x(l), ω)Ĝin(x(l), x(i)
S , ω).

(30)
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10 K. Wapenaar, J. van der Neut and J. Thorbecke

Figure 8 As in Figure 7, but for irregularly blended data (random ignition times).

For each frequency component this expression can be written
as

Gout = Ḡout
d Gin, (31)

where the element at the lth row and ith column of matrix
Gin contains Ĝin(x(l), x(i)

S , ω), etc. The simultaneous-source re-
sponses, defined by equations (22) and (23), become in matrix
notation

Uin = GinB, (32)

Uout = GoutB, (33)

where B is the blending matrix. Note that Berkhout (2008) and
Mahdad et al. (2011) use the symbol � to denote the blending
matrix, however, to avoid confusion with our point-spread

function we denote the blending matrix by B. For example,
for source groups of two adjacent sources, matrix B is defined
as follows

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0
a2 0 . . . 0
0 a3 . . . 0
0 a4 . . . 0
...

...
...

0 0 . . . aN−1

0 0 . . . aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

where ai = ŝ(i)(ω) exp(− jωti ), with j = √−1. Multiplying
both sides of equation (31) with B gives

Uout = Ḡout
d Uin, (35)
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which is the matrix-equivalent of equation (25).
Suppose there are N sources (before blending) and N re-

ceivers, such that the matrices in equation (31) are N × N

matrices. When in the blending process groups are formed of
n sources each, then the blending matrix B is a N × (N/n)
matrix (in equation (34) n equals 2). Matrices Uin and Uout,
defined in equations (32) and (33), are N × (N/n) matrices.
Hence, equation (35), in which matrix Ḡout

d is the unknown,
represents a system of N × (N/n) equations with N × N

unknowns. Apparently equation (35) is an underdetermined
system of equations. However, because the Green’s functions
in Ḡout

d are, except close to the source, spatially band-limited
(due to the decay of evanescent wavenumber components),
equation (35) can be resolved in a band-limited sense, as will
be demonstrated below.

In the theory of least-squares inversion there are separate
ways for dealing with overdetermined and underdetermined
systems (Menke 1989). In the following sections we briefly
discuss both approaches.

4.2 Least-squares inversion for overdetermined systems

First we treat equation (35) as an overdetermined system. To
obtain its least-squares solution, we multiply both sides of
equation (35) with the complex-conjugate transpose of Uin,
i.e., with (Uin)†. This gives the normal equation (Menke 1989)

Uout(Uin)† = Ḡout
d Uin(Uin)†. (36)

This is the matrix-equivalent of equation (26) and the basis
for least-squares inversion. Analogous to equations (27) and
(28) we define the N × N correlation matrix and point-spread
matrix for the simultaneous-source responses as

Co
sim = Uout(Uin)† (37)

and

�o
sim = Uin(Uin)†, (38)

respectively, where the superscript “o” stands for “overde-
termined”. With these definitions, we rewrite equation (36)
as

Co
sim = Ḡout

d �o
sim, (39)

where �o
sim needs to be inverted to resolve Ḡout

d . According to
equations (32) and (38) we can write �o

sim as

�o
sim = GinBB†(Gin)†. (40)

Matrix product BB† is, for the example in equation (34), given
by

BB† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|a1|2 a1a∗
2 0 0 . . . 0 0

a2a∗
1 |a2|2 0 0 . . . 0 0

0 0 |a3|2 a3a∗
4 . . . 0 0

0 0 a4a∗
3 |a4|2 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . |aN−1|2 aN−1a∗

N

0 0 0 0 . . . aNa∗
N−1 |aN|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(41)

where the superscript asterisk denotes complex conjugation.
Note that the determinant of each of the 2 × 2 submatrices is
zero, hence this matrix is not invertible (this also applies for
other forms of the blending matrix B). However, the Green’s
matrices left and right of BB† in equation (40) have a smooth-
ing effect on the sub- and superdiagonals of BB†. Figures 9a
and 9b show the matrix �o

sim for a frequency of 23 Hz for
the examples of regular and irregular blending, respectively,
discussed in section 3.2, i.e, for 32 source groups of four adja-
cent sources. These figures represent another cross-section of
the point-spread functions, already shown in Figures 7c and 8c
(that is, Figures 9a,b show |�̂o

sim(x, xA, ω)| for fixed ω, whereas
Figures 7c and 8c showed �o

sim(x, xA, t) for fixed xA). Note that
the sub- and superdiagonals have indeed been smoothed (i.e.,
the block structure of equation (41) is no longer present in
�o

sim, shown in Figures 9a and 9b). This makes that matrix �o
sim

is better invertible, hence Ḡout
d is resolved from equation (39)

via

̂̄Gout
d = Co

sim(�o
sim + ε2I)−1, (42)

or

̂̄Gout
d = Uout(Uin)†{Uin(Uin)† + ε2I}−1 (43)

(Menke 1989), where I is the identity matrix, ε2 a stabiliza-
tion parameter, and the notation ·̂ denotes an estimate in the
least-squares sense. Note that in principle ε2 can be taken
frequency-dependent. However, in all examples in this paper
we have chosen a frequency-independent ε2 of 7∗10−6 max,
where max is the maximum of the matrix (over all frequen-
cies) to be inverted. Deblending according to equation (43)
was illustrated with the examples in Section 3.2.

There are limitations with respect to the conditions under
which �o

sim can be inverted. For example, for regular blending
with eight source groups of sixteen adjacent sources, matrix
�o

sim is shown in Figure 9c. This matrix is significantly less
well conditioned than the one in Figure 9a, meaning that the
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Figure 9 Modulus of matrix �o
sim for overdetermined systems for

fixed ω. (a) Regular blending with 32 source groups of four adjacent
sources. (b) Irregular blending with 32 source groups of four adjacent
sources. (c) Regular blending with eight source groups of sixteen
adjacent sources.

deblending operation is unstable for this situation. The con-
ditions under which �o

sim can be inverted need further investi-
gation, which is beyond the scope of this paper.

4.3 Least-squares inversion for underdetermined systems

Next we treat equation (35) as an underdetermined system
(Menke 1989). To this end, we replace equation (43) by

̂̄Gout
d = Uout{(Uin)†Uin + ε2I}−1(Uin)†, (44)

or

̂̄Gout
d = Uout{�u

sim + ε2I}−1(Uin)†, (45)

with point-spread matrix �u
sim defined as

�u
sim = (Uin)†Uin, (46)

where superscript “u” stands for “underdetermined”. Upon
substitution of equation (32) we obtain

�u
sim = B†(Gin)†GinB. (47)

Note that N × N matrix (Gin)†Gin represents an unblended
basic point-spread matrix, which we denote as �0, hence

�0 = (Gin)†Gin. (48)

Matrices B† and B turn this into an (N/n) × (N/n) point-
spread matrix �u

sim. We investigate this matrix in more detail
for the situation of a homogeneous layer (propagation velocity
c) between the acquisition surface and the datum S. Assuming
for convenience that the matrix Gin contains dipole responses,
the basic point-spread matrix �0 contains a discretized version
of

�̂(x1,S, ω) = sin(|ω|x1,S/ca)/(πx1,S), (49)

with ca = c/sin αmax, where αmax is the maximum propagation
angle (Wapenaar et al., 2011; Appendix). Hence

�0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 . . . . . .

γ−1 γ0 γ1 γ2 γ3 . . . . . .

γ−2 γ−1 γ0 γ1 γ2 γ3 . . . . . .

γ−3 γ−2 γ−1 γ0 γ1 γ2 γ3 . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)

with γm = �̂(m�s, ω)/�s . For the blending matrix B we
choose a matrix that creates source groups of two adjacent
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sources with a constant time interval, according to

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0
a2 0 . . . 0
0 a1 . . . 0
0 a2 . . . 0
...

...
...

0 0 . . . a1

0 0 . . . a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

where ai = ŝ(ω) exp(− jωti ). Note that for each of the source
groups we have chosen the same parameters a1 and a2, which
implies that not only the time interval between the sources is
constant, but also that each source group has its own time
origin (or in other words, the clock is reset for each new
source group). In the previous sections we didn’t encounter
crosstalk between sources in different groups, hence, resetting
the time origin would not make any difference. In the matrix
product in equation (47), however, crosstalk occurs between
the sources in the different groups, so resetting the time origin
does make a difference. Upon substitution of equations (50)
and (51) into equation (47) we obtain

�u
sim = 2|ŝ(ω)|2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ2 γ4 . . . . . .

γ−2 γ0 γ2 γ4 . . . . . .

γ−4 γ−2 γ0 γ2 γ4 . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+|ŝ(ω)|2exp(− jω�t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 γ3 γ5 . . . . . .

γ−1 γ1 γ3 γ5 . . . . . .

γ−3 γ−1 γ1 γ3 γ5 . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(52)

+|ŝ(ω)|2exp(+ jω�t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ−1 γ1 γ3 . . . . . .

γ−3 γ−1 γ1 γ3 . . . . . .

γ−5 γ−3 γ−1 γ1 γ3 . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with �t = t2 − t1. The first term on the right-hand side is
a resampled version of the basic point-spread matrix �0 of
equation (50) (resampling factor 2). The second and third
terms are also resampled point-spread matrices, but shifted
over a distance ±�s. Moreover, the factors exp(∓jω�t) ac-
count for a temporal shift ±�t of the basic point-spread

function in the time domain. More generally, if a N × (N/n)
blending matrix B would create source groups of n adjacent
sources with regular time intervals, then the (N/n) × (N/n)
point-spread matrix �u

sim would be the superposition of (1)
one resampled basic point-spread matrix (resampling factor
n), multiplied by n|ŝ(ω)|2, (2) two resampled basic point-
spread matrices, shifted over a distance ±�s and multiplied
by (n − 1)|ŝ(ω)|2exp(∓ jω�t), (3) two resampled basic point-
spread matrices, shifted over a distance ±2�s, multiplied by
(n − 2)|ŝ(ω)|2exp(∓2 jω�t), and so on, until two resampled
basic point-spread matrices, shifted over a distance ±(n −
1)�s, multiplied by|ŝ(ω)|2exp(∓(n − 1) jω�t).

The maximum allowable value of n for unaliased resam-
pling is derived as follows. The resampled point-spread matri-
ces in �u

sim contain the basic point-spread function �̂(x1,S, ω),
sampled with a spatial interval of n�s. This function is sam-
pled unaliased when n�s ≤ λa,min/2, where λa,min is the mini-
mum apparent wavelength covered by the wavenumber spec-
trum of �̂(x1,S, ω). The wavenumber spectrum of �̂(x1,S, ω) is
constant between −ω/ca and ω/ca and zero elsewhere, hence
λa,min = 2πca/ωmax = 2πc/(ωmaxsin αmax). Hence, �̂(x1,S, ω) is
sampled unaliased when n�s ≤ πc/(ωmaxsin αmax).

Figure 10 shows an example for regularly blended data.
Figure 10a represents the blended data uout(xB, σ (m), t) for a
source group σ (m) of four adjacent sources at the center of
the acquisition surface. The sources emit transient wavelets,
0.25 s after one another (in total there are 32 source groups).
Figure 10b shows the matrix �u

sim for a frequency of 23 Hz.
This matrix represents |�̂u

sim(x, xA, ω)| for fixed ω. By applying
an inverse Fourier transform to �̂u

sim(x, xA, ω) we obtain the
space-time domain point-spread function �u

sim(x, xA, t). Fig-
ure 10c shows this point-spread function for fixed xA. We ap-
ply equation (45) to deblend the data of Figure 10a. The result
is shown in Figure 10d. The space-time domain point-spread
function as well as the deblended data are hardly distinguish-
able from those in Figures 7c and 7d, which were obtained
with the least-squares approach for overdetermined systems.
Note, however, that Figure 7c shows every fourth trace of the
point-spread function �o

sim(x, xA, t) whereas Figure 10c shows
every trace of �u

sim(x, xA, t) (both for fixed xA).
Figure 11 shows a similar example for irregularly blended

data. Although the point-spread function �u
sim(x, xA, t) in Fig-

ure 11c looks very different from �o
sim(x, xA, t) in Figure 8c, the

deblended result in Figure 11d is hardly distinguishable from
that in Figure 8d, which was obtained with the least-squares
approach for overdetermined systems.

In these two examples the maximum frequency was 60 Hz
and αmax was 78 degrees. Hence, with c = 2000 m/s (the
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14 K. Wapenaar, J. van der Neut and J. Thorbecke

Figure 10 Deblending, using least-squares inversion for underdetermined systems. (a) Regularly blended data uout(xB, σ (m), t) for a source group
σ (m) of four adjacent sources at the center of the acquisition surface. (b) Modulus of matrix �u

sim for fixed ω. (c) Space-time domain point-spread
function �u

sim(x, xA, t) for fixed xA. (d) Result of deblending by MDD. (Figures (a) and (d) show every fourth trace; Figure (c) shows every trace.)

velocity of the first layer) we obtain λa,min/2 = 17 m. Since
n�s = 4 × 15 = 60 m, the resampled point-spread ma-
trix is severely aliased. Apparently unaliased resampling of
�u

sim(x, xA, t) is not a requirement for applying deblending
equation (45). The conditions under which equation (45) can
be used need further investigation, which is beyond the scope
of this paper.

We carry out another experiment, in which we reduce the
source interval �s from 15 to 5 m and increase the number
of sources per group from 4 to 12 (hence, we keep n�s equal
to 60 m). The receiver spacing remains unchanged (i.e., �r

= 15 m). We form 32 groups of 12 adjacent sources, which
emit transient wavelets, 0.25 s after one another. Figure 12

shows the results, presented in the same way as the previous
two examples. Note that the deblended response in Figure 12d
again accurately matches the reference response in Figure 6b.
Apparently the deblending method remains valid when the
number of sources per group is increased as long as the source
interval is decreased at the same rate. This is relevant when the
aim of simultaneous-source acquisition is to improve quality
(rather than to reduce acquisition time).

5 D EBLENDING BY MULTI -DIMENSIONAL
DECONVOLUTION A T T HE SURFACE

Because we derived deblending as a form of seismic in-
terferometry by MDD, the resulting deblending algorithms
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Figure 11 As in Figure 10, but for irregularly blended data (random ignition times).

discussed so far combine the deblending process with data-
driven or model-driven redatuming. When the blended
wave fields are measured in a borehole, the redatuming step
is data-driven. On the other hand, for blended wave fields
measured at the surface, the redatuming step is model-driven.
For the latter situation the question arises how the discussed
methods compare with deblending algorithms that operate
directly on blended data at the surface. In the following we
briefly review some aspects of an existing method for de-
blending at the surface, discuss the relation with deblend-
ing of redatumed data in the subsurface, and derive in de-
tail an alternative method for deblending by MDD at the
surface.

5.1 Review of deblending at the surface

Berkhout (2008) and Mahdad et al. (2011) use the following
model for blended data at the surface

Pbl = PB. (53)

Here data matrix P contains the unblended data P̂(x(k)
R , x(i)

S , ω)
for a given frequency component ω, with sources x(i)

S and
receivers x(k)

R at the surface. B is the blending matrix (note
that we replaced � of the aforementioned authors by B, to
avoid confusion with our point-spread matrix). Pbl contains
the blended data P̂bl(x

(k)
R , σ (m), ω), where σ (m) denotes a source

group, corresponding to the mth column of blending matrix
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Figure 12 As in Figure 10, but for regularly blended data with 32 source groups of 12 adjacent sources (�s = 5 m).

B. Formally, deblending at the surface is formulated as

P̂ = PblB̂inv, (54)

where B̂inv is the inverse of the blending matrix B in some
sense. Suppose we would follow a least-squares approach for
overdetermined systems, then B̂o

inv would be defined as

B̂o
inv = B†(BB† + ε2I)−1. (55)

For the example of matrix B defined in equation (34), the
product BB† is given in equation (41). This matrix has a zero
determinant, which means that the inverse matrix in the right-
hand side of equation (55) is fully determined by the stabiliza-
tion parameter ε. Since equation (53) represents an undeter-
mined problem, it is not surprising that equation (55) does
not provide a sensible solution.

If we follow the least-squares approach for underdeter-
mined systems, then B̂u

inv is defined as

B̂u
inv = (B†B + ε2I)−1B†. (56)

For matrix B defined in equation (34), the product B†B is a di-
agonal matrix, with elements |ŝ(1)(ω)|2 + |ŝ(2)(ω)|2, |ŝ(3)(ω)|2 +
|ŝ(4)(ω)|2, etc. Other forms of the blending matrix also lead to
a diagonal matrix B†B. When all the source signatures are
the same, like in equation (51), we get B†B = 2|ŝ(ω)|2I, i.e., a
scaled identity matrix. We conclude that applying B̂u

inv is close
to applying B† only, which is known as pseudo-deblending.
This was already observed by Mahdad et al. (2011), who pro-
posed instead to resolve P from equation (53) via an iterative
procedure.
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5.2 Relation with deblending in the subsurface

We now investigate how the deblending algorithms dis-
cussed in sections 3 and 4 are related to equations (55) and
(56). According to section 3, the response to be resolved is
Ḡout

d (xB, x, t), which has its sources and receivers at datum S

in the subsurface (see Figure 5). In section 4.1 we defined a
matrix Ḡout

d , containing ˆ̄Gout
d (x(k)

B , x(l), ω) for a given frequency
component ω. In sections 4.2 and 4.3 we denoted the de-
blended data as ̂̄Gout

d . The sources and receivers of this data
matrix, which are situated at datum S, can be redatumed
back to the acquisition surface via the following operation
(Berkhout 1982; Wapenaar and Berkhout 1989)

P̂ = W− ̂̄Gout
d W+, (57)

where W+ and W− represent extrapolation matrices for down-
going and upgoing waves, respectively, and P̂ denotes the de-
blended data with sources and receivers at the surface. To
compare this expression with equations (54) − (56), we sub-
stitute either one of the deblending equations (43) or (44) into
equation (57). First we substitute equation (43), which is the
least-squares approach for overdetermined systems. We thus
obtain

P̂ = W−Uout︸ ︷︷ ︸
blended data

(Uin)†{Uin(Uin)† + ε2I}−1W+︸ ︷︷ ︸
deblending operator

. (58)

Since Uout contains the blended data ûout(x(k)
B , σ (m), ω), with

source groups σ (m) at the surface and receivers x(k)
B at datum

plane S in the subsurface (see Figure 5), the term W−Uout

represents the blended data with source groups and receivers
at the surface. We denote this as Pbl. The remaining term
on the right-hand side is thus the deblending operator at the
surface. We denote this as B̂o

inv. Hence

P̂ = PblB̂o
inv, (59)

with

B̂o
inv = (Uin)†{Uin(Uin)† + ε2I}−1W+. (60)

Matrix W+ contains the responses to dipole sources at the
surface. For convenience we replace W+ by Gin, which implies
that we assume (like in section 4.3) that Gin contains dipole
responses. Upon substitution of equation (32) into (60) we
thus obtain

B̂o
inv = B†(Gin)†{GinBB†(Gin)† + ε2I}−1Gin. (61)

Compared with B̂o
inv defined in equation (55), we observe

several occurrences of Gin and (Gin)† in equation (61). We
noted already in section 4.2 that the matrices Gin and (Gin)†

in GinBB†(Gin)† = �o
sim have a smoothing effect on the sub-

and superdiagonals of BB†, see Figure 9. Hence, unlike equa-
tion (55), in which the inverse matrix is unstable, equa-
tion (61) contains an inverse that, for moderate deblending
problems, is stable.

Next we substitute equation (44), which is the least-squares
approach for underdetermined systems, into equation (57).
This gives

P̂ = W−Uout︸ ︷︷ ︸
blended data

{(Uin)†Uin + ε2I}−1(Uin)†W+︸ ︷︷ ︸
deblending operator

, (62)

or

P̂ = PblB̂u
inv, (63)

where

B̂u
inv = {(Uin)†Uin + ε2I}−1(Uin)†W+. (64)

Replacing W+ again by Gin and substituting equation (32),
yields

B̂u
inv = {B†(Gin)†GinB + ε2I}−1B†(Gin)†Gin, (65)

or

B̂u
inv = {B†�0B + ε2I}−1B†�0, (66)

where �0 is the basic point-spread matrix, defined in equa-
tion (48). Without this matrix �0, equation (66) would be
identical to equation (56). We have seen above that B†B in
equation (56) is a diagonal matrix, which implies that B̂u

inv,
as defined in equation (56), is not much more than a pseudo-
deblending operator. On the contrary, B†�0B = �u

sim in equa-
tion (66) is a point-spread matrix that consists of a superpo-
sition of shifted and resampled versions of the basic point-
spread matrix �0, see for example equation (52) and Fig-
ures 10 − 12. This makes B̂u

inv as defined in equation (66) a
true deblending operator.

5.3 A proposal for deblending by multi-dimensional
deconvolution at the surface

Consider the deblending operator B̂u
inv defined in equa-

tion (66). Although the basic point-spread matrix �0 is orig-
inally defined in terms of Green’s matrices, it can be de-
fined directly in terms of the basic point-spread function
�̂(x1,S, ω) = sin(|ω|x1,S/ca)/(πx1,S), with ca = c/sin αmax, see
equation (50) for details. Hence, instead of combining de-
blending with redatuming, as discussed in section 4.3, one
can construct the deblending operator B̂u

inv, as defined in
equation (66), from the blending matrix B and the basic
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Figure 13 Example of deblending by MDD at the surface. (a) Irregularly blended data for a source group at the center of the acquisition surface,
observed by receivers at the surface. (b) The basic point-spread function �̂(x1,S, ω). (c) Fourier transform of figure (b). This is a filter that passes
propagating waves up to an angle of 78 degrees. (d) Deblended data at the surface. (Figures (a) and (d) show every fourth trace).

point-spread function �̂(x1,S, ω), and apply this operator di-
rectly to the blended data at the surface, according to equa-
tion (63). The effect of the point-spread matrix �0 is two-fold:
(1) the inverse of B†�0B in equation (66) takes care of the ac-
tual deblending, and (2) the matrix �0 at the far right in equa-
tion (66) suppresses the wavenumber components for which
the inverse matrix is unstable. These suppressed wavenum-
ber components correspond to evanescent waves and waves
propagating beyond αmax, i.e, wavenumber components that
are not present in the blended data anyway. Note that, al-
though we avoid the redatuming step in this way, we still need
some information about the shallow subsurface, namely the
propagation velocity and the maximum propagation angle,
to construct the basic point-spread function �̂(x1,S, ω). How-

ever, because sources and receivers stay at the surface, this
method is less sensitive to the used velocity than the combined
deblending and redatuming method discussed in section 4.3.

We illustrate this method with a numerical example. We
consider again the configuration of Figure 6a, this time with
sources and receivers at the surface, with �s = �r = 15 m.
We form 32 groups of four adjacent sources with random
ignition times between 0 and 1 s. Figure 13a shows the blended
data for a source group at the center of the surface. After a
temporal Fourier transform, the blended data for different
source groups represent the columns of matrix Pbl. Figure 13b
shows the basic point-spread function �̂(x1,S, ω), as defined
in equation (49) with c = 2000 m/s and αmax = 78 degrees,
for a range of frequencies. Figure 13c is the spatial Fourier
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transform of �̂(x1,S, ω). This is a filter that passes propagating
waves up to an angle of 78 degrees and suppresses waves
with larger angles as well as evanescent waves. The Nyquist
wavenumbers are ±π /�s, with �s = 15 m. We define the
samples of the point-spread function as γm = �̂(m�s, ω)/�s

and construct the basic point-spread matrix �0 according to
equation (50). With this, we construct the point-spread matrix
for the blended data �u

sim = B†�0B and, using equation (66),
the deblending operator B̂u

inv. We apply this matrix to the
blended data matrix Pbl, according to equation (63), and thus
obtain the deblended data P̂. After an inverse temporal Fourier
transform, we obtain the deblended surface data in the space-
time domain, see Figure 13d. Note that this deblending result
is comparable with that in Figure 11d, except that the response
in Figure 13d has its source and receivers at the acquisition
surface.

6 C ONCLUSIONS

We have shown that there is a close relationship between seis-
mic interferometry and the simultaneous-source method. In
seismic interferometry, new responses are formed from ex-
isting responses at different receivers. Of course no new in-
formation is created, but information hidden in noise or in
a complex scattering coda is unravelled and reorganized into
easily interpretable responses. Seismic interferometry can be
applied to sequential controlled-source responses or to ambi-
ent noise coming from simultaneous noise sources.

In the simultaneous-source method, responses to small
groups of sources are measured with overlap. This type of ac-
quisition is intermediate between the two types of acquisition
underlying seismic interferometry. Hence, with some mod-
ifications, seismic interferometry can unravel simultaneous-
source data and reorganize it into sequential source responses.
Another name for simultaneous-source acquisition is blended
acquisition, hence, the unravelling process is also called de-
blending.

Seismic interferometry can be applied as a trace-by-trace
crosscorrelation process or as a multidimensional deconvolu-
tion (MDD) process. The crosscorrelation approach applied
to blended data is equivalent with pseudo-deblending, i.e.,
events are moved to the correct position and traveltime, but
the crosstalk between different sources is not removed. On
the other hand, deblending by MDD moves events to the
correct position and suppresses the crosstalk. A point-spread
function, defined in a similar way as for seismic interferom-
etry by MDD, explains the crosstalk in the correlation func-

tion. Hence, the inverse point-spread function removes the
crosstalk from the correlation function and thus turns pseudo-
deblended data into truly deblended data.

Seismic interferometry by MDD, and hence deblending by
MDD, are essentially least-squares inversion problems. At first
sight the deblending problem seems underdetermined, how-
ever, because the response to be resolved is spatially band-
limited, it appears that under specific circumstances a stable
least-squares inversion is possible. We have compared ap-
proaches for overdetermined and underdetermined systems.
For the considered examples, both approaches give similar
results. The approach for underdetermined systems inverts
smaller matrices and is therefore computationally more effi-
cient. However, it needs further research before we can con-
clude which of the two approaches is to be preferred in gen-
eral. Another aspect that needs further investigation is the type
of regularization to stabilize the matrix inversion. We used a
simple Tikhonov regularization which worked well for the
considered examples, but more advanced regularizations may
give further improvements in more complex situations.

Unlike iterative deblending procedures discussed in the lit-
erature, deblending by MDD is implemented as a direct ma-
trix inversion, which is significantly more efficient. Moreover,
it does not make assumptions about incoherency or sparsity
of the blending noise (i.e., the crosstalk). Nevertheless, ir-
regular ignition times are advantageous because they reduce
the notches in the spectrum of the point-spread function and
hence improve the stability of the inversion. The sources that
are combined per source group are preferably located close to
each other, so that the matrix to be inverted (i.e., the point-
spread matrix) has a narrow band structure. The number of
sources that can be taken together per group is limited, but
can be increased by reducing the spatial source interval. This
is relevant when the aim of simultaneous-source acquisition is
to improve quality.

Because we derived deblending by MDD as a form of seis-
mic interferometry, the proposed procedure combines de-
blending with redatuming. However, we showed that the
method can be easily turned into an algorithm for deblending
at the acquisition surface. An essential element in the result-
ing scheme is again that a direct inversion of the point-spread
matrix suppresses the crosstalk in the blended data.
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APPENDIX A: COMPARISON OF T HE
CORRELATION AND POINT-SPREAD
FUNCTIONS

Equations (11), (19) and (29) have identical forms. Each of
these equations states that the correlation function is pro-
portional to the sought Green’s function, with its source
smeared in space and time by the point-spread function. In
equation (11) the correlation function and the point-spread
function are obtained from responses to sequential transient
sources, in equation (19) from responses to simultaneous noise
sources and in equation (29) from responses to simultaneous
transient sources. Here we compare the correlation and point-
spread functions for these three situations in more detail.

Substituting the expressions for the responses to sequential
transient sources (equations (4) and (5)) into equations (9)
and (10), using equation (6), gives the following results for the
correlation and point-spread function for sequential transient
sources

Cseq(xB, xA, t) =
∑

i

Gout(xB, x(i)
S , t) ∗ Gin(xA, x(i)

S , −t) ∗ S(i)
seq(t),

(A1)

�seq(x, xA, t) =
∑

i

Gin(x, x(i)
S , t) ∗ Gin(xA, x(i)

S , −t) ∗ S(i)
seq(t).

(A2)

Similarly, substituting equations (12) and (13) into equations
(17) and (18), using equation (14), yields the following ex-
pressions for the correlation and point-spread function for
simultaneous noise sources

Cnoise(xB, xA, t) =
∑

i

∑
j

Gout(xB, x(i)
S , t)

∗ Gin(xA, x( j)
S , −t) ∗ S(i j)

noise(t), (A3)

�noise(x, xA, t) =
∑

i

∑
j

Gin(x, x(i)
S , t)

∗ Gin(xA, x( j)
S , −t) ∗ S(i j)

noise(t). (A4)

For the special case that the noise sources are mutually uncor-
related, according to

〈N(i)(t) ∗ N( j)(−t)〉 = S(i j)
noise(t) = δi j S(i)

noise(t), (A5)

where S(i)
noise(t) is the autocorrelation of the ith noise source,

equations (A3) and (A4) become

Cnoise(xB, xA, t) =
∑

i

Gout(xB, x(i)
S , t)

∗ Gin(xA, x(i)
S , −t) ∗ S(i)

noise(t), (A6)

�noise(x, xA, t) =
∑

i

Gin(x, x(i)
S , t)

∗ Gin(xA, x(i)
S , −t) ∗ S(i)

noise(t). (A7)

Note that these expressions are identical to those for se-
quential transient sources (equations (A1) and (A2)), with the
autocorrelations of the sequential transient signals, S(i)

seq(t), re-
placed by the autocorrelations of the noise sources, S(i)

noise(t).
Next, substituting the expressions for the simultaneous-

source responses (equations (22) and (23)) into equations (27)
and (28), using equation (24), gives

Csim(xB, xA, t) =
∑

m

∑
{x(i)

S ,x( j)
S }∈σ (m)

Gout(xB, x(i)
S , t)

∗ Gin(xA, x( j)
S ,−t) ∗ S(i j)

sim(t − ti + tj )

=
∑

m

∑
x(i)

S ∈σ (m)

Gout(xB, x(i)
S , t)

∗ Gin(xA, x(i)
S , −t) ∗ S(i i)

sim(t)

+
∑

m

∑
{x(i)

S ,x( j)
S }∈σ (m),i �= j

Gout(xB, x(i)
S , t)

∗ Gin(xA, x( j)
S ,−t) ∗ S(i j)

sim(t − ti + tj ) (A8)

and

�sim(x, xA, t) =
∑

m

∑
{x(i)

S ,x( j)
S }∈σ (m)

Gin(x, x(i)
S , t)

∗ Gin(xA, x( j)
S , −t) ∗ S(i j)

sim(t − ti + tj )

=
∑

m

∑
x(i)

S ∈σ (m)

Gin(x, x(i)
S , t)

∗ Gin(xA, x(i)
S , −t) ∗ S(i i)

sim(t)

+
∑

m

∑
{x(i)

S ,x( j)
S }∈σ (m),i �= j

Gin(x, x(i)
S , t)

∗ Gin(xA, x( j)
S , −t) ∗ S(i j)

sim(t − ti + tj ), (A9)

or

Csim(xB, xA, t) =
∑

i

Gout(xB, x(i)
S , t)

∗ Gin(xA, x(i)
S , −t) ∗ S(i i)

sim(t) + “crosstalk”
(A10)
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and

�sim(x, xA, t) =
∑

i

Gin(x, x(i)
S , t)

∗Gin(xA, x(i)
S , −t) ∗ S(i i)

sim(t) + “crosstalk”.
(A11)

The expressions for sequential transient sources as well as
those for simultaneous noise sources can be obtained as lim-
iting cases. When each source group σ (m) contains one source
only and S(i i)

sim(t) = S(i)
seq(t), equations (A8) and (A9) reduce

to the expressions for sequential transient sources, equations

(A1) and (A2), respectively. On the other hand, when there
is only one source group containing all sources and when the
source wavelets with crosscorrelation S(i j)

sim(t − ti + tj ) are re-
placed by noise signals with crosscorrelation S(i j)

noise(t), then
we obtain the expressions for simultaneous noise sources,
equations (A3) and (A4). We have already seen that the
latter equations further reduce to equations (A6) and (A7)
when the noise sources are mutually uncorrelated, i.e., when
S(i j)

noise(t) = δi j S(i)
noise(t).
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