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ABSTRACT

Imagine placing a receiver at any location in the earth and
recording the response at that location to sources on the surface.
In such a world, we could place receivers around our reservoir to
better image the reservoir and understand its properties. Real-
istically, this is not a feasible approach for understanding the
subsurface. We have developed an alternative and realizable ap-
proach to obtain the response of a buried virtual receiver for
sources at the surface. Our method is capable of retrieving
the Green’s function for a virtual point in the subsurface to
the acquisition surface. In our case, a physical receiver is not
required at the subsurface point; instead, we require the reflec-
tion measurements for sources and receivers at the surface of the
earth and a macromodel of the velocity (no small-scale details of

the model are necessary). We can interpret the retrieved Green’s
function as the response to sources at the surface for a virtual
receiver in the subsurface. We obtain this Green’s function by
solving the Marchenko equation, an integral equation pertinent
to inverse scattering problems. Our derivation of the Marchenko
equation for the Green’s function retrieval takes into account the
free-surface reflections present in the reflection response (pre-
vious work considered a response without free-surface multi-
ples). We decompose the Marchenko equation into up- and
downgoing fields and solve for these fields iteratively. The re-
trieved Green’s function not only includes primaries and inter-
nal multiples as do previous methods, but it also includes free-
surface multiples. We use these up- and downgoing fields to
obtain a 2D image of our area of interest, in this case, below
a synclinal structure.

INTRODUCTION

Traditionally, to image the subsurface using standard imaging
methods, such as reverse time migration (RTM) or Kirchhoff mi-
gration, one usually assumes the first-order Born approximation.
This assumption only allows us to use the primary reflections in
conventional imaging (singly scattered waves). However, without
further precautions, the assumption of the first Born approximation
leads to artifacts in the presence of multiples. To implement conven-
tional imaging and to ensure the assumption of single scattering
holds, one has to remove multiply reflected waves. Multiples con-
sist of internal and free-surface multiples. The removal of free-sur-
face multiples is generally a priority in the recorded reflection
response because free-surface multiples are, in general, stronger
than internal multiples.

To remove surface multiples from the reflection response, there
are model-based methods (Wiggins, 1988; Lokshtanov, 1999), in-
verse-scattering-based methods (Weglein et al., 1997), data-driven
methods (Verschuur et al., 1992; Berkhout and Verschuur, 1997;
Ziolkowski et al., 1999; Amundsen, 2001), and recently, inversion
methods (van Groenestijn and Verschuur, 2009; Ypma and Ver-
schuur, 2013). The data-driven technique proposed by Verschuur
et al. (1992), surface-related multiple elimination (SRME), is a
popular method for attenuating multiples because it has been proven
to be effective on many real data examples. Although internal multi-
ples are weaker, there are data-driven methods (Berkhout and Ver-
schuur, 1997; Verschuur and Berkhout, 2005) and inverse scattering
methods (Ramírez and Weglein, 2005) that remove them from the
reflection response. Removing the multiples is not always a simple
task; in addition, removal does not allow us to use the valuable
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information provided by these multiples. Multiples provide redun-
dant as well as new information that is still useful to improve our
image. Using multiples can increase the illumination and lead to
better vertical resolution in the image (Schuster et al., 2003; Jiang
et al., 2007; Muijs et al., 2007a, 2007b).
A method to use the information embedded in multiples is pro-

posed by Reiter et al. (1991), who use a ray-equation Kirchhoff
depth migration to image with free-surface multiple reflections
and primaries. In the final image, they achieve extended lateral cov-
erage and an increased signal-to-noise ratio compared with imaging
with primaries. However, their method requires reliable separation
of free-surface multiples and primaries. In addition, ray-based algo-
rithms, such as that given in Reiter et al. (1991), might fail in com-
plex geologic structures.
One-way wave-equation migration of multiples is proposed by

Guitton et al. (2002), Muijs et al. (2007a), and Malcolm et al.
(2009) to overcome the shortfalls of ray-based methods. One-
way wave-equation migration limits the imaging of steep angle re-
flectors. Berkhout and Verschuur (2006) modify the principle of
SRME to transform multiples into primaries. Accordingly, these
new primaries can be subjected to the same imaging criteria as nor-
mal primaries. Ong et al. (2002) incorporate reverse time migration
(two-way wave equation) into imaging multiples using the source
and receiver wavefields as the primary and multiple responses, re-
spectively. Although the subsurface image produced by the modi-
fied reverse time migration of multiples gives better illumination
and spatial resolution, there are imaging artifacts caused by
high-order multiples correlating with the primaries, which place
spurious reflectors incorrectly deeper (Ong et al., 2002).
In this paper, we do not investigate the advantages of imaging

with multiples; rather, we show that artifacts caused by multiples
are largely reduced compared with standard imaging techniques.
We propose to use an inverse scattering approach for suppressing
artifacts caused by multiples. The physical bases for exact inverse
scattering are focusing and time reversal (Rose, 2002a, 2002b),
which yield the Marchenko equation. This equation is an integral
equation that links the wavefield at any point x in the medium to the
single-sided reflection response.
Broggini et al. (2012) extend the work of Rose (2002a) to geo-

physics by retrieving the Green’s function from reflected waves at
the surface. These Green’s functions include only primaries and
internal multiples (Broggini et al., 2012, 2014) but no surface-re-
lated multiples because these authors consider a transparent ac-
quisition boundary. They use the Green’s function to image the
subsurface (Marchenko imaging), minimizing artifacts produced
by internal multiples. We have incorporated the free-surface multi-
ples in the Green’s function retrieval algorithm (Singh et al.,
2015); therefore, our retrieved Green’s functions also include
free-surface multiples with the internal multiples and primaries.
The major differences between our previous work (Singh et al.,
2015) and this work are that (1) we show 2D imaging examples,
(2) we use pressure-normalized wavefields compared with flux-
normalized wavefields to obtain the Marchenko-type equations,
and (3) we solve the Marchenko equations using the f1 focusing
functions (more details on normalized wavefields and focusing
functions are given in the “Theory” section). The new focusing
functions f1 directly solve for the up- and downgoing Green’s
functions, and these Green’s functions are used in our imaging
scheme.

There is another approach to imaging using inverse scattering
proposed by Weglein et al. (2003), who use a nonclosed, or series,
solution called the inverse scattering series. Unlike Weglein et al.
(2003), our inverse solution to the wave equation is in the form of
the Fredholm integral equations of the second kind (Marchenko-
type equations).
In this paper, we derive the retrieval of the Green’s function by

solving Marchenko-type equations using pressure-normalized
wavefields. The reason for using pressure-normalized fields is given
in the “Theory” section. We show numerical examples of imaging
the subsurface using the Green’s functions at different depths. Note
that the Green’s function includes primaries, internal multiples, and
free-surface multiples. We call imaging with these Green’s func-
tions Marchenko imaging. The distinction between our work and
the previous papers ofWapenaar et al. (2014a, 2014b) and Slob et al.
(2014) is that we (1) include free-surface multiples in Green’s func-
tion retrieval, (2) do not require the multiples to be removed from
the surface reflection response, and (3) subsequently minimize the
artifacts caused by the free-surface multiples in the imaging.
Here, retrieval of the Green’s function and hence the Marchenko

imaging is an acoustic technique; however, da Costa Filho et al.
(2014), da Costa Filho and Curtis (2015), Wapenaar (2014), and
Wapenaar and Slob (2014) extend the procedures to elastic data
without free-surface multiples.

THEORY

Retrieving Green’s function in the presence of a free surface, us-
ing the Marchenko-type equations, is derived in multiple dimen-
sions by Singh et al. (2015), but their numerical examples are in
1D. The reflection response R that Singh et al. (2015) use to retrieve
these functions is flux normalized, which facilitates the derivation
of the 3D Marchenko equations (Wapenaar et al., 2014a). Similarly,
the retrieval of Green’s function without a free surface also uses
flux-normalized wavefields (Broggini et al., 2012; Wapenaar et al.,
2013). However, the Green’s function retrieval is not restricted to
flux-normalized fields and can be modified to pressure-normalized
fields. Wapenaar et al. (2014a) derive the retrieval of the Green’s
function using pressure-normalized fields in the absence of a free
surface.
In this paper, we demonstrate an alternative approach to Singh

et al. (2015) by using pressure-normalized fields to retrieve the
Green’s function in the presence of a free surface. Like previous
papers on Green’s function retrieval, we obtain these Green’s func-
tions by solving Marchenko-type equations (Slob et al., 2014; Wa-
penaar et al., 2014b). We show 2D numerical examples of the
retrieval and its application to imaging the subsurface. More details
on flux- and pressure-normalized wavefields can be obtained from
Ursin (1983) and Wapenaar and Grimbergen (1996).
Acoustic pressure p and vertical particle velocity v3 are related

to any type of one-way normalized fields (downgoing pþ and
upgoing p−) in the space-frequency domain according to

�
p
v3

�
¼

�
L1 L1

L2 −L2

��
pþ

p−

�
; (1)

conversely, the pþ and p− are related to p and v3 by

R20 Singh et al.
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�
pþ

p−

�
¼ 1

2

�
L−1
1 L−1

2

L−1
1 −L−1

2

��
p
v3

�
: (2)

Here, L1, L2, and their inverses are pseudodifferential operators
(Wapenaar, 1998). For pressure normalization, L1 ¼ I (identity op-
erator), whereas for flux normalization, equation 2 becomes

�
pþ

p−

�
¼

�
Lt
2 Lt

1

Lt
2 −Lt

1

��
p
v3

�
; (3)

where superscript t denotes operator transposition.
In a laterally invariant medium, equations 1 and 2 become, in the

wavenumber-frequency domain,

�
~p
~v3

�
¼

�
~L1

~L1
~L2 − ~L2

��
~pþ

~p−

�
; (4)

and

�
~pþ

~p−

�
¼ 1

2

�
~L−1
1

~L−1
2

~L−1
1 − ~L−1

2

��
~p
~v3

�
; (5)

retrospectively. Here, ~L1, ~L2, and their inverses are scalar functions
(not operators). Equations 4 and 5 hold for any type of normaliza-
tion. For pressure normalization, we have ~L1 ¼ 1 and ~L2 ¼ k3∕ωρ,
where k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2∕c2 − jkj2

p
, with k ¼ ðk1; k2Þ. For flux normaliza-

tion, we have ~L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωρ∕2k3

p
and ~L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3∕2ωρ

p
.

We use pressure-normalized wavefields because the relationship
between the two-way Green’s function and the pressure-normalized
one-way Green’s functions is more straightforward than with flux
normalization. The sum of the one-way pressure-normalized fields
is equal to the pressure. The flux-normalized up- and downgoing
Green’s functions Ḡþ and Ḡ− are related in the space domain to
the two-way Green’s function by (equation 1)

G ¼ L1ðx3;iÞL1ðx3;0ÞðḠþ þ Ḡ−Þ; (6)

where L1ðx3;0Þ and L1ðx3;iÞ are the operators at the depth levels
x3 ¼ x3;0 and x3 ¼ x3;i, respectively.
Therefore, to obtain the two-way Green’s function of the pressure

recording for a source of volume-injection type using flux-normal-
ized one-way wavefields, one must apply L1 at x3 ¼ x3;0 and x3 ¼
x3;i to the sum of Ḡþ and Ḡ−. However, to obtain this same two-way
Green’s function using pressure-normalized wavefields, we add the
up- and downgoing retrieved Green’s functions. Although the pres-
sure-normalized wavefields are simpler to obtain compared with
flux-normalized wavefields, their use in the derivation of the
retrieval of the Green’s function is more involved.
We begin the derivation of the Green’s function retrieval with the

frequency-domain one-way reciprocity theorems of the convolution
and correlation types (Slob et al., 2014; Wapenaar et al., 2014a),
which hold for lossless media between ∂D0 (acquisition surface)
and ∂Di (arbitrary depth level):

Z
∂D0

ρ−1ðxÞ½ð∂3pþ
A Þp−

B þ ð∂3p−
AÞpþ

B �dx0

¼ −
Z
∂Di

ρ−1ðxÞ½pþ
A ð∂3p−

BÞ þ p−
Að∂3pþ

B Þ�dxi; (7)

Z
∂D0

ρ−1ðxÞ½ð∂3pþ
A Þ�pþ

B þ ð∂3p−
AÞ�p−

B�dx0

¼ −
Z
∂Di

ρ−1ðxÞ½ðpþ
A Þ�ð∂3pþ

B Þ þ ðp−
AÞ�ð∂3p−

BÞ�dxi:
(8)

The asterisk * denotes complex conjugation, and the subscripts A
and B denote two wave states. Equations 7 and 8 are the reciprocity
theorems for pressure-normalized one-way wavefields. Equation 8
does not account for evanescent and horizontally propagating
waves, such as surface waves and horizontally diffracted waves;
hence, the presence of these waves in our fields (p�

A and p�
B )

can introduce artifacts in our solutions. The spatial coordinates
are defined by their horizontal and depth components; for instance
x0 ¼ ðxH;0; x3;0Þ, where xH;0 are the horizontal coordinates at a
depth x3;0. These one-way reciprocity theorems hold for up- and
downgoing pressure-normalized fields.

One-way wavefields

The reciprocity theorems are used to solve for the Green’s func-
tion. We define the Green’s function as the response to an impulsive
point source of the volume injection rate at x 0 0

0 just above ∂D0. This
Green’s function obeys the scalar wave equation

ρ∇:
�
1

ρ
∇G

�
−

1

c2
∂2G
∂t2

¼ −ρδðx − x 0 0
0 Þ

∂δðtÞ
∂t

: (9)

We include the time derivative on the right side because we consider
the source to be of the volume injection rate. Using the Fourier con-
vention pðx;ωÞ ¼ ∫ ∞

−∞pðx; tÞ expð−jωtÞdt in the frequency do-
main, equation 9 becomes

ρ∇:
�
1

ρ
∇G

�
þ ω2

c2
G ¼ −jωρδðx − x 0 0

0 Þ: (10)

Because we are using one-way reciprocity theorems, equations 7
and 8, we define our Green’s function (two-way) as a sum of
the up- and downgoing pressure-normalized one-way Green’s func-
tions:

Gðx; x 0 0
0 ;ωÞ ¼ Gþ;qðx; x 0 0

0 ;ωÞ þ G−;qðx; x 0 0
0 ;ωÞ; (11)

where x is the observation point. Defined this way, the one-way
Green’s functions are decomposed at the observation point x de-
noted by the first superscripts þ or −. We consider downward to
be positive; hence, the superscript þ represents downgoing waves,
and − represents upgoing waves. The second superscript (q)
refers to the volume-rate injection source at x 0 0

0 . For instance,
G−;qðx; x 0 0

0 ;ωÞ is the pressure-normalized upgoing Green’s function
at x due to a volume injection source at x 0 0

0 in the frequency domain.
Similar to equation A-11 in Wapenaar et al. (2014a), we define

the vertical derivative of the upgoing Green’s function at the acquis-
ition surface ∂D0, just below the free surface, as

∂3G−;qðx; x 0 0
0 ;ωÞjx3¼x3;0 ¼

1

2
jωρðx0ÞRðx 0 0

0 ; x0;ωÞ: (12)

However, in our case, ∂3G−;q and R include free-surface multiples.
Considering the downward component of the source and the sur-
face-reflected waves, we define

Marchenko imaging for free-surface multiples R21
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∂3Gþ;qðx; x 0 0
0 ;ωÞjx3¼x3;0 ¼ −

1

2
jωρðx0Þ½δðxH − x 0 0

H Þ
þ rRðx 0 0

0 ; x0;ωÞ�; (13)

where r denotes the reflection coefficient of the free surface (in the
simple examples shown in this paper, r is −1). For the downgoing
field ∂3Gþ;q, at and below ∂D0, we consider the downward com-
ponent of the source −1∕2jωρðx0ÞδðxH − x 0 0

H Þ and the reflections
from the free surface −1∕2jωρðx0ÞrRðx 0 0

0 ; x0;ωÞ, similar to the
Marchenko derivation with flux-normalized fields from Singh et al.
(2015). At ∂Di, the up- and downgoing waves are G−;q and Gþ;q,
respectively. We define state A, shown in Figure 1, as the one-way
pressure-normalized wavefields in the actual medium p�

A at ∂D0

and ∂Di, as shown in Table 1.
Similar to the previous papers that derive Marchenko-type equa-

tions (Wapenaar et al., 2013, 2014a; Slob et al., 2014; Singh et al.,
2015), we also define focusing functions as state B (see Figure 2).
The focusing function f1 is a solution of the sourceless wave equa-
tion for the waves that focus at a point at the bottom of the truncated
medium. The truncated reference medium is reflection free above
∂D0 and below ∂Di, but it is the same as the actual medium between
∂D0 and ∂Di (see Figure 2). The f1 function is defined as waves that
focus at x 0

i at a defined depth level (∂Di) for incoming fþ1 and out-
going f−1 waves at the acquisition surface (∂D0) x0 (Figure 2).

The one-way wavefields for the f1 function at the depth levels
∂D0 and ∂Di, which we define as state B, are shown in Figure 2 and
Table 2. The one-way focusing function fþ1 ðx; x 0

i ; tÞ is shaped such
that f1ðx; x 0

i ; tÞ focuses at x 0
i at t ¼ 0. At the focusing point x 0

i of f1,
we define ∂3f1ðx; x 0

i ; tÞ as −1∕2ρðx 0
i ÞδðxH − x 0

HÞ∂δðtÞ∕∂t, a 2D and
1D Dirac delta function in space and time, respectively. After the
focusing point, f1ðx; x 0

i ; tÞ continues to diverge as a downgoing
field fþ1 ðx; x 0

i ; tÞ into the reflection-free reference half-space
(Wapenaar et al., 2014a).
By substituting the one-way wavefields given in Table 1 (state A)

and Table 2 (state B) into the convolution reciprocity theorem, equa-
tion 7, we get the upgoing Green’s function

G−;qðx 0
i ; x

0 0
0 ;ωÞ ¼

Z
∂D0

½fþ1 ðx0; x 0
i ;ωÞRðx 0 0

0 ; x0;ωÞ

− rf−1 ðx0; x 0
i ;ωÞRðx 0 0

0 ; x0;ωÞ�dx0
− f−1 ðx 0 0

0 ; x
0
i ;ωÞ: (14)

Likewise, substituting the one-way wavefields in Tables 1 and 2 into
the correlation reciprocity theorem, equation 8, we get the down-
going Green’s function:

Gþ;qðx 0
i ; x

0 0
0 ;ωÞ ¼ −

Z
∂D0

½f−1 ðx0; x 0
i ;ωÞ�Rðx 0 0

0 ; x0;ωÞ

− rfþ1 ðx0; x 0
i ;ωÞ�Rðx 0 0

0 ; x0;ωÞ�dx0
þ fþ1 ðx 0 0

0 ; x
0
i ;ωÞ�: (15)

Equations 14 and 15 are identical to the equations forG− andGþ of
Singh et al. (2015); however, our Green’s functions are pressure
normalized. In addition, unlike Singh et al. (2015), there is no need
to use equation 6 to obtain the two-way Green’s function; one can
use equation 11 to get G. Equations 14 and 15 are the starting point
for deriving the 3D Marchenko-type equations.

Marchenko’s equations

Equations 14 and 15 are two equations for four unknowns
(Gþ;q; G−;q; fþ1 , and f−1 ). After an inverse Fourier transform, we
can separate these equations into two temporal parts: times earlier
than the first arrival and times later than the first arrival of the
Green’s function at the virtual receiver location. We consider
tdðx 0

i ; x
0 0
0 Þ to be the first-arrival time of the Green’s function. Hence,

we can separate equations 14 and 15 for t ≥ td and t < td. These
temporal constraints, along with the causality requirements, give
rise to two equations and two unknowns for f�1 , after which we
can retrieve G�;q by substitution into equations 14 and 15.

An estimate of the first-arrival time tdðx 0
i ; x

0 0
0 Þ

is, for example, obtained by using finite-differ-
ence modeling of the waveforms in a smooth
velocity model that acts as a macromodel. Evalu-
ating equations 14 and 15 for times before td
yields

f−1 ðx000 ;x0i ;tÞ¼
Z
∂D0

dx0

Z
t

−∞
½fþ1 ðx0;x0i ;t0Þ

×Rðx000 ;x0;t−t0Þ−rf−1 ðx0;x0i ;t0Þ
×Rðx000 ;x0;t−t0Þ�dt0; (16)

Figure 1. The one-way Green’s functions in the actual inhomo-
geneous medium in the presence of a free surface at the acquisition
surface ∂D0 and the arbitrary surface ∂Di. The tree indicates the
presence of the free surface.

Table 1. The pressure-normalized one-way wavefields in the actual inhomo-
geneous medium in the presence of a free surface at the depth level ∂D0 and
∂Di. Here p�A symbolizes one-way wavefields at arbitrary depth levels in the
inhomogeneous medium, whereas r is the reflection coefficient of the free surface.

∂D0 ∂3pþ
A ¼ ∂3Gþ;qðx0; x 0 0

0 ;ωÞ ¼ − 1
2
jωρðx0ÞðδðxH − x 0 0

H Þ þ rRðx 0 0
0 ; x0;ωÞÞ

∂3p−
A ¼ ∂3G−;qðx0; x 0 0

0 ;ωÞ ¼ 1
2
jωρðx0ÞRðx 0 0

0 ; x0;ωÞ
∂Di pþ

A ¼ Gþ;qðxi; x 0 0
0 ;ωÞ

p−
A ¼ G−;qðxi; x 0 0

0 ;ωÞ

R22 Singh et al.
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fþ1 ðx 0 0
0 ;x

0
i ;−tÞ ¼

Z
∂D0

dx0

Z
t

−∞
½f−1 ðx0;x 0

i ;−t 0ÞRðx 0 0
0 ;x0; t− t 0Þ

− rfþ1 ðx0;x 0
i ;−t 0ÞRðx 0 0

0 ;x0; t− t 0Þ�dt 0; (17)

because causality dictates that G�;q vanish for t < tdðx 0
i ; x

0 0
0 Þ.

In the reference medium in which the focusing functions exist,
we can define up- and downgoing waves with respect to transmis-
sion responses Tðx0; x 0

i ; tÞ at arbitrary depth levels (state C), as
shown in Figure 3. Hence, Tðx0; x 0

i ; tÞ is the transmission in the
reference medium that is the actual inhomogeneous medium be-
tween ∂D0 and ∂Di, but it is homogeneous above and below
∂D0 and ∂Di.
The up- and downgoing waves in Figure 3 are defined in Table 3

according to the reciprocity relations.
Substituting the one-way wavefields represented in Tables 2 and

3 into the one-way convolution reciprocity theorem, equation 7
yields

δðx 0 0
H − x 0

HÞ ¼
Z
∂D0

∂3Tðx0; x 0
i ;ωÞ

− 1
2
jωρðx0Þ

fþ1 ðx0; x 0 0
i ;ωÞdx0; (18)

where we represent the source positions of the focusing function fþ1
with double primes instead of single primes. For simplicity, we

define T ðx0; x 0
i ;ωÞ ¼ ð∂3Tðx0; x 0

i ;ωÞÞ∕ð−1∕2jωρðx0ÞÞ; hence, in
the time domain (from equation 18), fþ1 is the inverse of the trans-
mission response:

fþ1 ðx0; x 0
i ; tÞ ¼ T invðx0; x 0

i ; tÞ: (19)

Analogous to Wapenaar et al. (2014b), Slob et al. (2014), and
Singh et al. (2015), we adopt the assumption for the pressure-nor-
malized version of fþ1 to be

fþ1 ðx0; x 0
i ; tÞ ¼ T inv

d ðx0; x 0
i ; tÞ þMðx0; x 0

i ; tÞ; (20)

where T inv
d is the inverse of the direct arrival of the transmission

response and M is the coda following T inv
d . We can approximate

T inv
d as the time-reversed direct arrival of the pressure-normalized

Green’s function (hence the need for a smooth velocity model as
previously mentioned).
Substituting assumption 20 into the time-domain representation

of equations 16 and 17 yields the following Marchenko equations
for t < tdðx 0

i ; x
0 0
0 Þ:

Figure 2. Focusing function f1 that focuses at x 0
i in the reference

medium, in which above ∂D0 is homogeneous and below ∂Di is
reflection free.

x x
i

Figure 3. The transmission response Tðx0; x 0
i ; tÞ in the reference

configuration.

Table 3. The one-way wavefields in the reference medium at
the acquisition surface ∂D0 and the level in which f 1 focuses
∂Di. Here p�C symbolizes one-way wavefields in the frequency
domain at arbitrary depth levels in the reference medium
(see Figure 3). The source location is just below ∂Di.

∂D0 ∂3pþ
C ¼ 0

∂3p−
C ¼ ∂3Tðx0; x 0

i ;ωÞ
∂Di pþ

C ¼ 0

p−
C ¼ δðxH − x 0

HÞ

Table 2. The one-way wavefields of the focusing function f 1
at the acquisition surface ∂D0 and the level in which f 1
focuses ∂Di. Here p�B symbolizes one-way wavefields in the
frequency domain at arbitrary depth levels in the truncated
reference medium (see Figure 2).

∂D0 pþ
B ¼ fþ1 ðx0; x 0

i ;ωÞ
p−
B ¼ f−1 ðx0; x 0

i ;ωÞ
∂Di ∂3pþ

B ¼ ∂3fþ1 ðxi; x 0
i ;ωÞ ¼ − 1

2
jωρðx 0

i ÞδðxH − x 0
HÞ

∂3p−
B ¼ ∂3f−1 ðxi; x 0

i ;ωÞ
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f−1 ðx 0 0
0 ; x

0
i ; tÞ

¼
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−∞
T inv

d ðx0; x 0
i ; t

0ÞRðx 0 0
0 ; x0; t − t 0Þdt 0

þ
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

Mðx0; x 0
i ; t

0ÞRðx 0 0
0; x0; t − t 0Þdt 0

− r
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

f−1 ðx0; x 0
i ; t

0ÞRðx 0 0
0; x0; t − t 0Þ�dt 0;

(21)

Mðx 0 0
0 ;x

0
i ;−tÞ

¼
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

f−1 ðx0;x 0
i ;−t 0ÞRðx 0 0

0 ;x0; t− t 0Þdt 0

− r
Z
∂D0

dx0

Z
∞

−tϵdðx 0
i ;x0Þ

Mðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; tþ t 0Þ�dt 0

− r
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−t
T inv

d ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; tþ t 0Þ�dt 0;

(22)

with tϵdðx 0
i ; x0Þ ¼ tdðx 0

i ; x0Þ − ϵ, where ϵ is a small positive constant
to include the direct arrival in the integrals. We choose to solve the
Marchenko equations 21 and 22 iteratively as follows:

f−1;kðx 0 0
0 ;x

0
i ; tÞ

¼
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−∞
T inv

d ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; t− t 0Þdt 0

þ
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

Mk−1ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; t− t 0Þdt 0

− r
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

f−1;k−1ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; t− t 0Þ�dt 0;

(23)

Mkðx 0 0
0 ;x

0
i ;−tÞ

¼
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

f−1;kðx0;x 0
i ;−t 0ÞRðx 0 0

0 ;x0; t− t 0Þdt 0

− r
Z
∂D0

dx0

Z
∞

−tϵdðx 0
i ;x0Þ

Mk−1ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; tþ t 0Þ�dt 0

− r
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−t
T inv

d ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; tþ t 0Þ�dt 0:

(24)

Note that we are not limited to solving the Marchenko equations
iteratively; one can use a preferred integral solver such as conjugate
gradients or least-squares inversion. The corresponding focusing
function fþ1 for each iteration reads (from equation 19),

fþ1;kðx0; x 0
i ; tÞ ¼ T inv

d ðx0; x 0
i ; tÞ þMk−1ðx0; x 0

i ; tÞ: (25)

Marchenko iterative scheme

We initialize the Marchenko iterative scheme by obtaining the
direct arrival of Green’s function. The time-reversed version of this
direct arrival can be used as an approximation for T inv

d that takes
into account traveltimes and geometric spreading but ignores trans-
mission losses at the interfaces (Wapenaar et al., 1989, 2014a).
With this initialization, the iterative scheme for k ¼ 0 is as

follows:

f−1;0ðx 0 0
0 ; x

0
i ;−tÞ ¼

Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−∞
T inv

d ðx0; x 0
i ; t

0Þ

× Rðx 0 0
0 ; x0; t − t 0Þdt 0; (26)

M0ðx 0 0
0 ;x

0
i ;−tÞ

¼
Z
∂D0

dx0

Z
t

−tϵdðx 0
i ;x0Þ

f−1;0ðx0;x 0
i ;−t 0ÞRðx 0 0

0 ;x0; t− t 0Þdt 0

− r
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−t
T inv

d ðx0;x 0
i ; t

0ÞRðx 0 0
0 ;x0; tþ t 0Þ�dt 0:

(27)

Now the iterative scheme described in equations 23–25 can be ini-
tiated with equations 26 and 27 to solve for fþ1 and f−1 . These fo-
cusing functions can then be substituted in equations 11, 14, and 15
to obtain the retrieved two-way pressure-normalized Green’s func-
tion, and the up- and downgoing one-way pressure-normalized
Green’s function, respectively.

Marchenko imaging

Broggini et al. (2012, 2014), Behura et al. (2014), Wapenaar et al.
(2011, 2014b), Slob et al. (2014), and Singh et al. (2015) have all
used the retrieved one-way Green’s functions to produce an image.
Marchenko imaging is built on the concept of obtaining the reflec-
tion response from the up- and downgoing wavefields at an arbitrary
depth level. The use of up- and downgoing wavefields for imaging
is not a new principle. Claerbout (1971), Wapenaar et al. (2000),
and Amundsen (2001) show that one can get the reflection response
below an arbitrary depth level once the up- and downgoing wave-
fields are available.
The governing equation for imaging with such one-way wave-

fields is (Wapenaar et al., 2008)

G−;qðx 0
i ; x

0 0
0 ; tÞ ¼

Z
∂Di

dxi

Z
∞

−∞
Gþ;qðxi; x 0 0

0 ; t − t 0Þ

× R0ðx 0
i ; xi; t

0Þdt 0; (28)

where ∂Di is an arbitrary depth level and R0 is the reflection re-
sponse of the medium below ∂Di. Note that equation 28 holds
for outgoing and incoming wavefields normal to the surface
∂Di. However, the retrieved Green’s functions (current methods)
are strictly up- and downgoing wavefields at arbitrary depth levels,
which correspond to a flat surface ∂Di. The reflection response R0,
in equation 28, is the response as if everything above ∂Di is trans-
parent. Therefore, R0 is a virtual reflection response as if there were
receivers and sources at ∂Di, in the absence of a free surface at ∂Di.
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Significantly, the response R0 is blind to the actual overburden
above ∂Di. Wapenaar et al. (2014b) have shown the retrieval of this
virtual reflection below a complex overburden. In this paper, any
variable with a subscript 0 (e.g., R0) indicates that no free surface
is present.
We choose to solve for R0 in equation 28 by multidimensional

deconvolution (van der Neut et al., 2011). Details of solving equa-
tion 28 using retrieved Green’s functions are given in Wapenaar
et al. (2014b). The significant difference between our work and
the previous Marchenko imaging papers is that our Green’s func-
tions include information of the actual medium with the free surface
and include all (free surface and internal) multiples. This corre-
sponds to minimizing the artifacts caused by free-surface multiples
and internal multiples in the imaging. Once we obtain R0 at each
image point, our subsurface image is the contribution of R0 at zero
offset and zero time, i.e., R0ðxi; xi; 0Þ.

NUMERICAL EXAMPLES

Our numerical model has variable velocity and density, as shown
in Figures 4 and 5, respectively. We use a 2D inhomogeneous
subsurface model with a syncline structure. The horizontal range
of the model is −3000 to 3000 m. Our goal is to show (1) the
retrieval of Green’s function Gðx 0

i ; x
0 0
0 ; tÞ for a virtual receiver at

xi ¼ ð0; 1100Þ m and the corresponding variable source locations
at x 0 0

0 and (2) the subsurface image below the syncline structure.
To obtain Green’s function, we need the pressure-normalized reflec-
tion response Rðx 0 0

0 ; x0;ωÞ and a macromodel (no small-scale de-
tails of the model are necessary). The reflection response is

computed by finite differences with vertical-force sources and par-
ticle velocity receiver recordings, at the surface. The receiver spac-
ing is 10 m, and the source is a Ricker wavelet with a central
frequency of 20 Hz. We use this finite-difference response and
equation 2 to get the pressure-normalized reflection response
Rðx 0 0

0 ; x0;ωÞ that we deconvolve with the source wavelet. See Fig-
ure 6 for an example of a single shot at x 0 0

0 ¼ ð0; 0Þ m with the
direct arrivals from source to receivers removed. The macromodel
is a smooth version of the velocity model that we use to compute the
traveltimes of the direct arrival (see Figure 7). No density informa-
tion is required.
We use the macromodel to obtain the first arrival from the virtual

source at xi ¼ ð0; 1100Þ m to the surface (by an eikonal solver).
This first arrival is time reversed to initialize the iterative scheme
with T inv

d as well as to guide us in choosing the time windows
for equations 14–17. Figure 8 shows T inv

d that is equivalent to fþ1;0.

Focusing functions

We build the focusing functions fþ1;k and f−1;k using the iterative
scheme in equations 23–25. Figure 9 shows the functions fþ1;k and
f−1;k for iteration index k ¼ 0; 1; 5. Note that these one-way focusing
functions reside in the time window −td < t < td.
The integrals that we use to solve for the focusing function, equa-

tions 16 and 17, have spatial limits between −∞ and ∞, which
means that we require an infinite aperture. In our implementation,
we truncate the spatial integral because data are, in practice, ac-

Figure 4. The velocity model ranging from velocities 1.9 to
2.8 km∕s as shown in the color bar.

Figure 5. The density model ranging from densities 1 to 3.5 g∕cm3

as shown in the color bar.

Figure 6. The reflection response corresponding to the inhomo-
geneous velocity and density model in Figures 4 and 5 with the
source and receivers at the surface.

Figure 7. Macromodel, i.e., smooth version of Figure 4, used to
compute the first arrivals from the virtual source location to the sur-
face.
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quired for a finite range of offsets. This truncation requires tapering
at the edges of the reflection response, which corresponds to the
reduced amplitudes of the focusing functions at the far offsets.
From iteration index k ¼ 0 to k ¼ 1, new events are generated in

the focusing function. Even the focusing function f−1;k at k ¼ 0 al-
ready has the main features that are obtained after five iterations. In
iteration k ¼ 1 to k ¼ 5, the focusing functions look kinematically
similar. Higher order iterations generally correct the amplitude er-
rors in the focusing functions.

Green’s function retrieval

By substituting the focusing functions in equations 14 and 15,
we obtain the one-way pressure-normalized Green’s functions, as
shown in Figure 10. These up- and downgoing Green’s functions
are the response for a receiver at x 0

i ¼ ð0; 1100Þ m and variable
source locations x 0 0

0 . To enhance the internal and free-surface multi-
ples in Figure 10, we display Green’s functions with a time-
dependent gain of exp 1.5t.
The two-way Green’s function is given as the summation of the

up- and downgoing Green’s functions. A comparison of this re-
trieved two-way Green’s function with the modeled Green’s func-
tion (modeled with the exact small-scale variations in the velocity
and density) is shown in Figure 11. Again, we apply a gain of
exp 1.5t to Green’s functions in Figure 11. The retrieved and mod-
eled Green’s functions match almost perfectly, as shown in
Figure 11. As expected, the far offsets do not provide a good match;
in particular, the recovered amplitudes are too low because we trun-
cate the spatial integrals at the far offsets in the Marchenko
equations.

Comparison of Green’s functions with and without the
free surface

The previous formulations of Green’s function retrieval, men-
tioned in the “Introduction” section, require the reflection response
without free-surface multiples. This means that an additional

Figure 8. The time-reversed first arrival for a virtual source at xi ¼ð0; 1100Þ m and receivers at the surface. This event is used to ini-
tialize the Marchenko iterative scheme (T inv

d ).

a)

b) d) f)

c) e)

Figure 9. One-way focusing functions fþ1;k and f−1;k that focus at x 0
i for iteration index k ¼ 0; 1; 5.
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processing step to remove the surface reflections is required before
implementing the Green’s function retrieval algorithm for past for-
mulations. For such an implementation, the Green’s function does
not include free-surface multiples; hence, the imaging procedure

does not take these multiples into account. Figure 12 shows the
up- and downgoing one-way Green’s function without free-surface
multiples. Green’s functions in Figure 12 are retrieved using the
Marchenko method that does not take into account free-surface
multiples (Broggini et al., 2014; Wapenaar et al., 2014a); we re-
move the free-surface multiples from the reflection response before
retrieving these Green’s functions.
The Green’s functions in Figure 12 are the response for a virtual

receiver position x 0
i ¼ ð0; 1100Þ m and variable source positions

x 0 0
0 . Here, a time-dependent gain of exp 1.5t is applied to the
Green’s functions. As expected, the Green’s functions with the free
surface Gþ and G− have greater waveform complexity and higher
amplitudes than the Green’s functions in the absence of the free
surface Gþ

0 and G−
0 . This is obvious for times later than 1.5 s

for Figures 10 and 12.
The events in the one-way Green’s functions G� may be stronger

than in G�
0 . For times later than 1 s, the free-surface multiples (in

red) dominate in Figure 13. In addition, we avoid SRME on the
reflection response using the Marchenko equations for Green’s
function retrieval that includes free-surface multiples (our work).
It remains to be investigated to what extent these retrieved multiples
improve the image quality.

Marchenko imaging — Target oriented

Ttarget-oriented Marchenko imaging entails retrieving the up-
and downgoing Green’s functions in the target area and using

a)

b)

Figure 10. One-way pressure-normalized Green’s functions Gþ
(downgoing) and G− (upgoing) for a virtual receiver position x 0

i ¼ð0; 1100Þ m and a range of source positions x 0 0
0 . These Green’s

functions include free-surface multiples.

Figure 11. The retrieved two-way Green’s function (in red) super-
imposed on the modeled Green’s function (in blue, computed
by finite differences with the small-scale details in the velocity
and density model included) for a virtual receiver position
x 0
i ¼ ð0; 1100Þ m and a range of source positions x 0 0

0 .

a)

b)

Figure 12. One-way pressure-normalized Green’s functions Gþ
0

(downgoing) and G−
0 (upgoing) for a virtual receiver position x 0

i ¼ð0; 1100Þ m and a range of source positions x 0 0
0 . These Green’s

functions do not include free-surface multiples.
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them to construct the target image in Figure 14. Figure 15 shows the
Marchenko imaging of the model in Figure 14. To compute this
image, we retrieve the up- and downgoing Green’s functions

G�;qðx 0
i ; x

0 0
0 ; tÞ at the virtual receiver locations x 0

i ¼ ðx 0
H; x3;iÞ rang-

ing from x 0
H;i ¼ −2 to 2 km and x3;i ¼ 1 to 2 km. We sample x 0

H;i
and x3;i every 40 and 10 m, respectively, to retrieve the Green’s
function. These functions are used to invert for R0ðxi; x 0

i ; tÞ as ex-
plained in the “Theory” section. The contribution to the image is
R0ðxi; xi; 0Þ, which is R0 at zero offset and zero time for the
range of xi.
The target-oriented Marchenko image, Figure 15, has its artifacts

caused by the internal multiples and free-surface multiples in the
overburden largely suppressed. If the free-surface multiples were
incorrectly handled by Marchenko imaging, then the associated
multiples caused by the syncline and the layers within the syncline
would be present in our image. However, Marchenko imaging
removes the artifacts related to the multiples caused by these inter-
faces, assuming sufficient aperture, and proper sampling (men-
tioned in this paper). To understand the adverse effects that the
multiples have on the subsurface image, we show an reverse time
migration image in Figure 16, which we know does not place multi-
ples at the correct depth level. Only a magnified portion of the entire
reverse time migrated image is shown in Figure 16, corresponding
to the section containing the target location. Figure 16 includes
many artifacts introduced by the multiples such that the actual re-
flectors in the model are masked by these artifacts.
We also remove the free surface from the reflection response and

again conduct reverse time migration, as shown in Figure 17. Note
that the reverse time migration image still has artifacts because the

Figure 14. Region of the velocity model targeted for imaging. Note
that we do not use this model to implement the Marchenko imaging;
we use a smooth version of the velocity model (Figure 7) only. This
model ranges from −2 to 2 km in the x1-coordinate and 1–2 km in
the x3-coordinate.

Figure 15. Target-oriented Marchenko imaging of the model in
Figure 14 below the syncline structure. The image is R0ðxi; xi; 0Þ
for xi ranging from xH ¼ −2 to 2 km and x3;i ¼ 1 to 2 km.

Figure 16. Magnified portion of the reverse time migrated image
for the model in Figure 14 below the syncline structure. The surface
reflection response used for imaging includes primaries, internal
multiples, and free-surface multiples.

Figure 13. Green’s function G0 without the free surface (blue) and
Green’s function G with the free surface (red) for a virtual receiver
at x 0

i ¼ ð0; 1100Þ m and a range of source positions x 0 0
0 .

Figure 17. Magnified image of the reverse time migration for the
model in Figure 14 below the syncline structure. The surface reflec-
tion response used for imaging includes primaries and internal mul-
tiples, and the free-surface multiples are removed.
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reflection response has internal multiples that are not correctly
handled by reverse time migration. These artifacts can be seen
by comparing the target model in Figure 14 with the reverse time
migration examples. The artifacts are either nonexistent or minimal
in the target-oriented Marchenko imaging, as shown in Figure 15.

CONCLUSION

We have shown that we can retrieve the Green’s function at any
location in the subsurface without any knowledge of the small-scale
variations of the subsurface once we have sufficient aperture cover-
age on the surface over the virtual source location. These Green’s
functions include not only primaries and internal multiples but also
free-surface multiples. To retrieve the Green’s function, we require
the reflection response at the surface and a macromodel of the sub-
surface overburden velocity (at least between the surface and the
virtual source depth level). In comparison to previous work on
the Green’s function retrieval by the Marchenko equation, our re-
flection response at the surface includes free-surface multiples, and
therefore, it obviates the need to remove free-surface multiples in
the reflection response.
The reflection response is required to be well-sampled at the

surface. Such as in standard (primary) wavefield extrapolation
methods, the accuracy of our Green’s function retrieval depends
on the kinematic accuracy of the macromodel. Note, however, that
the recovery of multiples in the Green’s function is not negatively
affected by moderate errors in the macromodel. Another assumption
of the Green’s function retrieval scheme, in our present implemen-
tation, is that all waves can be decomposed into up- and downgoing
events; hence, horizontally propagating waves are not included in
our current method.
Once we know the Green’s function at the surface and the virtual

receiver locations, we should be able to infer the properties inside
the medium (volume). We can form an image in two ways:
(1) downward continuation of the reflection response to a given
reference level at the top of the target zone and then performing
conventional imaging in the target and (2) target-oriented imaging
at all depth levels in the target. In this paper, we follow the second
approach. We construct a target-oriented image by deconvolution of
the up- and downgoing Green’s functions, evaluated at zero offset
and zero time for all depth levels in the target.
In the numerical examples, we observe no significant artifacts in

the Marchenko image due to misplaced multiples, even though the
reflection response includes multiples (no preprocessing is done to
remove the multiples). How the multiples can improve the image is
yet to be investigated; however, Marchenko imaging largely sup-
presses the artifacts caused by internal and free-surface multiples.
Significantly, the inputs for Marchenko imaging and the current

state-of-the-art imaging techniques are the same: the reflection re-
sponse and a macromodel. However, in Marchenko imaging, we
accurately handle not only the primaries but also the multiples.
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