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With controlled-source seismic interferometry we aim to redatum sources to downhole receiver locations without requiring a
velocity model. Interferometry is generally based on a source integral over cross-correlation (CC) pairs of full, perturbed (time-
gated), or decomposed wavefields. We provide an overview of ghosts, multiples, and spatial blurring effects that can occur
for different types of interferometry. We show that replacing cross-correlation by multidimensional deconvolution (MDD) can
deghost, demultiple, and deblur retrieved data. We derive and analyze MDD for perturbed and decomposed wavefields. An
interferometric point spread function (PSF) is introduced that can be obtained directly from downhole data. Ghosts, multiples,
and blurring effects that may populate the retrieved gathers can be locally diagnosed with the PSF. MDD of perturbed fields can
remove ghosts and deblur retrieved data, but it leaves particular multiples in place. To remove all overburden-related effects, MDD
of decomposed fields should be applied.

1. Introduction

Seismic interferometry is an effective tool to redatum sources
to receiver locations, without the need of a velocity model.
Recently, we have seen an increase of various applications;
see Curtis et al. [1] and Wapenaar et al. [2]. In this paper
we restrict ourselves to controlled-source interferometry for
data-driven redatuming. In a recent publication of Schuster
[3], numerous applications in this field can be found. Among
them is the well-known virtual-source method of Bakulin
and Calvert [4].

Traditionally, the theory of interferometry has been
derived from a reciprocity theorem of the correlation type
or from time-reversal arguments [5, 6]. A few special
applications are based on wavefield convolutions [7, 8].
For controlled-source applications, the theory is generally
applied with one-sided illumination, meaning that sources
are located at the earth’s surface only and are not—as
often assumed in theory—enclosing a volume. Moreover,
interactions with the free surface and intrinsic losses are

generally not taken into account. Because of these factors,
spurious events can enter the retrieved gathers [9] and true
amplitudes are generally not preserved [10].

To mitigate some of these artifacts, several methods have
been proposed. In perturbation-based interferometry [11],
incident and scattered wavefields are separated prior to cross-
correlation. In the virtual source method [4, 12], a similar
separation is achieved by time-gating the direct arrival prior
to cross-correlation. Mehta et al. [13] showed that separation
of up- and downgoing waves with multicomponent sensors
can yield even further improvements. Vasconcelos et al. [14]
demonstrate a variety of these methods in complex synthetic
subsalt environments.

A different group of methods is based on deconvo-
lution instead of cross-correlation (CC). Replacing cross-
correlation by deconvolution can remove undesired multi-
ples from the overburden [15], a concept that has also been
referred to as Noah deconvolution [16] or Einstein deconvo-
lution [17, 18]. An additional advantage of deconvolution is
that the source wavelet is deconvolved before stacking, which
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can be beneficial if the source has a complicated signature
[19, 20]. Various authors have suggested to redatum data by
summing over single-station deconvolution traces [4, 21].
However, to retrieve an exact Green’s function by deconvo-
lution in 3D heterogeneous media, single-station deconvolu-
tion should be replaced by multidimensional deconvolution
(MDD), as shown by Wapenaar et al. [22]. MDD is based on
the inversion of a forward problem that is generally derived
for decomposed wavefields. The method has a lot in common
with Betti deconvolution, as implemented by Amundsen et
al. [23] and Holvik and Amundsen [24] to remove free-
surface multiples from ocean bottom cable (OBC) data.
For various applications of MDD, see Wapenaar et al. [22].
Van der Neut et al. [25] showed that MDD can correct
for attenuation and improve interferometric imaging below
complex overburden. Minato et al. [26] applied MDD to
virtual cross-well data. MDD can also be applied to ground
penetrating radar [27], controlled-source electromagnetic
exploration [28, 29], and lithospheric-scale imaging [30].

A typical application of controlled-source seismic inter-
ferometry is to redatum sources to a downhole receiver array
below a complex overburden. Bakulin and Calvert [4] were
pioneering in this field using the so-called virtual source
method. A typical configuration is shown in Figure 1(a).
Sources are situated at the earth’s surface locations xS.
Receivers are located at xA and xB in a well that can be
horizontal, deviated, or vertical. The aim is to transform the
data obtained with the configuration shown in Figure 1(a)
into virtual data as if there was a source at xA and a
receiver at xB (Figure 1(b)). Like Bakulin and Calvert [4],
we will do so without requiring a velocity model, thus
bypassing all complexities of the overburden. Schuster’s
group considered a range of other configurations [3], one
of them being shown in Figure 1(c). Here the aim is to
create a virtual source at location xA by exploiting scattered
or dived waves that illuminate the target (e.g., a salt flank)
under angles that are unseen in conventional processing
(Figure 1(d)); see Xiao et al. [31], Hornby and Yu [32], Lu
et al. [33] and Ferrandis et al. [34] for applications. Another
application is virtual cross-well acquisition, where xA and xB

are located in separate wells that can be vertical [26, 35, 36],
horizontal [37], or deviated; see Figures 1(e) and 1(f). Many
of the formulations that appear in this paper require spatial
integrals not only over source locations but also over receiver
locations. For a 3D heterogeneous medium, this means that
2D arrays of both sources and receivers should be deployed.
Since we assume the presence of downhole receivers, this
is generally not feasible. That is why we restrict ourselves
to wave propagation in a 2D plane, ignoring out-of-plane
reflections.

In this paper we distinguish between ghosts and multi-
ples. With ghosts we refer to spurious events that populate
our retrieved gathers, because initial assumptions were not
properly fulfilled. With multiples we refer to physical events
stemming from multiple reflections. Blurring effects can
occur if illumination conditions are imperfect. We analyze
the ghosts and multiples that can occur in interferometry
by CC of full, perturbed, and decomposed fields. Next
we introduce MDD of perturbed and decomposed fields,

which can be applied with single-component sensors. We
analyze to what extent these methods can be used to remove
ghosts, multiples, and blurring artifacts on single- and
multicomponent data.

2. Cross-Correlation of Full Fields

Various authors have shown that cross-correlation of wave-
fields at two receivers followed by summation over a closed
boundary of sources can provide a Green’s function as if there
was a virtual source at one of the receiver locations and a
receiver at the other. In Figure 2 we give a more schematic
illustration of the problem formulated in Figure 1(a). The
aim is to redatum the source locations xS to a receiver
location xA “below” the overburden but “above” the target of
imaging, without requiring a velocity model of the medium.
Note that the terminology of “below” and “above” can be
interchanged with “left” and “right” for the situation of
salt flank imaging (Figure 1(c)) or the virtual cross-well
(Figure 1(e)).

To retrieve an exact Green’s function, both monopole
and dipole sources are required along the closed boundary
spanned by ∂S and ∂O. The medium should be free
of intrinsic losses inside V. Under these conditions, the
following representation can be derived for Green’s function
retrieval [38]:

∣
∣
∣Ŝ(ω)

∣
∣
∣

2[

Ĝ(xB, xA,ω) + Ĝ∗(xA, xB,ω)
]

= Î S(xB, xA,ω) + ÎO(xB, xA,ω).
(1)

On the left hand side we find the Green’s function
Ĝ(xB, xA,ω) as if there was an injection rate point source at
xA and a receiver for acoustic pressure at xB. It is given in
the frequency domain, indicated by the hat and angular fre-
quency ω. We also find its acausal counterpart Ĝ∗(xA, xB,ω),
where superscript ∗ denotes complex conjugation. Note

that the retrieved response is bandlimited by |Ŝ(ω)|2, where
Ŝ(ω) is the spectrum of the source wavelet. On the right-
hand side, we find two integrals: Î S and ÎO. Î S is referred
to as the “known integral,” obtained by cross-correlations
of wavefields from existing source locations xS at ∂S. ÎO

is the “missing integral,” obtained by cross-correlation of
wavefields from nonexisting source locations xO at ∂O. Even
though the source locations xO are not present in a realistic
survey, we keep ÎO in the representation, allowing us to
quantify its contribution.

First, let us consider the known integral Î S, as derived by
Wapenaar and Fokkema [38]:

Î S(xB, xA,ω)

= −
∫

∂S

1
jωρ(xS)

×
[{

nS · ∇S p̂(xB, xS,ω)
}{

p̂(xA, xS,ω)
}∗

−{ p̂(xB, xS,ω)
}{

nS · ∇S p̂(xA, xS,ω)
}∗]

dxS.

(2)
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Figure 1: Typical redatuming problems: (a) input data for redatuming through complex overburden; (b) output data after redatuming
through complex overburden (with some types of interferometry, the overburden is replaced by a homogeneous halfspace); (c) input data
for flank imaging; (d) output data for flank imaging after redatuming; (e) input data for virtual cross-well; (f) output data after virtual
cross-well; xS denote the source locations, xA denote the receiver locations that are turned into virtual sources, and xB denote other receiver
locations.

Here p̂(xA, xS,ω) represents the pressure recording at xA

due to a monopole source at xS. These recordings are
assumed to be Green’s functions (or impulse responses)
Ĝ(xA, xS,ω) convolved with source wavelet Ŝ(ω). Normal
vector nS points perpendicular (outward) to the source
array ∂S. Further, ∇S = (∂/∂x1,S, ∂/∂x2,S, ∂/∂x3,S)T , where

xS = (x1,S, x2,S, x3,S)T and superscript T denotes the
transposed. Hence, nS · ∇S p̂(xA, xS,ω) is interpreted as the
response at xA due to a dipole source at xS. ρ(xS) is the mass
density at the source array.

The representation of missing integral ÎO is very similar.
In this case responses of nonexisting source locations xO
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Figure 2: Configuration for controlled-source interferometry by
cross-correlation of full fields; volume V is enclosed by the source
array ∂S and an additional half sphere ∂O whose radius r → ∞; xS

denotes a source location at ∂S and nS is the unit normal vector of
this surface; xO denotes a source at ∂O and nO is the unit normal
vector of this surface; heterogeneities between sources and receivers
are referred to as “overburden,” whereas heterogeneities below the
receivers are referred to as “target.”

needs to be cross-correlated and nS needs to be replaced by
the normal vector nO along ∂O, yielding

ÎO(xB, xA,ω)

= −
∫

∂O

1
jωρ(xO)

×
[{

nO · ∇O p̂(xB, xO,ω)
}{

p̂(xA, xO,ω)
}∗

−{ p̂(xB, xO,ω)
}{

nO · ∇O p̂(xA, xO,ω)
}∗]

dxO,

(3)

where ∇O is the spatial gradient at source location xO.
Before addressing the implications of not evaluating integral
ÎO, we focus our attention on Î S. Evaluation in its present
form would require both monopole and dipole sources at
∂S. In practice, interferometry is generally applied with
monopole sources only. To overcome this limitation, one
often introduces a so-called far-field approximation [3, 38].
This approximation can only be made if the direction of
wave propagation with respect to the source array is known.
Therefore, we separate ingoing and outgoing wavefields with
respect to the volume V. We introduce p̂in(xA, xS,ω) and
p̂out(xA, xS,ω), where superscripts in and out denote ingoing
and outgoing fields at xS. We substitute p̂ = p̂out + p̂in into
(2). It can be shown that the cross-correlations of ingoing
and outgoing waves cancel and that the remaining terms can
be merged [38], such that

Î S(xB, xA,ω)

=
∫

∂S

2
jωρ(xS)

×
[{

p̂in(xB, xS,ω)
}{

ns · ∇S p̂
in(xA, xS,ω)

}∗

+
{

p̂out(xB, xS,ω)
}{

ns · ∇S p̂
out(xA, xS,ω)

}∗
]

dxS.

(4)

Next, the far-field high-frequency approximation can be
introduced. It is assumed that the medium is smooth in a

small region around ∂S. We find for ingoing constituents
that nS · ∇S p̂in ≈ −( jω/c(xS)) cos(φ) p̂in, where c(xS) is the
acoustic wave velocity along the source array and φ is the
incidence angle of the dominant wavefield with respect to
nS [38]. Similarly, we find for outgoing constituents that
nS · ∇S p̂out ≈ +( jω/c(xS)) cos(φ) p̂out. We assume that φ
is close to zero such that cos(φ) ≈ 1. Substituting these
approximations into (4) yields

Î S(xB, xA,ω)

≈
∫

∂S

2
ρ(xS)c(xS)

[{

p̂in(xB, xS,ω)
}{

p̂in(xA, xS,ω)
}∗

−{ p̂out(xB, xS,ω)
}{

p̂out(xA, xS,ω)
}∗
]

dxS.

(5)

Before proceeding, it is helpful to provide a similar analysis
for the missing integral ÎO. We assume that both density and
wave velocity are constant at r → ∞, such that all wavefields
that would be recorded at receivers due to missing source
locations xO are ingoing at ∂O (such that p̂ = p̂in and
p̂out = 0). Given these considerations, it can be shown that
both terms in the integrand of (3) give equal contributions
to the stationary points, and therefore this equation can be
rewritten as

ÎO(xB, xA,ω)

=
∫

∂O

2
jωρ(xO)

{

p̂(xB, xO,ω)
}{

nO · ∇O p̂(xA, xO,ω)
}∗

dxO.

(6)

We can further simplify this equation by substituting the
far-field approximation for ingoing fields nO · ∇O p̂ ≈
−( jω/c(xO)) p̂, yielding

ÎO(xB, xA,ω)

≈
∫

∂O

2
ρ(xO)c(xO)

{

p̂(xB, xO,ω)
}{

p̂(xA, xO,ω)
}∗

dxO.

(7)

So far we have shown that a Green’s function can be
retrieved by evaluation of integrals Î S and ÎO. In practice,
we are generally not that fortunate. First, we miss the source
locations xO to compute ÎO. Second, we cannot discriminate
between ingoing and outgoing wavefields to evaluate Î S.
Instead, we cross-correlate the full fields as emitted by the
sources and integrate over ∂S. We refer to the obtained
function as the correlation function Ĉ:

Ĉ(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

{

p̂(xB, xS,ω)
}{

p̂(xA, xS,ω)
}∗

dxS.

(8)

We assume that the density and wave velocity are known
at the source array. In most applications of interferometry,
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however, they are assumed constant and not evaluated
inside the integrand. We have introduced an additional
weighting factor W(xS) that can be used to rebalance the
sources before integration or to taper the edges of a finite
source array in practical applications [39]. We can also
define a weighting function that takes the wave propagation
angle into account, reducing the artifacts introduced by the
far-field approximation, where we neglected a cosφ-term.
Sometimes we can approximate the incidence angle φ(xA, xS)
of the dominant contribution of the incident wavefield
p̂(xA, xS,ω), for instance by ray tracing. In such cases, it
can be beneficial to replace weighting factor W(xS) with
W(xA, xS) = cosφ(xA, xS) to improve the retrieved ampli-
tude variations with angle; see Schuster [3] for examples.

The fields in (8) consist of both ingoing and outgoing
constituents at ∂S. We substitute p̂ = p̂out + p̂in into (8) and
rewrite the result as

Ĉ(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂in(xB, xS,ω)
}{

p̂in(xA, xS,ω)
}∗

−{ p̂out(xB, xS,ω)
}{

p̂out(xA, xS,ω)
}∗
]

dxS

+
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂(xB, xS,ω)
}{

p̂out(xA, xS,ω)
}∗

+
{

p̂out(xB, xS,ω)
}{

p̂(xA, xS,ω)
}∗
]

dxS.

(9)

Note that the first integral at the right-hand side is identical
to the desired integral in (5). The second integral is undesired
and referred to as ghost ĝS:

ĝS(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂(xB, xS,ω)
}{

p̂out(xA, xS,ω)
}∗

+
{

p̂out(xB, xS,ω)
}{

p̂(xA, xS,ω)
}∗]

dxS.

(10)

In a similar fashion we identify a second ghost, due to the
missing source locations xO. This is done by redefining the
integral ÎO in (7) as

ĝO(xB, xA,ω)

= −
∫

∂O

2
ρ(xO)c(xO)

{

p̂(xB, xO,ω)
}{

p̂(xA, xO,ω)
}∗

dxO.

(11)

Next, we substitute (11), (7), (5), (1) and (10) into (9) and
rewrite the result as

Ĉ(xB, xA,ω) ≈
∣
∣
∣Ŝ(ω)

∣
∣
∣

2[

Ĝ(xB, xA,ω) + Ĝ∗(xA, xB,ω)
]

+ ĝS(xB, xA,ω) + ĝO(xB, xA,ω).
(12)

Equation (12) is useful for identifying ghosts in interferome-
try by CC of full fields. We have shown that implementation
of the correlation function (8) yields a bandlimited version
of the desired Green’s function Ĝ(xB, xA,ω) and its acausal
counterpart Ĝ∗(xA, xB,ω) plus two additional ghost terms.
The first ghost ĝS is described by (10), which is due to the
presence of any undesired reflectors above the source array
∂S. Note that in typical controlled source applications, the
free surface acts as such a reflector, scattering waves back into
the volume V, such that p̂out /= 0. Consequently, spurious
events can be expected to populate retrieved gathers due to
free surface interactions if free surface ghosts and multiples
are not eliminated prior to applying interferometry.
Similar artifacts have also been found in passive seismic
interferometry; see Draganov et al. [40]. The second ghost
ĝO, described by (11), stems from the missing integral at
∂O. For convolution-based reciprocity theorems, one often
applies Sommerfeld’s radiation condition [41] to show
that boundary integrals over convolution products vanish
when r → ∞. However: these conditions do not apply for
integrals of cross-correlation products like the one in (11).
The integrand in (11) decays with order O(r−2), whereas
the integration surface ∂O grows with order O(r2), which is
insufficient to cancel the integral. However, Wapenaar [42]
showed that if sufficient scattering takes place in the volume
V, the decay of the integrand is stronger than O(r−2) and the
integral can indeed be neglected. This condition has been
referred to as the antiradiation condition [3]. Not obeying
this condition can lead not only to incorrect amplitudes but
also to the emergence of spurious events in the retrieved data
[9].

To illustrate the ghosts in interferometry by CC of full
fields, we define four synthetic 1D models in Figure 3. For
simplicity, the velocity is kept constant at 2000 m/s with
density contrasts introduced. In each model the aim is to
generate a (zero-offset) response as if there was a virtual
source at receiver location xA (green star) and a receiver at
the same location xB = xA. The real source is always located
at the earth’s surface location xS and additional sources xO

are introduced to evaluate ghost gO. Location xE will play a
role only later in this paper.

In the previous example, the ghost terms gS + gO did
not give a significant contribution outside t = 0 s. This is
not the case for model B (Figure 3(b)), which is the same as
model A, except for two additional contrasts at 500 m and
700 m depth. The reference response reveals not only the
desired reflection at t = 0.4 s but also the reflections of the
overburden at t = 0.1 s and t = 0.3 s and their multiples; see
Figure 5(a). The ghosts gS + gO and the correlation function
C are shown in Figures 5(b) and 5(c), respectively. Since no
reflectors are present above the source, gS = 0. However,
the second ghost gO does give a significant contribution.
The events at t = 0.1 s and t = 0.3 s appear with opposite
polarity (Figure 5(b)) compared to the reference response
(Figure 5(a)). Therefore, these events have incorrect
amplitudes in the correlation function and are hardly visible
(Figure 5(c)). More importantly, there is a ghost at t = 0.2 s
(Figure 5(c)) that is not visible in the reference response
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Figure 3: Impedance (in kg ·m−2 · s−1) versus depth (in m) for synthetic models A–D. The red star corresponds to source location xS, the
green star to receiver/virtual source location xA = xB , the blue star to nonexisting source location xO, and the magenta star to nonexisting
source location xE; models A–C have no free surface incorporated; model D has a free surface at 0 m depth.

(Figure 5(a)). This ghost originates from an internal multiple
between the contrasts at 500 m and 700 m. Finally we note
that the multiples at t = 0.5 s and t = 0.7 s also appear
as ghost terms, with different amplitudes and polarities
than the reference response. Therefore these responses
are retrieved with incorrect amplitudes (Figure 5(c)). For
practical applications this can be seen as advantageous, since
these multiple reflections are generally not desired for further
processing.

It has been demonstrated by Wapenaar [42] that ghost
gO vanishes if sufficient scattering occurs below the receiver
array. To demonstrate this effect, we introduce model C,
being similar to model B except for a series of additional
random contrasts deeper in the subsurface superimposed
by a trend of acoustic impedance increases with depth, see
Figure 3(c) (note the differently scaled axes in Figures 3(b)
and 3(c)). All contrasts lay sufficiently deep, such that the

reference response is no different from that of model B
within the display window. The ghosts gS + gO and the
correlation function C are shown in Figures 6(b) and 6(c),
respectively. Indeed, the contributions of ghost gO are minor
and randomly distributed (Figure 6(b)). It can be shown
analytically that placing infinitely many contrasts even
completely eliminates gO. Note that the reference response
(Figure 6(a)) and the correlation function (Figure 6(c)) agree
relatively well. The so-called antiradiation condition has
thus been successful in eliminating the effects of one-sided
illumination. Reflections of the target (t = 0.4 s) and
overburden (t = 0.1 s and t = 0.3 s), including their
multiples (t = 0.5 s and t = 0.7 s), have all been retrieved
with true amplitudes. Note that recording times need to be
sufficiently long for the antiradiation condition to hold [42].
In this example, the total recording time is 32 s. Moreover,
it should be mentioned that the antiradiation condition can
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Figure 4: Cross-correlation of full fields for model A: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

not eliminate the effects of reflectors placed outside the
volume V, as gS /= 0 for such scenario.

In model D we demonstrate the effect of free surface
interactions, by placing a free surface at 0 m and two
contrasts at 100 m and 200 m depth, see Figure 3(d). As
a result, the reference response does not only contain the
desired reflection at t = 0.4 s but also the primaries of the
overburden contrasts at t = 0.6 s and t = 0.7 s, the free
surface reflection at t = 0.8 s; and free-surface multiples at
t = 0.9 s and t = 1.0 s; see Figure 7(a). Ghosts gS + gO and
correlation function C are shown in Figures 7(b) and 7(c),
respectively. We see strong spurious events at t = 0.1 s and
t = 0.2 s in the retrieved response (and a weaker event at
t = 0.3 s), stemming from interactions of the first reflectors
with the free surface. We also observe that the reflections at
t = 0.6 s and t = 0.7 s, their multiples, and the free surface
reflection at t = 0.8 s are hardly retrieved due to the missing
source at xO.

3. Cross-Correlation of Perturbed Fields

In many cases our aim is not to retrieve a full Green’s
function but to retrieve only a part of it. For controlled-
source applications, for instance, a full Green’s function
would contain not only reflections from the target area but
also reflections from the overburden. In practice we often
wish to eliminate the latter by restricting a virtual source
to radiate downwards only. In the virtual source method
[4, 12], this is effectively achieved by time-gating the first
arrival prior to cross-correlation. In perturbation-based
methodology [11, 14], a similar discrimination is made
between the incident field and the scattered field. These
fields are usually obtained by time-gating the full fields.

In Figure 8 we show a typical configuration for interfer-
ometry by CC of perturbed wavefields. Note the similarities
with Figure 2. The only difference is that boundary ∂O has
been replaced with a boundary ∂E, located between the
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Figure 5: Cross-correlation of full fields for model B: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

overburden and the target area. Volume V is now enclosed
by ∂S and ∂E. We define a reference state by density ρ0(x)
and velocity c0(x). In this reference state all heterogeneities
outside volume V (namely the target) have been removed.
These heterogeneities are referred to as the perturbations in
density Δρ(x) and velocity Δc(x), where ρ(x) = ρ0(x)+Δρ(x)
and c(x) = c0(x) + Δc(x) represent the density and velocity
of the true physical medium. Fields that propagate in the
reference state are referred to as incident fields p̂inc. Fields
that propagate in the physical medium can now be expressed
as a superposition of the incident field and the so-called
scattered field p̂sc, that is p̂ = p̂inc + p̂sc. Vasconcelos et al. [11]
have derived a representation for Green’s function retrieval
of the scattered field between virtual source xA and receiver
xB from cross-correlations of the scattered field at xB and the
incident field at xA:
∣
∣
∣Ŝ(ω)

∣
∣
∣

2
Ĝsc(xB, xA,ω) = Î Sptb(xB, xA,ω) + ÎEptb(xB, xA,ω),

(13)

where subscript ptb stands for “perturbed.” On the left-hand
side we find the desired scattered Green’s function, imprinted
by the squared amplitude spectrum of the source wavelet.
Note that no acausal Green’s function is retrieved. On the
right-hand side we find integral Î Sptb, stemming from the
cross-correlations of incident and scattered fields from the
actual sources at ∂S:

Î Sptb(xB, xA,ω)

= −
∫

∂S

1
jωρ(xS)

×
[{

nS · ∇S p̂sc(xB, xS,ω)
}{

p̂inc(xA, xS,ω)
}∗

−{ p̂sc(xB, xS,ω)
}{

nS · ∇S p̂inc(xA, xS,ω)
}∗]

dxS.

(14)
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Figure 6: Cross-correlation of full fields for model C: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

The second integral, ÎEptb, stems from similar cross-corre-
lations of nonexisting sources xE at ∂E:

ÎEptb(xB, xA,ω)

= −
∫

∂E

1
jωρ(xE)

×
[{

nE · ∇E p̂sc(xB, xE,ω)
}{

p̂inc(xA, xE,ω)
}∗

−{ p̂sc(xB, xE,ω)
}{

nE · ∇E p̂inc(xA, xE,ω)
}∗]

dxE,

(15)

where ∇E is the spatial gradient at xE, nE is the outward-
pointing unit normal vector to ∂E, and ρE is the density
along this surface. We write the wavefields in (14) in terms

of ingoing and outgoing constituents at ∂S. It can be shown
that the cross-correlations between ingoing and outgoing
wavefields cancel each other and the remaining terms can be
merged [11], such that

Î Sptb(xB, xA,ω)

=
∫

∂S

2
jωρ(xS)

×
[{

p̂in
sc(xB, xS,ω)

}{

nS · ∇S p̂
in
inc(xA, xS,ω)

}∗

+
{

p̂out
sc (xB, xS,ω)

}{

nS · ∇S p̂
out
inc (xA, xS,ω)

}∗
]

dxS.

(16)
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Figure 7: Cross-correlation of full fields for model D: (a) reference response by placing an active source at the virtual source location xA;
(b) computed ghost terms gS + gO; (c) causal part of the correlation function C (black) and the sum of reference response + ghosts (dashed
green).

Assuming that the relevant wavefields propagate near normal
incidence, we can substitute far-field approximations nS ·
∇S p̂

out
inc ≈ +( jω/c(xS)) p̂out

inc and nS ·∇S p̂
in
inc ≈ −( jω/c(xS)) p̂in

inc
into (16), yielding

Î Sptb(xB, xA,ω)

≈
∫

∂S

2
ρ(xS)c(xS)

[{

p̂in
sc(xB, xS,ω)

}{

p̂in
inc(xA, xS,ω)

}∗

−{ p̂out
sc (xB, xS,ω)

}{

p̂out
inc (xA, xS,ω)

}∗
]

dxS.

(17)

For integral ÎEptb the situation is slightly different. Since we
have chosen the reference state to have no heterogeneities
below ∂E, all wavefields arriving at the receivers are ingoing
at ∂E (such that p̂inc = p̂in

inc and p̂out
inc = 0). Cross-correlations

between ingoing and outgoing fields cancel and the remain-
ing terms can be merged [11], such that

ÎEptb(xB, xA,ω)

=
∫

∂E

2
jωρ(xE)

×
[{

p̂in
sc(xB, xE,ω)

}{

nE · ∇E p̂inc(xA, xE,ω)
}∗]

dxE.

(18)

The spatial derivative can be approximated with far-field
approximation nE · ∇E p̂inc ≈ −( jω/c(xE)) p̂inc, such that

ÎEptb(xB, xA,ω)

≈
∫

∂E

2
ρ(xE)c(xE)

[{

p̂in
sc(xB, xE,ω)

}{

p̂inc(xA, xE,ω)
}∗]

dxE.

(19)
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Note that evaluation of (17) still requires separation of
ingoing and outgoing waves. In practice, we generally
cross-correlate complete scattered and incident fields at the
receivers to obtain the correlation function of perturbed
wave fields Ĉptb:

Ĉptb(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

{

p̂sc(xB, xS,ω)
}{

p̂inc(xA, xS,ω)
}∗

dxS.

(20)

To evaluate the consequence of this choice, we separate the
scattered and incident wavefields in up- and downgoing
constituents according to p̂inc = p̂in

inc + p̂out
inc and p̂sc = p̂in

sc +
p̂out

sc and substitute these representations into (20). The result
can be written as

Ĉptb(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂in
sc(xB, xS,ω)

}{

p̂in
inc(xA, xS,ω)

}∗

−{ p̂out
sc (xB, xS,ω)

}{

p̂out
inc (xA, xS,ω)

}∗
]

dxS

+
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂sc(xB, xS,ω)
}{

p̂out
inc (xA, xS,ω)

}∗

+
{

p̂out
sc (xB, xS,ω)

}{

p̂inc(xA, xS,ω)
}∗]

dxS.

(21)

The first integral in (21) can be identified as the desired
integral Î Sptb (see (17)). The second integral is a ghost term
that we redefine as

ĝSptb(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂sc(xB, xS,ω)
}{

p̂out
inc (xA, xS,ω)

}∗

+
{

p̂out
sc (xB, xS,ω)

}{

p̂inc(xA, xS,ω)
}∗]

dxS.

(22)

The missing sources at xE make up for a second ghost
term that we define by rewriting the integral in (19) in the
following way:

ĝEptb(xB, xA,ω)

= −
∫

∂E

2
ρ(xE)c(xE)

[{

p̂in
sc(xB, xE,ω)

}{

p̂inc(xA, xE,ω)
}∗]

dxE.

(23)

Now, by substituting (23), (19), (17), (13), and (20) into (21)
we arrive at

Ĉptb(xB, xA,ω) ≈
∣
∣
∣Ŝ(ω)

∣
∣
∣

2
Ĝsc(xB, xA,ω)

+ ĝSptb(xB, xA,ω) + ĝEptb(xB, xA,ω).
(24)

∂S xS nS r →∞

xA xB

V

nE

∂E
xE

Overburden

Target

Figure 8: Configuration for controlled-source interferometry by
cross-correlation of perturbed fields; volume V is enclosed by
the source boundary ∂S and an additional boundary ∂E between
overburden and target; xS denotes a source location at ∂S and nS

is the unit normal vector of this surface; xE denotes an additional
source location at ∂E and nE is the unit normal vector of this
surface; heterogeneities between sources and receivers are referred
to as “overburden,” whereas heterogeneities below the receivers are
referred to as “target.”

Equation (24) is useful for identifying ghosts in interferome-
try by CC of perturbed fields. Computation of Cptb (see (20))
yields a scaled bandlimited version of the desired scattered
Green’s function plus two ghost terms gSptb and gEptb. The

first ghost gSptb stems from reflectors outside the integration
volume and behaves very similar to the ghost gS that we
found for CC of full fields. The second ghost gEptb is relatively
small. It consists of ingoing waves at xE that have scattered
in the target area before arriving at the receivers. However, to
reach the target area, these waves should have also scattered
in the overburden. This means that such fields have at least
scattered twice. It is reasoned by Vasconcelos et al. [11] that
such contributions can generally be neglected.

To illustrate the effectiveness of cross-correlation of
perturbed fields we apply this methodology to model B
(Figure 3(b)), with the additional source xE located at
1000 m depth (instead of the source at xO). Incident fields
are computed in a reference medium with all heterogeneities
below xE removed. Scattered fields are computed by sub-
traction of these incident fields from full fields. We generate
the reference response by placing an active source at xA and
computing the scattered response at the same receiver; see
Figure 9(a). We can clearly see not only the desired reflector
at t = 0.4 s but also the multiple reflections from the
overburden at t = 0.5 s and t = 0.7 s as well as higher-
order multiples. In Figures 9(b) and 9(c) we show the ghosts
gSptb + gEptb and the correlation function Cptb. Note which the
spurious event at t = 0.2 s, that was visible in Figure 5(c),
is significantly weakened and hardly visible. The multiples
at t = 0.5 s and t = 0.7 s have smaller amplitudes in
the correlation function (Figure 9(c)) than in the reference
response (Figure 9(a)). This is a consequence of not having
the source at xE.

In Figure 4(a) we computed the desired reference

response with wavelet |Ŝ(ω)|2 for model A (Figure 3(a)) by
placing an actual source at the virtual source location xA. We
can clearly see the direct arrival at t = 0 s and an event at
t = 0.4 s. The latter event is our target reflection, relating
to the impedance contrast at 1200 m depth. Since no free
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Figure 9: Cross-correlation of perturbed fields for model B: (a) reference response by placing an active source at the virtual source location
xA; (b) computed ghost terms gSptb + gEptb; (c) correlation function Cptb (black) and the sum of reference response + ghosts (dashed green).

surface is incorporated, no heterogeneities exist above the
true source location xS, and hence all wavefields that arrive
at xA are ingoing at xS, such that gS = 0 (10). We computed
the second ghost gO, using the additional source xO below all
medium heterogeneities. Since no reflection from this source
is registered at xA, the only contribution to gO stems from
correlations of the direct field, mapping at t = 0 s in this zero-
offset case. In Figure 4(b) we show the ghosts gS + gO. Note
that indeed no other contribution is found outside t = 0 s.
Therefore the correlation function C (8) is very similar to the
true reflection response, except around t = 0 s. In Figure 4(c)
we show C (black) and the sum of reference response and
ghosts (dashed green), matching well.

To show that CC of perturbed fields does not offer a
solution for reflectors above the source array, we apply
the methodology to model D (Figure 3(d)) as well. In
Figure 10(a) we show the reference response. We observe the
target event at t = 0.4 s and a multiple at t = 1.0 s. Ghosts
gSptb + gEptb and Cptb are shown in Figures 10(b) and 10(c),

respectively. Note that we can still observe several spurious
events and the undesired overburden reflections.

4. Cross-Correlation of Decomposed Fields

Another way to eliminate ghosts in interferometry is to sep-
arate up- and downgoing waves prior to cross-correlation,
as proposed by Mehta et al. [13]. If receivers are installed
in horizontal wells, decomposition can be implemented by
combining pressure and particle velocity recordings along
the receiver array [43, 44]. If wave propagation is close to
normal incidence, these methods can be approximated by
a weighted summation of pressure and particle velocity at a
single receiver [13, 36, 45]. If receivers are installed in vertical
wells, decomposition can be implemented by FK-filtering or
taking vertical derivatives along the borehole [46]. Note that
similar decomposition schemes can be applied for salt flank
imaging in vertical wells (Figures 1(c) and 1(d)), where up-
and downgoing have to be replaced by left and right going.
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Figure 10: Cross-correlation of perturbed fields for model D: (a) reference response by placing an active source at the virtual source location
xA; (b) computed ghost terms gSptb + gEptb; (c) correlation function Cptb (black) and the sum of reference response + ghosts (dashed green).

We use the same configuration as in Figure 2. We
define p̂+(xA, xS,ω) and p̂−(xB, xS,ω) as the downgoing and
upgoing fields at receivers xA and xB, respectively. Instead of
evaluating the correlation function of full fields (see (8)), we
define Ĉdcp as the correlation function between p̂+ and p̂−;
that is

Ĉdcp(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

p̂−(xB, xS,ω)
{

p̂+(xA, xS,ω)
}∗

dxS,

(25)

where subscript dcp denotes “decomposed.” As a conse-
quence of this choice, we will reconstruct a Green’s function
Ĝ−,+(xB, xA,ω) as if there was a downgoing field emitted at xA

and an upgoing field registered at xB plus an acausal Green’s

function {Ĝ+,−(xA, xB,ω)}∗ as if there was an upgoing field
emitted at xB and a downgoing field registered at xA [25].
We can find a representation for this case by rewriting (12)
in terms of up- and downgoing constituents and removing
all but those that are downgoing at xA and upgoing at xB;
that is

Ĉdcp(xB, xA,ω)

≈
∣
∣
∣Ŝ(ω)

∣
∣
∣

2
[

Ĝ−,+(xB, xA,ω) +
{

Ĝ+,−(xA, xB,ω)
}∗]

+ ĝSdcp(xB, xA,ω) + ĝOdcp(xB, xA,ω),
(26)
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Figure 11: Cross-correlation of decomposed fields for model B: (a) reference response by placing an active source at the virtual source
location xA; (b) computed ghost terms gSdcp + gOdcp; (c) correlation function Cdcp (black) and the sum of reference response + ghosts (dashed
green).

where the decomposed ghosts are given by

ĝSdcp(xB, xA,ω)

=
∫

∂S

2W(xS)
ρ(xS)c(xS)

[{

p̂−(xB, xS,ω)
}{

p̂+,out(xA, xS,ω)
}∗

+
{

p̂−,out(xB, xS,ω)
}{

p̂+(xA, xS,ω)
}∗]

dxS,

ĝOdcp(xB, xA,ω)

= −
∫

∂O

2
ρ(xO)c(xO)

{

p̂−(xB, xO,ω)
}{

p̂+(xA, xO,ω)
}∗

dxO.

(27)

Here p̂+,out(xA, xS,ω) refers to the field that is outgoing at
source xS and downgoing at receiver xA. p̂−,out(xB, xS,ω)
refers to the field that is outgoing at source xS and upgoing at
receiver xB.

Equation (26) is useful for identifying ghosts in inter-
ferometry by CC of decomposed fields. It shows that cross-
correlation of up- and downgoing constituents (25) yields

as a causal part the desired Green’s function G−,+(xB, xA, t)
plus two additional ghost terms gSdcp and gOdcp. Note that the
acausal part can be used to generate virtual sources that
radiate upwards, as demonstrated by van der Neut et al. [25].

To illustrate the consequence of decomposition, we
demonstrate (25) on model B (Figure 3(b)). The reference
response consists of a single reflection at t = 0.4 s and a
weak multiple at t = 0.9 s; see Figure 11(a). The ghosts
gSdcp +gOdcp and correlation function Cdcp are shown in Figures
11(b) and 11(c), respectively. Note that the ghosts are close to
zero, meaning that the reflection response is almost perfectly
reconstructed, apart from two weak spurious events at t =
0.2 s and t = 0.6 s. Compared to interferometry by cross-
correlation of perturbed fields (Figure 9(c)), the multiples at
t = 0.5 s and t = 0.7 s have been effectively removed.

Wavefield decomposition does still not offer a solution
for free-surface-related artifacts. To illustrate this, we apply
the method to model D (Figure 3(d)). In Figure 12(a)
we show the reference response, containing only the



International Journal of Geophysics 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
×1013

R
ef

er
en

ce

Time (s)

Target

(a)

−5

0

5
×1013

G
h

os
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Target Overburden

SpuriousSpurious

Spurious

(b)

−5

0

5
×1013

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

C
or

re
la

ti
on

Target Overburden

Spurious

Spurious

Spurious

(c)

Figure 12: Cross-correlation of decomposed fields for model D: (a) reference response by placing an active source at the virtual source
location xA; (b) computed ghost terms gSdcp + gOdcp; (c) correlation function Cdcp (black) and the sum of reference response + ghosts (dashed
green).

desired reflection at t = 0.4 s. Ghosts gSdcp + gOdcp and
the retrieved correlation function Cdcp are shown in Fig-
ures 12(b) and 12(c), respectively. Note that artifacts are
almost similar to those of perturbation-based interferometry
(Figure 10(c)).

5. Multidimensional Deconvolution of
Perturbed Fields

Another strategy to eliminate ghosts in interferometry is to
replace cross-correlation by deconvolution or, more exact,
multidimensional deconvolution (MDD) [22]. In MDD, a
Green’s function is retrieved by solving an inverse problem.
This inverse problem is generally derived for decomposed
wavefields and requires the installation of multicomponent
receivers or two parallel receiver arrays close to each other.
Before addressing MDD of decomposed fields, we present

an alternative approach for perturbed fields, which can be
applied with single-component sensors and time-gating.

To derive MDD for perturbed fields, we define a new
volume V, bounded by free surface ∂F and receiver array ∂A,
see Figure 13. We define a reference medium, which is similar
to the physical medium within the integration volume, but
homogeneous below ∂A. All heterogeneities in the physical
medium outsideV are referred to as perturbations. Subscript
inc indicates those fields that propagate in the reference
medium. Subscript sc is used for scattered fields, where
p̂ = p̂inc + p̂sc denotes the full field in the physical
medium. Vasconcelos et al. [11] derived a convolution-based
representation for the scattered field with a source at xS and
a receiver at xB, where xS is inside volumeV and xB is outside
this volume, that is

p̂sc(xB, xS,ω) = ĴAptb(xB, xS,ω) + Ĵ Fptb(xB, xS,ω). (28)
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On the right-hand side we find two integrals. ĴAptb involves
integration over the receiver array ∂A:

ĴAptb(xB, xS,ω)

=
∫

∂A

1
jωρ(xA)

×
[{

nA · ∇AĜsc(xB, xA,ω)
}{

p̂inc(xA, xS,ω)
}

−
{

Ĝsc(xB, xA,ω)
}{

nA · ∇A p̂inc(xA, xS,ω)
}]

dxA.

(29)

∇A is the spatial gradient at receiver location xA and nA is
the outward-pointing unit normal vector of ∂A. Integral Ĵ Fptb
is a similar integral over ∂F, which vanishes since all pressure
recordings are zero at this interface. We rewrite the wavefield
p̂ at ∂A in terms of ingoing components p̂in and outgoing
components p̂out. Similarly, Ĝsc = Ĝout

sc + Ĝin
sc. Since the

reference medium is homogeneous outside V, p̂inc is purely
outgoing at xA (so p̂inc = p̂out

inc and p̂in
inc = 0). It can be shown

that the convolutions between ingoing fields at the virtual
source xA and outgoing fields p̂inc(xA, xS,ω) cancel and that
the remaining terms can be merged [22]. Consequently, (28)
and (29) can be rewritten as

p̂sc(xB, xS,ω) =
∫

∂A
Ĝptb(xB, xA,ω) p̂inc(xA, xS,ω)dxA,

(30)

where we have introduced

Ĝptb(xB, xA,ω) = 2
jωρ(xA)

nA · ∇AĜ
out
sc (xB, xA,ω). (31)

Equation (31) represents the exact scaled dipole Green’s
function that can be solved by inversion of (30). Since an
exact solution of (30) is generally not feasible, we apply
least-squares inversion. We show in Appendix A that finding
a least-squares solution of this problem is equivalent to
solving the so-called normal equation, which is obtained
by correlating both sides of (30) with Ĝinc(x′A, xS,ω) and
summing over xS (where x′A is at ∂A). Hence

Ĉptb
(

xB, x′A,ω
) =

∫

∂A
Ĝptb(xB, xA,ω)Γ̂ptb

(

xA, x′A,ω
)

dxA.

(32)

On the left-hand side of (32) we have the correlation
function of the incident field at x′A and the scattered field at
xB:

Ĉptb
(

xB, x′A,ω
)

=
∑

i

W(xS) p̂sc

(

xB, x(i)
S ,ω

){

p̂inc

(

x′A, x(i)
S ,ω

)}∗
,

(33)

Note that (33) is identical to a discrete scaled representation
of (20), if the medium parameters are constant at ∂S and x′A
is replaced by xA. On the right-hand side of (32) we have the

∂F

xS

nF r →∞

xA xB

V

nA
∂A

Overburden

Target

Figure 13: Configuration for controlled-source interferometry by
multidimensional deconvolution of perturbed fields; integration
volume V is enclosed by the free surface ∂F and receiver array ∂A;
xS denotes a source location; xA and xB denote receiver locations
at ∂A and nA is the unit normal vector of the receiver array; nF is
the unit normal vector of the free surface; heterogeneities between
sources and receivers are referred to as “overburden,” whereas
heterogeneities below the receivers are referred to as “target.”

so-called point-spread-function (PSF) for perturbed fields,
defined as

Γ̂ptb
(

xA, x′A,ω
)

=
∑

i

W
(

x(i)
S

)

p̂inc

(

xA, x(i)
S ,ω

){

p̂inc

(

x′A, x(i)
S ,ω

)}∗
.

(34)

In both expressions, W(xS) is an optional source-dependent
weighting function. If sufficient source and receiver locations
are present, a multidimensional inverse Γ̂inv

ptb of the PSF can be
introduced, according to

∫

∂A
Γ̂ptb

(

xA, x′A,ω
)

Γ̂inv
ptb

(

x′A, x′′A ,ω
)

dx′A = δ
(

xA − x′′A
)

. (35)

where x′′A is at ∂A. The desired dipole response can now
be found by filtering the correlation function with Γ̂inv,
according to

Ĝptb
(

xB, x′′A ,ω
) =

∫

∂A
Ĉptb

(

xB, x′A,ω
)

Γ̂inv
ptb

(

x′A, x′′A ,ω
)

dx′A,

(36)

Implementation of (36) is referred to as MDD of perturbed
fields. This method allows us to deghost and deblur the
correlation function of perturbed fields. We retrieve a Green’s
function of an outward-radiating virtual source. However,
this retrieved Green’s function lives in the physical medium
and multiples from the overburden can still populate the
retrieved gathers.

We apply MDD of perturbed fields to model B
(Figure 3(b)). The result is shown in Figure 14(a) (black)
and compared with the reference response Gptb (dashed
green). Note that the MDD response is similar to the
correlation function Cptb (Figure 9(c)), apart from a very
weak spurious event at t = 0.2 s, a scaling factor and
subtle amplitude variations. We discussed that Cptb can be
interpreted as the desired response Gptb, convolved with
the PSF (see (32)). In Figure 14(b) we show that the PSF
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Figure 14: Deconvolution of perturbed fields for model B: (a) retrieved Green’s function (black) and the reference response (dashed green);
(b) point spread function Γptb; (c) convolution of the reflection response with the PSF (black) and correlation function Cptb (dashed green).

is close to a scaled band-limited delta function, with two
additional weak events observed at t = ±0.2 s. If we
convolve the reference response with the PSF, we find indeed
the correlation function, see Figure 14(c). From the simple
structure of the PSF, it could have been directly concluded
that Gptb and Cptb are indeed very similar apart from a scaling
factor.

This is not the case for model D (Figure 3(d)).
The response of MDD of perturbed fields (black) is
compared with the reference response Gptb (dashed green)
in Figure 15(a). Compared to the correlation function Cptb

(Figure 10(c)), the MDD response is very simple, containing
only the target reflection at t = 0.4 s and a multiple at
t = 1.0 s. The strong disagreement of the MDD result and the
correlation function is reflected by the PSF; see Figure 15(b).
In Figure 15(c) we show that convolution of the PSF and
reference response yields indeed the correlation function
Cptb.

6. Multidimensional Deconvolution of
Decomposed Fields

The response retrieved by MDD of perturbed fields can
still contain undesired reflections from the overburden. If
ingoing and outgoing waves are separated at the receiver
level prior to MDD, also these multiples can be removed
[22]. For this purpose we redefine our volume once more,
see Figure 16. Instead of enclosing the volume above the
receivers, we now define V as the volume enclosed by
receiver array ∂A and a halfsphere ∂O below the receivers
with radius r → ∞. We define a reference state, in which all
heterogeneities above ∂A are removed. Fields that propagate

in this reference state are indicated with a bar; that is ̂G. We
formulate a convolution based representation for the field of
source xS at receiver xB, where xS is outside volume V and
xB is inside this volume, reading

p̂(xB, xS,ω) = ĴAdcp(xB, xS,ω) + ĴOdcp(xB, xS,ω). (37)



18 International Journal of Geophysics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1
D

ec
on

vo
lu

ti
on Target Multiples

Time (s)

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

×1014

P
SF

Time (s)

2

1

0

−1

−2

(b)

−5

0

5
×1013

C
or

re
la

ti
on

Target

Spurious Spurious

Spurious

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Overburden

(c)

Figure 15: Deconvolution of perturbed fields for model D: (a) retrieved Green’s function (black) and the reference response (dashed green);
(b) point spread function Γptb; (c) convolution of the reflection response with the PSF (black) and the correlation function Cptb (dashed
green).

On the right-hand side we find two integrals. ĴAdcp involves
integration over the receiver array ∂A:

ĴAdcp(xB, xS,ω)

= −
∫

∂A

1
jωρ(xA)

×
[{

nA · ∇A
̂G(xB, xA,ω)

}
{

p̂(xA, xS,ω)
}

−
{

̂G(xB, xA,ω)
}
{

nA · ∇A p̂(xA, xS,ω)
}
]

dxA.

(38)

Integral ĴOdcp is a similar integral over the interface ∂O. Since
this integral contains convolutions and its radius r → ∞,
it will vanish due to Sommerfeld’s radiation conditions
[41]. Since the reference state is homogeneous outside V,
̂G(xB, xA,ω) is purely ingoing at virtual source xA (̂G = ̂G

in

and ̂G
out
= 0). We substitute p̂ = p̂in + p̂out. It can be shown

that the convolutions of ingoing fields at the virtual source

xA with outgoing fields p̂out(xA, xS,ω) cancel and that the
remaining terms can be merged, yielding

p̂(xB, xS,ω) =
∫

∂A

̂Gdcp(xB, xA,ω) p̂in(xA, xS,ω)dxA, (39)

where we have introduced

̂Gdcp(xB, xA,ω) = − 2
jωρ(xA)

nA · ∇A
̂G(xB, xA,ω). (40)

In a similar way as for MDD of perturbed fields, a normal
equation can be derived:

Ĉdcp
(

xB, x′A,ω
) =

∫

∂A

̂Gdcp(xB, xA,ω)Γ̂dcp
(

xA, x′A,ω
)

dxA,

(41)
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Figure 16: Configuration for controlled-source interferometry by
multidimensional deconvolution of decomposed fields; integration
volume V is enclosed by receiver array ∂A and an additional
halfsphere ∂O; xS denotes a source location; xA and xB denote
receiver locations at ∂A and nA is the unit normal vector of the
receiver array; nO is the unit normal vector of ∂O; heterogeneities
between sources and receivers are referred to as “overburden,”
whereas heterogeneities below the receivers are referred to as
“target.”

where x′A is at ∂A. On the left-hand side we have the
correlation function of the ingoing field at x′A and the
outgoing field at xB:

Ĉdcp
(

xB, x′A,ω
)

=
∑

i

W(xS) p̂out
(

xB, x(i)
S ,ω

){

p̂in
(

x′A, x(i)
S ,ω

)}∗
.

(42)

Note that (42) is similar to a discrete scaled version of
(25), if “ingoing” and “outgoing” are interchanged with
“downgoing” and “upgoing,” medium parameters are
constant at the source array and x′A is replaced by xA. On the
right-hand side we have the Point-Spread-Function (PSF)
for decomposed fields, given by

Γ̂dcp
(

xA, x′A,ω
)

=
∑

i

W(xS) p̂in
(

xA, x(i)
S ,ω

){

p̂in
(

x′A, x(i)
S ,ω

)}∗
.

(43)

If acquisition conditions allow, we can take a
multidimensional inverse of the PSF Γ̂inv

dcp and convolve
it with the correlation function according to

̂Gdcp
(

xB, x′′A ,ω
) =

∫

∂A
Ĉdcp

(

xB, x′A,ω
)

Γ̂inv
dcp

(

x′A, x′′A ,ω
)

dx′A,

(44)

where x′′A is at ∂A and
∫

∂A
Γ̂dcp

(

xA, x′A,ω
)

Γ̂inv
dcp

(

x′A, x′′A ,ω
)

dx′A = δ
(

xA − x′′A
)

. (45)

Implementation of (44) is referred to as MDD of decom-
posed fields. This method allows us to deghost and deblur
the correlation function of decomposed fields. Moreover, we
retrieve a response that lives in the reference medium, where
all multiples from the overburden have been removed.

We return to model B (Figure 3(b)). In Figure 17(a) we
show the result of MDD of decomposed fields (black) and
the reference response (dashed green). The response does

not contain any of the multiples that have been retrieved by
MDD of perturbed fields (Figure 14(a)). Note that indeed
the weak ghosts and multiples that we observed in the
correlation function (Figure 11(c)) have been eliminated, as
predicted by theory. The weakness of these events is reflected
in the PSF, showing a scaled band-limited delta function with
weak events at t = ±0.2 s and t = ±0.5 s. We convolve
the reference response with the PSF to show that indeed the
correlation function emerges, see Figure 17(c).

The effects of MDD of decomposed fields are more dra-
matically exposed by model D (Figure 3(d)). In Figure 18(a)
we show that also for this model we can retrieve a response
that is free of ghosts and multiples. Compared to MDD of
perturbed fields (Figure 15(a)), we observe that the multiple
at t = 1.0 s has been eliminated. The complex character of
the PSF (Figure 18(b)) exposes the difference between the
MDD response and the correlation function (Figure 12(c)).
In Figure 18(c) we show that the correlation function can
indeed be found by convolving the reference response with
the PSF.

7. Spatial Aspects

So far we have mostly concentrated on temporal aspects
(ghosts and multiples) of interferometry. There are spatial
aspects as well. In the representations (32) and (41) we
have shown that the correlation functions of perturbed and
decomposed fields can be interpreted as the desired reflection
response, blurred in time and space with the PSF. This means
that we can only retrieve an accurate response by cross-
correlation if the PSF is focused at the virtual source location.
However, due to unbalanced source distributions, intrinsic
losses, or heterogeneities in the overburden, the PSF can be
spatially defocused. As a result, the retrieved data by cross-
correlation will be blurred. We illustrate this with a salt flank
example.

In Figure 19 we show a salt flank model, defined as
a function of coordinates x1 (horizontal distance) and
x3 (depth). Note the velocity gradient in the medium,
producing diving waves that are useful for salt flank imaging.
We place 201 receivers in a vertical well with 20 m vertical
spacing along the interval x3 ∈ [1000 m, 5000 m] at x1 =
15000 m. We place 401 sources at the surface with 30 m
spacing along the interval x1 ∈ [0 m, 12000 m] at x3 = 0 m.
No free surface is incorporated. In the following we generate
a virtual shot record as if there was a source at receiver
xA = (15000 m, 4000 m) in the well using CC of perturbed
fields. We generate a reference response by placing an active
source at xA and modeling the wavefield. In Figure 20 we
show three snapshots of the emitted wavefield that was used
for the reference response. We indicate three reflections by
numbers 1, 2, and 3. These are the reflections we aim to
retrieve.

We time-gate the incident fields of the observed data
at the receiver array and subtract it from the full fields to
extract the scattered fields. Next, we obtain the correlation
function at virtual source xA by stacking cross-correlations of
incident and scattered fields over all 401 sources (see (33)). A
Hanning taper is applied to the first 20 and last 20 sources.



20 International Journal of Geophysics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1
D

ec
on

vo
lu

ti
on Target

Time (s)

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−5

0

5

×1014

P
SF

Time (s)

(b)

−1

−0.5

0

0.5

1

×1013

C
or

re
la

ti
on

Target Multiples

Spurious Spurious

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

(c)

Figure 17: Deconvolution of decomposed fields for model B: (a) retrieved Green’s function (black) and the reference response (dashed
green); (b) point spread function Γdcp; (c) convolution of the reflection response with the PSF (black) and the correlation function Cdcp

(dashed green).

In Figure 21 we show the retrieved response (red) and the
reference response (black). For display purposes, only every
20th trace is shown. Note that the match is perfect and the
reflections 1, 2, and 3 that were indicated in Figure 20 can
easily be recognized.

In seismic interferometry, the retrieval of a reflection
response is often explained by summations over correlation
gathers. To briefly illustrate this concept, we cross-correlated
the incident field at xA = (15000 m, 4000 m) with the
scattered field at xB = (15000 m, 2000 m) for different source
locations xS, see Figure 22. For display purposes, only every
20th trace is shown. To retrieve the trace at 2000 m of the
virtual shot record (Figure 21), a stack over all traces in
Figure 22 is required. It can be shown that constructive
interference takes place at the stationary points, being the
maxima in time of each reflector in Figure 22, obeying
Fermat’s principle. Destructive interference takes place
outside these stationary points.

Alternatively, we could interpret interferometry as the
process of focusing a virtual source, meaning that the

PSF in (34) is converging towards a spatial and temporal
delta function, indicating that the correlation function does
indeed represent the desired reflection response, free of
blurring. In Figure 23 we show the PSF for a virtual source
at xA = (15000 m, 4000 m). As for a virtual shot gather, the
traces of the PSF can be interpreted as summations over
correlation gathers. In the so-called PSF correlation gathers,
the incident field at xA is correlated with the incident field
at x′A (“integrand” of (34)). If xA = x′A, this corresponds
to auto-correlation, providing a significant contribution at
t = 0, see Figure 24. These contributions will interfere
constructively, to generate the desired spike in the PSF. If
xA /= x′A, cross-correlations of different source locations will
map at different times; see Figure 25. If the virtual source
is uniformly illuminated in each spatial direction, all such
contributions will interfere destructively and the PSF will
converge to the desired delta function. If this is the case, the
virtual source will be perfectly focused, as in Figure 23. The
two “legs” that can be observed in the PSF are caused by the
finite source aperture. Finite source-aperture artifacts can be
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Figure 18: Deconvolution of decomposed fields for model D: (a) retrieved Green’s function (black) and the reference response (dashed
green); (b) point spread function Γdcp; (c) convolution of the reflection response with the PSF (black) and the correlation function Cdcp

(dashed green).

reduced by tapering the edges of the source array [39], as has
already been done in this example. It was shown by van der
Neut and Thorbecke [47] that the legs of the PSF can be used
to diagnose the need for and the effects of such tapering.

If illumination conditions vary with incidence angle,
spatial blurring can occur. Illumination variations can
be introduced at the source side, for instance if sources
are nonuniformly distributed or source characteristics are
spatially varying due to source coupling conditions. We
mimic such a situation by assigning location- and frequency-
dependent spectra to the sources, see Figure 26. In this
particular example, the peak frequency and source strength
vary randomly with the source location, superimposed by an
additional trend in source strength along the array. Note that
the low source numbers (corresponding to the left side of the
array in Figure 19) are overilluminated with respect to the
high source numbers (corresponding to the right side of the
array in Figure 19). As a consequence of these variations, the
PSF of the virtual source is no longer optimally focused, as
shown in Figure 27. The events in the PSF that intersect the

focus point (x = xA and t = 0) (apart from the legs), as seen
in Figure 27, stem from incomplete destructive interference
and are typical for spatial defocusing of the virtual source,
leading to a distorted virtual source radiation pattern [10].

Virtual source defocusing can also be a consequence of
velocity or density variations in the overburden. We illustrate
this by introducing a gas cloud in the model, see Figure 28.
In Figure 29 we show the PSF in the medium with gas cloud,
where the variations in source spectra of Figure 26 have also
been incorporated. Note that besides spatial defocusing, we
also observe temporal defocusing stemming from gas cloud
scattering. Events in the PSF that do not intersect the focus
point (x = xA and t = 0), as seen in Figure 29, are typical
indicators of temporal defocusing, which can be related to
the ghosts and multiples that we discussed earlier in this
paper.

In Figure 30 we show the correlation function for
the model with varying source spectra and a gas cloud.
Note that the correlation function is no longer perfectly
matching the reference response, especially not in terms of
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amplitudes. This mismatch can be effectively removed from
the retrieved data by MDD, meaning that the correlation
function is filtered with the inverse of the PSF (see (36)).
The retrieved gather after MDD is shown in Figure 31. Note
that the match between retrieved and reference response
has improved considerably. We do point out, however, that
inversion artifacts can be created due to limited illumination
conditions, as highlighted in the top of Figure 31.

In Figure 32 we show an image of the salt flank in the
model with source spectra variations and a gas cloud. The
image is obtained by one-way shot profile migration of the
correlation functions at all possible virtual source locations.
In dashed red we show the location of the salt flank, as
taken from the velocity model. Note that interferometry has
enabled us to image the top of the flank “from below” by
smart utilization of the diving waves. Also note that artifacts
can be observed, which might be interpreted as additional
ghost reflectors or diffractors. As MDD allows us to refocus
the virtual sources before migration, several of these artifacts
can be removed by migrating data after MDD, as shown in
Figure 33. We observe that several potential “ghost reflectors”
have been eliminated throughout the gather. The continuity
of the salt flank amplitude marked by “A” is improved. The
strong artifact marked by “B” as well as various other artifacts
in this part of the gather have been suppressed. Artifacts such
as indicated by “C” have been eliminated, but new artifacts
such as “D” have emerged. We point with special attention to
events “E” and “F” that might well be mistakenly interpreted
as the continuation of the lower part of the salt flank. Note
that MDD has completely eliminated these spurious arrivals.
Finally, we note that inversion artifacts have hardened the
interpretation of the lowest part of the salt flank in “G.”
We conclude that MDD can indeed improve the image and
remove defocusing effects, but care should be taken for
potential inversion artifacts that can deteriorate parts of the
image and mislead interpretation.

8. Discussion

An overview has been given of the ghosts that appear in cor-
relation interferometry of full, perturbed and decomposed
fields. Equations (12), (24), and (26) describe these ghosts
in an additive way. Alternatively, the correlation functions
of perturbed or decomposed fields can be interpreted as
the desired reflection responses, convolved in space and
time with the PSF, see (32) and (41). Analysis of the PSF’s
allows us to diagnose the quality of virtual source focusing
in time and space. Along the temporal axis, the PSF gives
information on possible ghosts and undesired multiples that
may hamper the retrieved data. Along the spatial axis, the
PSF gives information on focusing, that can be blurred due to
unbalanced acquisition, intrinsic losses or complexities in the
velocity model. The correlation function can be deblurred
by filtering with the inverse of the PSF. This process is
multidimensional deconvolution, allowing us to deghost,
demultiple, and deblur the retrieved data.

The PSF can also provide insight in the effects of time-
gating, which is often applied for separation of incident and
scattered wavefields. In the Virtual Source method of Bakulin
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Figure 19: Velocity model for the salt flank imaging example.
Sources are located at boundary ∂S, covering x1 ∈ [0 m, 12000 m]
at x3 = 0 m; receivers are located at boundary ∂A, covering x3 ∈
[1000 m, 5000 m] at x1 = 15000 m; a reference virtual source is
located at xA = (15000 m, 4000 m).

and Calvert [4], it is advocated to cross-correlate only the
direct field instead of the full incident field. In Appendix B
we use the PSF to show that narrow time-gates can improve
the quality of virtual source focusing.

To compute the PSF for perturbed fields we require
separation of the incident and scattered fields for each source.
However, such time-gating can sometimes be problematic.
Instead, an approximation of the PSF could also be obtained
by time-gating the contributions around t = 0 in the
correlation function of full fields. This PSF can provide
valuable insights in spatial virtual source focusing in various
types of applications. Wapenaar et al. [22], for instance,
showed how an estimate of the PSF could be obtained from
cross-correlations of ambient seismic noise records. These
PSFs could then be used to correct Green’s functions as
retrieved by seismic interferometry for nonuniform passive
source distributions.

Similarities exist between the derived methodology and
model-driven redatuming [48]. Correlation-based interfer-
ometry can be related to correlation-based redatuming
schemes such as those derived by Berryhill [49]. Multidimen-
sional deconvolution of perturbed fields can be compared
with rigorous redatuming [50]. Parallels can also be found
with seismic migration and inversion [51]). The PSF that
we defined for perturbed wavefields has close similarities
with the resolution function in seismic inversion [52–54].
Similarly, inversion of the PSF can be compared with
migration deconvolution [55] or refocusing migrated images
[56]. However, in all these cases it is important to realize
that having actual subsurface receivers allows us to redatum
wavefields, including multiple scattered events, much more
effectively than with any model-driven method.
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Figure 20: Snapshots at 2.0 s, 2.7 s and 3.4 s of the wavefield emitted by a source at xA = (15000 m, 4000 m); reflections 1, 2, and 3 are
indicated.
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Figure 21: Reference response (black) and the correlation function
(red) for a virtual source at xA = (15000 m, 4000 m); reflections 1,
2, and 3 are indicated.

9. Conclusion

Controlled-source seismic interferometry is generally
explained from cross-correlation based theory. Although
this theory is exact, the required assumptions are often
not fulfilled in practice. Because of one-sided illumination,
complex subsurface structures, intrinsic losses, usage of
single source types and free surface interactions, virtual
sources can defocus and unphysical ghosts can enter the
retrieved gathers. Even if all assumptions are fulfilled,
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Figure 22: Correlation gather for a virtual source at xA =
(15000 m, 4000 m) and a receiver at xB = (15000 m, 2000 m);
reflections 1, 2, and 3 are indicated.

particular undesired reflections from the overburden
can still be retrieved by cross-correlation. Separation of
incident and scattered fields or wavefield decomposition
prior to cross-correlation can remove particular ghosts and
multiples. Multidimensional deconvolution of perturbed
(time-gated) fields allows us to refocus defocused virtual
sources and remove additional ghosts and multiples.
However, the method leaves particular multiples in place.
To remove all multiples, multidimensional deconvolution
should be applied to decomposed fields. It can be hard to
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Figure 23: PSF for a virtual source at xA = (15000 m, 4000 m);
the red-blue plot is clipped at 20% of the maximum amplitude;
the black and green traces represent true-amplitude temporal and
spatial traces, respectively.

stabilize the required inversion and artifacts can easily be
introduced, especially if illumination conditions are limited.
Through the interferometric Point Spread Function, we can
diagnose illumination variations, ghosts and multiples. As
this function can be obtained directly from the data, it can
be a useful tool for analyzing virtual source focusing and,
consequently, the quality of the retrieved data.

Appendices

A. Least-Squares Inversion

Since (30) does generally not have a unique solution, we aim
to minimize a cost function instead. In least squares theory,
this cost function is generally defined as [57]

Ê(xB,ω) =
∑

i

W
(

x(i)
S

)

ê
(

xB, x(i)
S ,ω

)

ê∗
(

xB, x(i)
S ,ω

)

, (A.1)

where W is introduced as an additional weighting factor and
ê is the misfit between the left- and right-hand side of (30),
that is

ê(xB, xS,ω) = p̂sc(xB, xS,ω)

−
∫

∂A
Ĝptb(xB, xA,ω) p̂inc(xA, xS,ω)dxA.

(A.2)

In least-squares inversion, our goal is to minimize the cost
function Ê at each receiver xB and frequency-component ω.
However, as such inversion is generally unstable, we pose an
additional constraint on minimizing the solution length L̂:

L̂(xB,ω) =
∫

∂A
Ĝptb(xB, xA,ω)

{

Ĝptb(xB, xA,ω)
}∗

dxA. (A.3)

Instead of minimizing Ê, we minimize Ê + ε2L̂, where ε
determines the balance between minimizing the misfit and
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Figure 24: PSF correlation gather for receivers at xA =
(15000 m, 4000 m) and x′A = xA = (15000 m, 4000 m).

minimizing the solution length. Next we start to search for
the solution Ĝptb, obeying

∂
{

Ê(xB,ω) + ε2L̂(xB,ω)
}

∂Ĝptb(xB, xA,ω)
= 0. (A.4)

After some algebra, (A.4) can be rewritten as [57]

Ĉptb
(

xB, x′A,ω
)

=
∫

∂A
Ĝptb(xA, xB,ω)

[

Γ̂ptb
(

xA, x′A,ω
)

+ ε2δ
(

xA − x′A
)]

dxA,

(A.5)

where x′A is at ∂A. Quantities Ĉptb and Γ̂ptb are defined in
(33) and (34). Inversion of (A.5) is equal to finding its least-
squares inverse. By setting ε = 0, (A.5) is similar to (32). This
result is often referred to as the normal equation. For more
details, see Menke [57].

B. Time Gating

To separate incident and scattered fields, we generally rely
on time-gating. Incident fields generally contain not only
primaries but also multiples from the overburden. In the
virtual source method of Bakulin and Calvert [4] it is
advocated to cross-correlate only the direct field (instead of
the full incident field) at the virtual source location with the
scattered fields at the other receivers. In this appendix we
study the advantage of such strategy, using the point spread
function.

First, let us introduce the virtual source correlation
function Ĉvsm of the direct field at receiver xA with the
scattered field at receiver xB:

Ĉvsm(xB, xA,ω)

=
∑

i

W
(

x(i)
S

)

p̂sc

(

xB, x(i)
S ,ω

){

p̂dir

(

xA, x(i)
S ,ω

)}∗
,

(B.1)
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Figure 25: PSF correlation gather for receivers at xA =
(15000 m, 4000 m) and x′A = (15000 m, 2000 m).
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Figure 26: Source spectra to mimic varying source-side conditions
(dB scale).
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Figure 27: PSF for a virtual source at xA = (15000 m, 4000 m) for
a model with varying source spectra; the red-blue plot is clipped
at 20% of the maximum amplitude; the black and green traces
represent true-amplitude temporal and spatial traces, respectively.
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Figure 28: Velocity model for the salt flank imaging example with
gas cloud.
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Figure 29: PSF for a virtual source at xA = (15000 m, 4000 m) for
a model with varying source spectra and a gas cloud; the red-blue
plot is clipped at 20% of the maximum amplitude; the black and
green traces represent true-amplitude temporal and spatial traces,
respectively.

where subscripts vsm and dir stand for “virtual source
method” and “direct field,” respectively. Obviously, the direct
field does not contain the full incident field p̂inc. A particular
section Δ p̂inc is not captured by the time-gate. We may
substitute p̂inc = p̂dir + Δ p̂inc into (30), to show that

p̂sc(xB, xS,ω)− Δ p̂sc(xB, xS,ω)

=
∫

∂A
Ĝptb(xB, xA,ω) p̂dir(xA, xS,ω)dxA,

(B.2)

with

Δ p̂sc(xB, xS,ω) =
∫

∂A
Ĝptb(xB, xA,ω)Δ p̂inc(xA, xS,ω)dxA.

(B.3)
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Figure 30: Reference response (black) and the correlation function
(red) for a virtual source at xA = (15000 m, 4000 m) in a model
with varying source spectra and a gas cloud; reflections 1, 2, and 3
are indicated.
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Figure 31: Reference response (black) and the retrieved response
by MDD (red) for a virtual source at xA = (15000 m, 4000 m) in a
model with varying source spectra and a gas cloud; reflections 1, 2,
and 3 and an inversion artifact are indicated.

Equation (B.2) may be solved by MDD. With similar
reasoning as expressed in Appendix A we can show that this
yields the following normal equation:

Ĉvsm
(

xB, x′A,ω
)

=
∫

∂A
Ĝptb(xB, xA,ω)Γ̂vsm

(

xA, x′A,ω
)

dxA + ĝvsm
(

xB, x′A,ω
)

,

(B.4)
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Figure 32: Migrated section of the salt flank from the CC data in a
model with varying source spectra and a gas cloud; the location of
the salt flank as taken from the velocity model is given by the red
dashed line; markers A–G are discussed in the main text.
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Figure 33: Migrated section of the salt flank from the MDD data in
a model with varying source spectra and a gas cloud; the location
of the salt flank as taken from the velocity model is given by the red
dashed line; markers A–G are discussed in the main text.

where Ĉvsm is the correlation function of the virtual source
method (B.1) evaluated at receiver x′A instead of xA. Γ̂vsm is
the PSF of the virtual source method:

Γ̂vsm
(

x′A, xA,ω
)

=
∫

∂A
W(xS) p̂dir

(

x′A, xS,ω
){

p̂dir(xA, xS,ω)
}
∗
dxS.

(B.5)
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ĝvsm is a ghost term associated with this strategy:

ĝvsm(xB, xA,ω)

= −
∫

∂A
W(xS)Δ p̂sc(xB, xS,ω)

{

p̂dir(xA, xS,ω)
}
∗
dxS.

(B.6)

With (B.4) we have shown that the response as retrieved by
the virtual source method can be interpreted as the desired
Green’s function Ĝptb blurred by Γ̂vsm plus an additional
ghost ĝvsm. In (32) we derived that cross-correlation of
the full incident field instead of the direct field yields the
same Green’s function blurred by Γ̂ptb without a ghost
term. By setting the time-gate, we have thus introduced an
additional ghost. However, since Γ̂vsm does only contain the
cross-correlations of the direct field, this function behaves
generally much more like the desired delta function than Γ̂ptb.
In other words: time-gating the direct field tends to focus the
virtual source, which can also eliminate ghosts, multiples and
blurring. A more detailed discussion on the aspects of time-
gating is beyond the scope of this paper, but we refer to van
der Neut and Bakulin [10] for an analysis in layered media.
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