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SUMMARY

Green’s theorem plays a fundamental role in a diverse range of wavefield imaging applications,
such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric
Green’s function retrieval. In many of those applications, the homogeneous Green’s function
(i.e. the Green’s function of the wave equation without a singularity on the right-hand side) is
represented by a closed boundary integral. In practical applications, sources and/or receivers
are usually present only on an open surface, which implies that a significant part of the
closed boundary integral is by necessity ignored. Here we derive a homogeneous Green’s
function representation for the common situation that sources and/or receivers are present on
an open surface only. We modify the integrand in such a way that it vanishes on the part of the
boundary where no sources and receivers are present. As a consequence, the remaining integral
along the open surface is an accurate single-sided representation of the homogeneous Green’s
function. This single-sided representation accounts for all orders of multiple scattering. The
new representation significantly improves the aforementioned wavefield imaging applications,
particularly in situations where the first-order scattering approximation breaks down.
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1 INTRODUCTION

In optical, acoustic and seismic imaging, the central process is
the retrieval of the wavefield inside the medium from experiments
carried out at the boundary of that medium. Once the wavefield
is known inside the medium, it can be used to form an image
of the interior of that medium. The process to obtain the wave-
field inside the medium is in essence a form of optical, acoustic
or seismic holography (Porter 1970; Lindsey & Braun 2004). At
the basis of these holographic methods lies Green’s theorem, often
cast in the form of a homogeneous Green’s function representa-
tion or variants thereof. Although this representation is formulated
as a closed boundary integral, measurements are generally avail-
able only on an open boundary. Despite this limitation, imaging
methods based on the holographic principle work quite well in
practice as long as the effects of multiple scattering are negligible.
The same applies to linear inverse source problems (Porter & De-
vaney 1982) and linearized inverse scattering methods (Oristaglio
1989). However, in strongly inhomogeneous media the effects of
multiple scattering can be quite severe. In these cases, approxi-
mating the closed boundary representation of the homogeneous
Green’s function by an open boundary integral leads to unaccept-
able errors in the homogeneous Green’s function and, as a conse-

quence, to significant artefacts in the image of the interior of the
medium.

In the field of time-reversal acoustics, the response to a source
inside a medium is recorded at the boundary of the medium, re-
versed in time and emitted back from the boundary into the medium.
Because of the time-reversal invariance of the wave equation, the
time-reversed field obeys the same wave equation as the original
field and therefore focuses at the position of the source. The back-
propagated field can be quantified by the homogeneous Green’s
function representation (Fink 2008). Time-reversed wavefield imag-
ing (McMechan 1983) uses the same principle, except that here the
time-reversed field is propagated numerically through a model of the
medium. Time-reversal acoustics suffers from the same limitations
as holographic imaging and inverse scattering: when the original
field is recorded on an open boundary only, the back-propagated
field is no longer accurately described by the homogeneous Green’s
function.

In the field of interferometric Green’s function retrieval, the
recordings of a wavefield at two receivers are mutually cross-
correlated. Under specific conditions (equipartitioning of the wave-
field, etc.), the time-dependent cross-correlation function converges
to the response at one of the receivers to a virtual source at the
position of the other, that is, the Green’s function (Larose et al. 2006;
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Schuster 2009). The method is related to time-reversed acoustics
and hence the retrieved Green’s function can be described by the ho-
mogeneous Green’s function representation (Wapenaar & Fokkema
2006). When the positions of the primary sources are restricted to
an open boundary, the retrieved Green’s function may become very
inaccurate.

The aim of this paper is to derive a single-sided homogeneous
Green’s function representation which circumvents the approxima-
tions inherent to the absence of sources/receivers on a large part of
the closed boundary. We show that with our single-sided representa-
tion it is possible to obtain the complete response to a virtual source
anywhere inside the medium, observed by virtual receivers any-
where inside the medium, from measurements on a single boundary
(note that in our earlier work on the Marchenko method the response
to the virtual source was only obtained for receivers at the surface).

2 THE CLASSICAL HOMOGENEOUS
GREEN’S FUNCTION
REPRESENTATION AND ITS
APPLICATIONS

For the closed-boundary configuration of Fig. 1(a), the homoge-
neous Green’s function representation for an arbitrary inhomo-
geneous lossless medium reads (Porter 1970; Oristaglio 1989;
Wapenaar & Fokkema 2006)

—1
Gh(x4, X3, ) = 7{ -
an Jop(X)

—9,G*(x, x4, w)G(X, Xp, a))}n[dzx, (D
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Figure 1. (a) Visualization of the homogeneous Green’s function represen-
tation (eq. 1). Note that the rays in this figure represent the full responses
between the source and receiver points, including multiple scattering. (b)
Configuration for the modified representation. When the integrals along
0ID¢ and 0Dy vanish, a single-sided representation remains.

where Green’s function G(X, X3, ) is the frequency-domain re-
sponse to a unit source at Xz, observed at x (with w denot-
ing angular frequency), G*(x, X4, ) (with the asterisk super-
script denoting complex conjugation) is a back-propagating Green’s
function, and Gu(x4, X3, ®) = G(X4, X5, ®) + G*(X4, Xp, W) =
2R{G (x4, Xp, w)} (With N denoting the real part) is the homo-
geneous Green’s function. Furthermore, p(x) is the mass density,
j the imaginary unit, d; denotes differentiation with respect to x;,
and 0D is a closed boundary with outward pointing normal vec-
tor n = (ny, ny, n3); the domain enclosed by dID is denoted as ID.
Einstein’s summation convention applies to repeated subscripts.
Another common form of the homogeneous Green’s function
is Gu(x4, X5, @) = G(X4, X5, @) — G* (x4, Xz, ), with G = G/jw.
Further details about the derivation and different forms of the clas-
sical homogeneous Green’s function representation can be found in
the Supporting Information.

In imaging and inverse scattering applications, G(X, Xz, ) in
eq. (1) stands for measurements at the boundary 9D, G*(x, x4, ®)
back-propagates these measurements to x4 inside the medium, and
Gu(x4, Xp, w) (fixed xp, variable x,) quantifies the resolution of
the image around xg. For sufficiently large 0D and a homogeneous
medium outside dID, eq. (1) can be approximated in the time domain
by (Wapenaar & Fokkema 2006; Fink 2008)

Gh(Xp, X4, 1) & if G(xp, X, 1) * G(x, x4, —1)d’x, )
PC Jop

where ¢ denotes time, c¢ is the propagation velocity and the inline
asterisk denotes temporal convolution. In time-reversal acoustics,
G(x, x4, —1) is the time-reversed field injected from the boundary
into the medium, G(xp, X, f) propagates this field to xp inside the
medium and Gy,(x3, X4, ?) (fixed x4, variable x) describes the time-
dependent evolution of the injected field through the medium. In
interferometric Green’s function retrieval, G(xz, X, t) * G(X4, X,
—1) describes the cross-correlation of measurements at xz and x4
of responses to sources at the boundary, and the causal part of
Gu(xp, X4, t) is the time-dependent response to a virtual source at
X4, observed at xp.

3 AN AUXILIARY FUNCTION

In many practical cases, the medium of investigation can be ap-
proached from one side only. Hence, the exact closed boundary
integral in eq. (1) is by necessity approximated by an open bound-
ary integral, which leads to severe errors in the homogeneous
Green’s function, particularly when the medium is strongly inhomo-
geneous so that multiple scattering cannot be ignored. We consider
a closed boundary 0D which consists of three parts, according to
0D = 0D; U 0D¢ U 9Dy, see Fig. 1(b). Here dDD, is the accessible
boundary of the medium where the measurements take place. For
simplicity we will assume it is a horizontal boundary, defined by
x3 = x3 . The second part of the closed boundary, D¢, is a hori-
zontal boundary somewhere inside the medium, at which no mea-
surements are done. This boundary is defined by x; = x3, ¢, withx; ¢
> x3, g (the positive x;3-axis is pointing downward). It is chosen suffi-
ciently deep so that both x, and x; lie between dDy and 9D ¢. Finally,
0Dy, is a cylindrical boundary with a vertical axis through x4 and
infinite radius. This cylindrical boundary exists between 9Dy and
dD¢ and closes the boundary dD. The contribution of the inte-
gral over 0lD.,; vanishes (but for another reason than Sommerfeld’s
radiation condition, Wapenaar et al. (1989)).
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We modify eq. (1) for this configuration as follows
G(X4, X5, ®) + G*(Xp, X4, ©)

1 = _
= / ]Tp{GZZa}GB — 83G’;G3}d2x
IDp

- / ,L{Gt, 3Gy — ;GG p}d’x, A3)
ane JWP

where we used n = (0,0, —1) on 8D andn = (0,0, +1) on 8D¢. G
and Gj are short-hand notations for (_;(x, X4, w) and G(X, Xp, ), re-
spectively. Note that we replaced G(x, X4, w) by a reference Green’s
function G(x, X, w), to be distinguished from the Green’s function
G(X, Xp, w) in the actual medium. Both Green’s functions obey
the same wave equation in D (with different source positions), but
at and outside D = 9Dy U 9D the medium parameters for these
Green’s functions may be different (Wapenaar et al. 1989). For the
Green’s function G(X, X4, @) we choose a reference medium which
is identical to the actual medium below 9D, but homogeneous at
and above 0.

Next, at 9D we choose boundary conditions in such a way
that the integral along 0D vanishes. Imposing either a Dirichlet
or a Neumann boundary condition is not sufficient because when
G(x, X4, w)is zero on D¢ then 3; G(X, X4, w) is not, and vice versa.
Hence, G(X, X4, w) cannot obey Dirichlet and Neumann conditions
simultaneously. To deal with this problem, we introduce an auxiliary
function T'(x, ) which we subtract from the reference Green’s
function, according to

G(x, x4, w) = G(x,x,, ) — ['(x, w). @)

The function I'(x, @) is defined in the reference medium and obeys
the same wave equation as G(X, X 4, ), but without the singularity
at x,. As a consequence, G(X, X4, ) — I'(X, w) obeys the same
wave equation as G(x, X4, ), with the singularity at x,. Hence,
in eq. (3) we may replace G(x, X4, w) by G(x, X1, w) — I'(x, w),
according to

G(X4, Xp, 0) + {G(Xp, X4, @) — ['(Xp, w)}*

1 _ _
- f (G = T Ga — (G = T Gl
D

[ G- Ty 8Gs - G- TG 9)
ane JWP

When a function I'(x, w) can be found such that G(x, x,, ) —

I'(x, w) obeys the Cauchy boundary condition (i.e. simultaneous

Dirichlet and Neumann boundary conditions) on dD¢, then the

integral along D¢ vanishes.

Introducing auxiliary functions is a common approach to manip-
ulate the boundary conditions (Morse & Feshbach 1953; Berkhout
1982). In fact it has been previously proposed for the integral in
eq. (5) (Weglein et al. 2011), but a straightforward way to find a
I'(x, w) that obeys the conditions for an arbitrary inhomogeneous
medium has, to the knowledge of the authors, not been presented
yet. Recent work of the authors (Wapenaar et al. 2014) concerns
the generalization of the single-sided 1-D Marchenko method for
inverse scattering (Marchenko 1955) and autofocusing (Rose 2002;
Broggini & Snieder 2012) to the 3-D situation. We show with intu-
itive arguments that the so-called focusing functions, developed for
the single-sided 3-D Marchenko method, provide a means to find
I'(x, w). For a more precise derivation we refer to the Supporting
Information.

Fig. 2(a) shows a focusing function f,"(x, x4, w) (downward
pointing red rays), which is emitted from the homogeneous up-
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Figure 2. Visualization of the auxiliary function I'(x, w). It consists of
the focusing functions fli(x, X4, ®) and —{ff(x, X4, w)}* (red and blue
rays) and the Green’s function G(x, X4, w) (green rays). By subtracting this
auxiliary function from the Green’s function (eq. 4), the field in the half-
space below x4 vanishes and hence obeys the Cauchy boundary condition
at 0Dc.

per half-space into the medium to focus at x,. Because there is
no sink at x, to annihilate the focused field fﬁ(x 4, X4, @), the
field continues to propagate as if there were a source for down-
going waves at x, (indicated by the green rays). The response
to this virtual downward radiating source mimics a part of the
Green’s function G(x, X, ). We now discuss how the remaining
part of the Green’s function is obtained. Before reaching the focus,
a part of the focusing function is reflected upward and is called
fi (X, x4, @) (upward pointing blue rays in Fig. 2(a)). Fig. 2(b)
visualizes the emission of the back-propagating focusing function
—{f] (x, x4, w)}* into the medium (downward pointing red rays).
Its response consists of —{f;"(x, x4, w)}* (upward pointing blue
rays), and a field apparently originating from a source for upgo-
ing waves at x4 (indicated by the green rays). The response to
this virtual upward radiating source mimics the remaining part of
the Green’s function G(x, x,, w). Figs 2(a) and (b) together vi-
sualize the auxiliary function I'(X, w). It consists of the Green’s
function G(x, X4, w) (the green rays in both figures) and, above the
focal point, the focusing function fi(X, x4, ®) — { f1(X, X4, ®)}*,
with fi(x, X4, ®) = f;7(X, X4, @) + f (X, X4, ®) (the red and blue
rays). Hence,

I'(x,w) = G(X, X4, w) + H(x3 4 — x3)2j3{ f1(X, X4, ®)}, (6)

where H(xs) is the Heaviside step function and J denotes the imag-
inary part. With this definition, G(x, X4, @) — I'(X, w) vanishes in
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Figure 3. Visualization of the single-sided homogeneous Green’s function
representation (eq. 8). Similar as in Fig. 1, the rays in this figure represent
the full responses between the source and receiver points, including multiple
scattering.

the half-space below x,. Because this function is zero in an en-
tire half-space, its derivative is zero as well and hence it obeys the
Cauchy boundary condition at D .

4 THE SINGLE-SIDED HOMOGENEOUS
GREEN’S FUNCTION
REPRESENTATION

Substitution of eq. (6) into eq. (5) gives
G(x4, X, @) + H(x3 4 — x3.8)2j3{ fi(Xp, X4, @)}
2
- / (ss{ Fix, x4, @)} G(x, X5, )
aDg a)p(x)

=305 £i(% x4, )| G(X, X5, @) ). )
Taking the real part of both sides of this equation gives

Gu(x4, X3, W)

2
- ./E]D) wp(x) <S{f1 (X’ X4, a))}BS Gh(X, Xg, a))

—3(0: fi(%, X4, @) Gy(x, X5, @) ). @®)

This is the main result of this paper. The homogeneous Green’s
function Gy(x4, X, @), with both x,; and x; inside the medium, is
represented by an integral along the acquisition boundary D only
(Fig. 3).

Note that the Green’s function Gy(X, Xp, w) under the inte-
gral can be obtained from a similar representation. With some
simple replacements (see Supporting Information for details) we
obtain

Gi(x, Xp, ®)

2
= LD (l)p(X/) (g{fl(x,, Xz, (0)}83,, Gh(x’ X/, w)

—3{0Lf1(X, X5, @)} Gn(x, X', w))dzx’, ©)

with x on 0Dy and x’ on 8D, just above dDg. Note that Gy(x, X/,
w) stands for the reflection response at the surface. Hence, eqs (8)
and (9) can be used to retrieve Gy(x4, X3, ) from G(x, X', w) in
a data-driven way. The complete procedure is as follows. Define
the initial estimate of the focusing function fi(x/, X3, w) by the
time-reversed direct arrivals between xz and x’ at the boundary.
Retrieve the complete focusing function f;(x', Xp, ) from its initial
estimate and the reflection response G(x, X', w) at the surface,
using the iterative Marchenko method (Wapenaar et al. 2014). Use

(@ _ z1(m)

¢(m/s)
2200

2000

1800

1600

z1(m)

21 (m)

—> 1000

1000
st
1200-
Figure 4. Numerical example, illustrating the application of the single-
sided homogeneous Green’s function representations (eqs 8 and 9). (a)

Inhomogeneous medium. (b) Snapshot of G(x4, Xp, 1) + G(x4, Xp, —1) at
t=0.15 s, for fixed xg = (0, 800) and variable x4. (c) Idem, for 7 = 0.30 s.

eq. (9) to obtain Gy(X, Xz, w) from Gy(x, X', ®). This step brings
the sources down from x’ on 9Dy to xz. Next, in a similar way use
eq. (8) to obtain G(x4, X3, w) from Gy(X, X3, w). This step brings
the receivers down from x on 9D to x4.

Recall that the Green’s functions without bars are defined in
the actual medium, which may be inhomogeneous above dDx. For
example, similar as discussed by Singh er al. (2015), there may
be a free boundary just above 9Dy, in which case the second term
under the integral in eqs (7)—(9) vanishes. In the following example,
however, the half-space above 9Dy, is homogeneous. Fig. 4(a) shows
a 2D inhomogeneous medium. We modelled the reflection response
G(x, X/, w) for 600 sources and 600 receivers, with a horizontal
spacing of 10 m, at the upper boundary. The central frequency
of the band-limited source function is 30 Hz. Using the process
described above we obtain Gy(X4, Xg, @), or in the time domain
Gu(x4, X, 1) = G(X4, Xp, ) + G(x4, X3, —1). The Supporting
Information contains a movie of Gy,(x4, X3, t) for ¢ > 0. Figs 4(b)—
(c) show ‘snapshots’ of this function for # = 0.15 s and t = 0.30 s,
respectively, each time for fixed xz = (0, 800) and variable x 4. Note
that the movie and snapshots nicely mimic the response to a source
at xz = (0, 800), including scattering at the interfaces between
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layers with different propagation velocities. It is remarkable that this
virtual response is obtained from the reflection response at the upper
boundary plus estimates of the direct arrivals, but no information
about the positions and shapes of the scattering interfaces has been
used. Yet the virtual response clearly shows how scattering occurs
at the interfaces.

5 DISCUSSION

Unlike the classical homogeneous Green’s function representation
(eq. 1), the single-sided representation of eq. (8) can be applied in
situations in which the medium of investigation is accessible from
one side only. We foresee many interesting applications, which we
briefly indicate below.

Eq. (8) will find its most prominent applications in holographic
imaging and inverse scattering in strongly inhomogeneous media.
As illustrated in the previous section, the two-step procedure de-
scribed by eqs (8) and (9) brings sources and receivers down from the
surface to arbitrary positions in the subsurface. For weakly scatter-
ing media (ignoring multiples), a similar two-step process is known
in exploration seismology as source—receiver redatuming (Berkhout
1982; Berryhill 1984). For strongly scattering media (including mul-
tiple scattering) a similar two-step process, called source-receiver
interferometry, has previously been formulated in terms of closed-
boundary representations for the homogeneous Green’s function
(Halliday & Curtis 2010). Our method replaces the closed bound-
ary representations in the latter method by single-sided represen-
tations. Once Gu(X4, X3, ®) is obtained, an image can be formed
by setting x4 equal to xg. However, Gy,(x4, X, t) for variable and
independent virtual sources and receivers contains a wealth of ad-
ditional information about the interior of the medium, as can be
witnessed from Fig. 4. The advantages of the two-step process for
holographic imaging and inverse scattering will be further explored.
Results like that in Fig. 4 could for example also be used to pre-
dict the propagation of microseismic signals through an unknown
subsurface.

For the field of time-reversal acoustics, the inverse Fourier trans-
form of eq. (7) forms an alternative to eq. (2). It shows that, instead
of physically injecting G(x, x4, —¢) from a closed boundary into the
medium, the function f (X, X4, £) — f1(X, X4, —f) should be injected
into the medium when it is accessible only from one side. The in-
jected field will focus at x4 and subsequently the focused field will
act as a virtual source.

The application of eq. (8) for interferometric Green’s function re-
trieval is very similar to the redatuming procedure described above.
However, in the field of seismic interferometry the Green’s func-
tions G(X4, X, #) and G(x3, X, f) usually stand for measured data.
This has the potential to obtain a more accurate estimate of the
focusing function f (X, X4, #). Substituting its Fourier transform into
eq. (8), together with that of the measured response G(x;, X, t), may
yield an even more accurate recovery of the homogeneous Green’s
function.

We foresee that the single-sided representation of the homo-
geneous Green’s function will lead to many more applications in
holographic imaging, inverse scattering, time-reversal acoustics and
interferometric Green’s function retrieval.
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by direct modelling.
(http://gji.oxfordjournals.org/lookup/suppl/doi: 10.1093/gji/
ggw023/-/DC1).
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1 DERIVATION OF THE CLASSICAL
HOMOGENEOUS GREEN’S FUNCTION
REPRESENTATION

We consider the scalar wave equation for the acoustic pres-
sure in an arbitrary inhomogeneous lossless medium,

0:(p~"0ip) — KO P = —0rq. (1)

Here p = p(x,t) is the acoustic pressure, with x =
(21, 22, z3) denoting position in a Cartesian coordinate sys-
tem (with the positive zs-axis pointing downward) and ¢
denoting time. Further, x = k(x) and p = p(x) are the
compressibility and mass density of the medium, respec-
tively, and ¢ = ¢(x,t) is the source function in terms of
volume-injection rate density. Differentiation with respect
to time is denoted by O:; and differentiation with respect
to x; by 0;. Einstein’s summation convention applies to
repeated subscripts (except for subscript t). The propaga-
tion velocity ¢ = ¢(x) of the medium is related to x and
p via c = (Hp)71/2. Although we consider here specifically
the acoustic wave equation, all that follows applies to other
scalar wave equations by making the appropriate substitu-
tions.

The Green’s function G(x,x4,t) is defined as the re-
sponse to an impulsive source at x4 = (21,4, 2,4, 23,4) and
t = 0, observed at x. It obeys the following wave equation

di(p 1 0:G) — KOF G = —6(x — x4):6(t). (2)

To get the causal solution of equation (2), we impose the
initial condition G(x,x4,t) = 0 for all ¢ < 0. This corre-
sponds to the physical radiation condition of outgoing waves
at infinity. Because wave equation (2) is time-symmetric
(except for the source function, which is anti-symmetric
in time), the time-reversed Green’s function G(x,xa,—t)
is a solution of the same wave equation, but with oppo-
site sign for the source on the right-hand side. This time-
reversed solution is acausal and obeys the final condition
G(x,x4,—t) =0 for all ¢ > 0. This corresponds to the non-
physical radiation condition of incoming waves at infinity.
The homogeneous Green’s function Gi(x, x4, t) is defined as

the sum of the causal and acausal Green’s functions, hence
Gu(x,%xa4,t) = G(x,%x4,t)+G(x,%x4, —t). It obeys the homo-
geneous wave equation (i.e., the wave equation without the
singularity on the right-hand side). We define the temporal
Fourier transform of a space- and time-dependent quantity
p(x,t) as

px) = [ pxt)exp(—jut)dt, 3)
where w is the angular frequency and j the imaginary
unit. To keep the notation simple, we denote quantities in
the time and frequency domain by the same symbol. In
the frequency domain, the homogeneous Green’s function
is defined as Gh(x,x4,w) = G(x,x4,w) + G*(X,X4,w) =
2R{G(x,%x4,w)}, where G(x,x4,w) is the Fourier transform
of G(x,x4,t), the asterisk superscript denotes complex con-
jugation, and R stands for the real part. We derive a repre-
sentation for Gu(x,xa,w) from Rayleigh’s reciprocity the-
orem (Rayleigh 1878; de Hoop 1988; Fokkema & van den
Berg 1993) for two acoustic states A and B in a domain
D enclosed by boundary 0D with outward pointing normal
n = (n1,n2,n3). In the frequency domain this theorem reads

1
/{‘JAPB —pags}dix = ?{ Jwp {padipp—(Dipa)ps}nid’x.
D oD
(4)

Here ga and pa are the source and acoustic pressure in state
A, whereas qp and pp are these quantities in state B. The
medium parameters for state A and B are identical in D,
hence, the two states obey the same wave equation in D, but
at and outside D the medium parameters may be different.
Because of the time-reversal invariance of the wave equation,
the complex conjugates —¢% and p}% obey the same wave
equation as ga and pa. Making this replacement in equa-
tion (4) we obtain a second form of Rayleigh’s reciprocity
theorem (Bojarski 1983),

* * _1 * *
/ {dips+pigs}d’x = j{ J.Tp{pA&'pB—(8ipA)pB}nid2X~
D oD
(5)

Substituting ¢ga = 0(x — xa), pa = GX,x4,w) =
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G(xa,X,w), gg = d(x — xB) and pp = G(x,xpB,w) into
equation (5), with x4 and xp both situated in D, it follows
that the homogeneous Green’s function can be represented
as (Porter 1970; Oristaglio 1989; Wapenaar & Fokkema
2006)

—1
Gh(XAaxBaw) = f‘
o

n Jjwp(x)
—0;,G* (x,%x4,w)G (%, x5, w) }nd*x.

(6)

This is equation (1) for the configuration of Figure 1(a) in
the main paper.

Another form of the homogeneous Green’s func-
tion representation exists for a modified Green’s function
G(x,%xa,t), obeying the wave equation

i (p~'0iG) — KOFG = —8(x — x)d(t). (7)

In comparison with equation (2), the time-derivative of the
delta function on the right-hand side is absent. The solutions
of both equations are related via G(x,x4,t) = 0:G(x,x4,t).
For this modified Green’s function, the homogeneous
Green’s function is given by Gn(x,x4,t) = G(x,xa,t) —
G(x,%x4,—t) or, in the frequency domain, Gn(x,x4,w) =
G(x,xa,w) — G"(x,x4,w) = 2j3{G(x,xa,w)}, where
S denotes the imaginary part. Using G(x,xa,w) =
JjwG(x,%a,w), it easily follows from equation (6) that the
modified homogeneous Green’s function can be represented
as

{G" (x,%x4,w)0:;G(x,xp,w)

1 * G(x,XB,w
gh<XA,xB,w>=feaD@{g (%, %4, )00 (%, X5, @) (8)

—0;G*(x,%x4,w)G(x,x8, w)}nid2x.

This equation, with Gn(xa,x5,w) = 2jS{G(x4,xB,w)}, is
the more common form of the classical homogeneous Green’s
function representation (Porter 1970; Oristaglio 1989). Nev-
ertheless, we prefer to continue with the representation of
equation (6) for the following reasons. First, the Green’s
function G(x,x4,t), obeying wave equation (2), has a clear
physical meaning: it represents the response in terms of
acoustic pressure to an impulsive point source of volume-
injection rate density (this is easily seen by comparing equa-
tion (2) with equation (1)). Second, unlike Gn(xa,xB,t),
which is anti-symmetric in time and therefore vanishes at
t = 0, the homogeneous Green’s function Gn (x4, x5, t) does
not vanish at ¢ = 0, which makes it better suited for imag-
ing applications. Third, the representation of equation (6)
is consistent with earlier work of the authors on seismic in-
terferometry (Wapenaar & Fokkema 2006) and Marchenko
imaging (Wapenaar et al. 2014).

For the configuration of Figure 1(b) in the main paper
we modify equation (6) to

G(xa,xp,w) +{G(xp,xa,w) — ['(x5,w)}* 9)
— / L {(@a—T)0uGs — 05(Ga - T) C)}dx
by JWP

—/ L (@A —T)0:G5 — 05(Ga — T) G},
one Jwp

where G4 and G are short-hand notations for G(x,x4,w)
and G(x,xp,w), respectively. 0Dr and D¢ are horizon-
tal bounderies, defined by z3 = z3 r and x3 = z3,c, re-
spectively (with zs.c > x3.r). We replaced G(x,x4,w)

c(x3) c(x3) c(x3)
T3,R+ T3,R+ T3.R+
xr3,4 4 x3,4 4 xr3,4 4
3,0+ 3,0+ 3,0+
T3 T3 T3

truncated

actual medium reference medium reference medium

Figure S.1. Illustration of a vertical cross-section of one of the
medium parameters (c(z3)), for the actual medium, the reference
medium (homogeneous above x3 r) and the truncated reference
medium (homogeneous above z3 r and below x3 4). G(x,%xpB,w)
is defined in the actual medium, G(x,x4,w) and I'(x,w) in the
reference medium, and fi(x,x4,w) in the truncated reference
medium.

by a reference Green’s function G(x,x4,w), to be distin-
guished from the Green’s function G(x,xp,w) in the ac-
tual medium. Both Green’s function obey the same wave
equation in D (with different source positions), but at and
outside 0D = 0Dgr U dD¢ the medium parameters for these
Green’s functions may be different. For the Green’s function
G(x,x4,w) we choose a reference medium which is identical
to the actual medium below 0Dg, but homogeneous at and
above 0Dg. This is illustrated in Figure S.1 for a vertical
cross-section through the medium. The auxiliary function
I'(x,w) is defined in the reference medium and obeys the
same wave equation as G(x, X4, w), but without the singu-
larity at x4. In the next section we derive a function I'(x,w)
such that G(x,x4,w) —I'(x,w) obeys the Cauchy boundary
condition (i.e., simultaneous Dirichlet and Neumann bound-
ary conditions) on dD¢.

2 DERIVATION OF THE AUXILIARY
FUNCTION

We start by introducing a focusing function fi(x,xa4,w),
where x4 denotes a focal point in D (hence, between ODgr
and 0D¢). We truncate the reference medium at the depth
level D4 of the focal point x4: below D4 the truncated
reference medium is homogeneous. This is illustrated in Fig-
ure S.1 for a vertical cross-section. Recall that the reference
medium is the actual medium with the half-space above 0D g
replaced by a homogeneous medium. Hence, the truncated
reference medium is the actual medium between 0Dgr and
0D 4, sandwiched between homogeneous half-spaces. The fo-
cusing function fi(x,x4,w) is defined in the truncated refer-
ence medium. We explicitly write this function as a superpo-
sition of its downgoing and upgoing constituents, according
to

fl(x,xA,w)=f1+(x,xA,w)+f1_(x,xA,w), (10)

where superscript + stands for downgoing and — for upgo-
ing, both at observation point x (Figure S.2). The down-
going field f;'(x,x4,w) is incident to the truncated ref-
erence medium from the homogeneous upper half-space
(z3 < x3,r). This field is shaped such that at the focal depth
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Figure S.2. Focusing function fi(x,x4,w) = f1+(x7 XA, w) +
fi (%,x4,w) in the truncated reference medium.

x3 = x3,4 the following conditions are obeyed (Wapenaar
et al. 2014; Slob et al. 2014)

O 17 (%, %4, sy may 4 = — j0p(3)3(oass — xar,a), (1)
83.][‘1_ (X, XA7w)|CC3:1’3,A =0. (12)

Here xp stands for the horizontal components of the coor-
dinate vector, hence, xu = (21, 22) and X, 4 = (1,4, %2,4).
The factor — 3 jwp(x) is chosen for convenience and for con-
sistency with previous work. At and below the focal depth
there is no upgoing field because the truncated reference
medium is homogeneous below the truncation depth. A fo-
cusing function which exactly obeys condition (11) is un-
stable in the evanescent field. In the following we exclude
evanescent wave components and tacitly assume that the
spatial delta function in equation (11) is band limited. Note
that, despite the focusing condition formulated in equation
(11), the focusing function fi(x,x4,w) obeys the wave equa-
tion without a singularity on the right-hand side. Hence, the
focal point x4 is not a sink; below the focal depth the func-
tion f;(x,x.4,w) continues propagating downward.

Next we derive a relation between the focusing function
in the truncated reference medium and the Green’s func-
tion in the reference medium (without the truncation). To
this end we apply the two forms of Rayleigh’s reciprocity
theorem, equations (4) and (5), to the truncated domain
Dtrunc. The lower boundary of this domain is dD 4, defined
by x3 = x3,4. For the upper boundary we choose dDg (de-
fined as z3 = x3,5), just above dDg. Furthermore, because
we decomposed the focusing function, we modify the bound-
ary integrals in equations (4) and (5) for decomposed wave
fields, according to (Wapenaar et al. 2014)

/D (4ap5 — pags}d®x = (13)

trunc

2
= {(8sp)ps + (Bsp7)ph ydx
/QDS ]wp{( 304)Pp + (03p4)P5 }

2
- = {(8sp)pgs + (Bspa)pf rd3x,
/BDA pr{( 3pa)Ps + (03pa)PB}

and

[ taiwe + piasa’x = (14)
Dtrunc
2 4k 4 —\k — 2
- ——{(93pa) g + (0sp4) ppid x
ang JWP

2 * — Nk —
+ / 2 {(Bspk) vl + (Bsp3) P }%x,
op, JWp

respectively, with pa = pj; +p, and pp = p'g +pg- Equation

(13) is exact, whereas in equation (14) evanescent wave com-
ponents are neglected. We decompose the reference Green’s
function into downgoing and upgoing waves at observation
point x, according to

(x,x',w) = GF (x,x,w) + G~ (x,x',w), (15)

(x, X/7W)|z3=13,s = G_(X, X/vw)|m3=13,sv (16)

QA

with x' anywhere below dDg, hence x5 > 3,5. Equation
(16) states that the reference Green’s function is purely up-
going at 0Dg. This is because the reference medium is ho-
mogeneous above dDg, whereas the source of the Green’s
function is chosen below dDg. Substituting p(x,w) =
fli(xaxAvw)7 qA(Xaw) =0, pﬁ(wi) = Gi(xvx,aw) and
g(x,w) = J(x — x') into equations (13) and (14), using
equations (10) — (12), (15) and (16), gives

G~ (xa,x,w) + H(zz,4 — z5) f1(x',x4,w) 7
= —2/ G,(X7X,7w)763f:(x,x,q,w) 2
oDs Jwp(x)
and
G (xa,x',w) — H(zz 4 — z5) fi(x',x4,w) (18)

_ 3 (x, %, w {0af; (x, x4, )}
—2f G xR

respectively, where H(z3) is the Heaviside step func-
tion. Summing these equations, using G~ (x, x w) =

G(x,x',w) = G(x',x,w) for x5 = z3,3, gives

.
2
d”x,

G(x',xa,w) + H(ws.a — 25)253{ f(x, xa,0)}  (19)

= G(X,7X, w)f(x7 XA7w)d2X7
aDg

with
20y (i e, 0) — L (e xa,0)))
Jopl It Goxar) = e ) ).
(20)
The right-hand side of equation (19) describes propagation
of the function f(x,x4,w) from the boundary dDg to any
point x’ in the medium below dDs. Note that the “propa-
gator” G(x’,x,w), evaluated as a function of x’ below 9Ds,
obeys the wave equation without a singularity at x’ = x4 on
the right-hand side (nor anywhere else below 0Dgs). Hence,
the expression on the left-hand side of equation (19) also
obeys the wave equation without a singularity on the right-
hand side. This is one of the conditions for the auxiliary
function I'. We define I'(x,w) by the expression on the left-
hand side of equation (19) (with x’ replaced by x)

f(x,xa,w) =

I(x,w) = G(x,x4,w) + H(zs,a — x3)253{ f1(x,%x4,w)}.
(21)
This is equation (6) in the main paper.
Upon substitution of equation (21) into equation (9) we
obtain

G(XA7 XB, UJ) + H(JL'?,,A - -TB,B)Qj%{fl (X37 XA, UJ)} (22)

= [ s (S xa )G

—3{0sf1(x,%x4,w)}G(x,%xB, w)) d*x.
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Taking the real part of both sides of this equation gives

Gh(xa,xB,w) =/
a

o wp(X) (%{fl (x,%x4,w)}03Gh(x, x5, w)

fg{agfl(x,xA,w)}Gh(x,XB,w))d2x. (23)

This is equation (8) in the main paper. Note that the Green’s
function G (X, xB,w) in the right-hand side can be obtained
from a similar representation. To see this, replace in the
right-hand side of equation (23) ODgr by dDs just above
ODRg, replace x on ODg by x’ on dDg, xp inside the medium
by x on ODgr and x4 by xp. This gives a representation
for Gn(xB,%,w). Using Gn(xB,X,w) = Gun(x,xp,w) and
G(x',x,w) = G(x,x',w) we finally get

2
Gh(x,xB,w :/
nboxe )= o)

— {04 f1(x, x5, w) } G (%, x/,w))dQX'. (24)

(SUAG xa,0) 105G (x, X', w)
This is equation (9) in the main paper.

3 ALTERNATIVE DERIVATION OF THE
SINGLE-SIDED REPRESENTATION

Equation (22) has been obtained by inserting an auxiliary
function into the standard homogeneous Green’s function
representation (equation 9). This auxiliary function is de-
fined in such a way that the closed-boundary integral reduces
to a single-sided representation. Here we present an alterna-
tive derivation of equation (22), which misses the clear link
with the standard homogeneous Green’s function represen-
tation, but which is more direct.

Our starting point is again formed by equations (4) and
(5). We define the boundary 0D as the combination of dDg
(upper boundary) and D4 (lower boundary). The domain
between these boundaries is denoted as Dtyunc. Unlike in the
previous section, this time we only modify the boundary
integral along 0D 4 for decomposed wave fields, according to

/ (4aps — pags}d®x = (25)
Dtrunc

1
—/ ——{padspp — (93pa)pr}d’x
opnp JWP

2 _ _
- /a e GV R AT
A

and

/ {dips + phgs}d’x = (26)
Dtrunc

1 % *
/ —{padsps — (0spia)ps}d*x
P

Dy JWP
2 * — Nk —
+/ —{(8sp}) Pk + (93p2) Pp}d’x,
ap, JwWpP
Our aim is to derive a relation between the focusing
function in the truncated reference medium and the Green’s
function in the actual medium (which may be inhomoge-
neous above ODg). Substituting pi(x,w) = fE(x,xa,w),
qa(x,w) = 0, ph(xw) = GE(x,xp,w) and qs(x,w) =
d(x—xp) into equations (25) and (26), using equations (10)

— (12) and G(x,xB,w) = G (x,xB,w)+G~ (x,x5,w), gives
G~ (xa,xp,w) + H(x3.4 — x3,8) [1(xB,%XA,w) (27)
1
= /{aDR Gop®) (f1(x, x4, w)03G(x,x5,w)

{0 1(%, %4, }G(x, X5,w) ) d*x
and
G+(XA,XB7L«))—H($3,A —x3,8) 1 (XB,XA,W) (28)

1 *
—_— /am)R m(h (x,%4,w)03G (%, XB,w)

—{0s 1 (3, %, @) }G(x, x5, ) ) d*x.

Summing these two equations yields equation (22).
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