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3-D recursive extrapolation operators

Jan Thorbecké

1.1 Introduction

To visualize the 3-D subsurface of the earth 3-D migratiggpathms are needed which give
accurate results within a reasonable computation timehignGhapter severaecursive depth
migrationalgorithms are discussed and compared with each other. atidbne of every re-
cursive depth migration algorithm is a 3-D extrapolatiayoaithm. In lateral homogeneous me-
dia the extrapolation algorithm can be a simple multiplaain the wavenumber domain, but
extrapolation through 3-Dimensional inhomogeneous mesde&amore computation intensive
operation and requires a space-variant spatial convoluRecently various authors (Holberg
(1988); Blacquere (1989); Hale (1991b); Soubaras (1992); Sollid and Am{4994); Gaiser
(1994); Biondi and Palacharla (1994) and Kao et al (1994yehmublished articles which pay
attention to an optimized calculation and efficient impletagion of 3-Dimensional extrapola-
tion operators in a recursive depth migration. This Chaptiégive an overview of the existing
methods and introduces several efficient optimization amglementation methods that have
not yet been discussed in the Geophysical literature. Thgatation times of the different al-
gorithms are compared with each other and the performanteaxtrapolation algorithm is
checked with the aid of a simple synthetic experiment.

1.2 Wave field extrapolation in the space-frequency domain

In laterally homogeneous media the recursive one-way pakation operator in thé,, k,-w
(wavenumber-frequency) domain can be well representetdophiase shift operator (Gazdag,
1978):

2
Pk, by, A2) = exp (—j\/ S~ (B +2)A2) (L.1)
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with Az being a small extrapolation step. The advantage of computatthek,, k,-w domain

is that the desired result is obtainedoyltiplicationof the data with the phase shift operator.
However, to allow laterally varying medium functions a spaariantconvolutionoperator in
thez, y-w (space-frequency) domain should be used. When the spatrapelation operator
is used in an explicit recursive depth migration algorithimmust be calculated in such a way
that it gives reliable and stable results within a reas@abmputation time. To arrive at this
goal two steps must be taken; the first step is an optimum desithe spatial operator and the
second step deals with a fast implementation of the spatadalution. It turns out that the most
efficient algorithms combine these two steps and designtaaspperator in such a way that it
can be implemented in a fast way.

A first subdivision between the different optimization methodsloamade with respect to the
type of expansion of the analytical phase shift operatangéqn (1.1)) in the wavenumber do-
main. This expansion can be a (Taylor) series expansiorecdialytical phase shift operator
with respecttd:, = \/ k? — (k2 + k2) (this Chapter), an expansion with respectio= k2 +k§
((Berkhout, 1982), (Soubaras, 1992), (Sollid and Arntd&94), (Hoff, 1995) and this Chap-
ter) or an expansion with respect to the cosine terms of tBeFburier transformation (Hale,
1991a). In equations (1.4) to (1.6) these different appnation to the phase shift operator are
shown

Fo(kz, ky) = exp (—jk.Az) 1.2)
M N
~ > Y Fopcos (kymAz) cos (kynAy) (1.3)
m=0n=0
M
~ > F, cos(k,mAx) (1.4)
m=0
M
~ Y amlk+ k" (1.5)
m=0
M
A by k)" (1.6)
m=0

Equation (1.3) is the direct method which calculates the&«apolation operatdr,,,,, by a di-
rect optimization method and can be regarded as a weighpatheton in 2-Dimensional cosine
terms. The direct method requires a full 2-Dimensionaligpabnvolution. Equation (1.4) is
a reduction of the 2-Dimensional filter problem to a 1-Dimenal filter problem by using the
circular symmetry of the 2-D operator and is representechtxgansion in 1-Dimensional co-
sine terms. The 1-Dimensional filter problem, to obt&jn can be solved with a preferred 1-D
optimization method (Thorbecke and Rietveld, 1994). TH2 desine terms are approximated
by short 2-Dimensional convolution filters.

Equation (1.5) and (1.6) are expansions of the operatormrspectral polynomials. The terms
a,, andb,, in the series expansions can be obtained by calculating#féaents from a Taylor
expansion (Berkhout, 1982), or optimizing the coefficiemtt an error definition in a preferred
norm (for example thé., or L., norm, see Appendix C ). The basic polynomikjs+ kj and
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expansion optimization implementation
cos (k) cos (k) Least Squares 2-D convolution
cos (/K3 + k) Weighted Least Squares 1-D convolution
VR — (B2 +K2) Non-Linear Chebyshev
k2 + k2 Remez Exchange Series

Table 1.1 Three criteria which are used to discriminate between difie 3-Dimensional extrapola-
tion algorithms. Note that in principle many combinatioretvieeen the elements in the three
blocks are possible.

k. which occur in equations (1.5) and (1.6) are approximateshioyt and accurate convolution
operators.

A secondsubdivision between the different extrapolation alganghtan be made with respect
to the kind of optimization method used to obtain the spatalvolution operator. The type of
implementation of the spatial convolution ighard criterion to discriminate between the dif-
ferent methods. Table 1.1 gives an overview of the diffeteatiniques which can be used in
the expansion, optimization and implementation. Noteithptinciple many combinations be-
tween the elements in the three blocks are possible. Forgradtolberg (1988) and Blacogrie
(1989) use a non-linear optimization technique for the afmeoptimization in a 2-Dimensional
cosine series (weighted inverse Fourier transformati@oraing to equation (1.3)) and have
implemented this operator as a full 2-D convolution. Hal@qla) makes use of the McClel-
lan transformation in equation (1.4) and uses the coeffisieha 1-D convolution operators
in a Chebyshev recursion scheme. Soubaras (1992) usesriezR&change algorithm in the
optimization of the 1-D convolution operators and in themjtation of the expansion factors
(with respect to powers @f + k;s) of the phase shift operator in equation (1.5). In this Caapt
the weighted least squares optimization method is intredwas a fast alternative method for
the optimization of the 2-D convolution operators and indpémization of the factors in the
series expansions. The McClellan method is discussed &il ded several schemes are given
which optimize the original McClellan method. The seriepaxsions with respect ta and
k2 + kg given in equation (1.5) and (1.6) are worked out in detail emthpared with the other
extrapolation methods.

1.3 Direct method

The most straightforward method which does not make usey#&aries expansion is called,
after Berkhout (1982), the direct method. In the direct rodtthe optimization for the convo-
lution operator is defined by the Fourier transformationfreavenumber to spatial domain and
implemented by means of an optimization scheme (see Ho(ti8&8) and Blacquire (1989)
for the results with a non-linear optimization scheme). @eantage of the direct method is
the uncomplicated optimization of the operator and the Bnmpplementation. A disadvantage
of this direct method is that in the space-frequency dontarfll 2-D convolution has to be
carried out for every spatial position. For an operator wittypical operator size of5 x 25
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points this means 625 complex multiplications and summatfor every grid point! By using
the even symmetry in the operator the number of multiplcegican be reduced by a factor of 4
by folding the data into a quarter and application of the abutvon to this folded part. However
the number of flops remains high, especially when we takesiotount that this convolution has
to be carried out for every grid point, for every frequencyndérest and for several depth steps.
In this Chapter the results obtained with the direct methedused as a reference result for
comparison with the other, non-direct, methods. In the red® of this section three different
methods, to calculate the 2-D convolution operators ar@idsed with respect to accuracy and
efficiency and a synthetic migration experiment, to testdifferent extrapolation algorithms,
is introduced.

1.3.1 Weighted Least Squares optimization

The most simple way to obtain space-frequency operatorsiisvarse Fourier transformation
of the exact operators from the wavenumber-frequency dobek to the space-frequency do-
main. Despite of its simple form this solution is not very @ént because the spatial convolu-
tion operator obtained in this way must be very long to giedk and accurate results. Tapering
the spatial operator gives some improvements (Nautiydl et 293) but for accurate extrapo-
lation results tapering cannot be used as pointed out bybEoke and Rietveld (1994). The
aim in the design of the operator is a short convolution dpemsith a wavenumber-frequency
spectrum which is, over a desired wavenumber band, equédse to the phase shift operator
in the k., k,-w domain. The starting point in the analysis of this optimmatroblem is the
inverse Fourier transformation which is defined as

F(ky,, ky) // (x,y) exp (jk,x) exp (jkyy)dx dy @.7)

Using the discrete version of the Fourier integral and thenesymmetry in the phase shift op-
erator equation (1.7) is rewritten in a discrete equatifte(@lacquere (1989))

M N
Flly k) = Y 3 SpnF(mAz, nAy) cos (k,mAz) cos (k,nAy) (1.8)

m=0n=0

with S,,,,, defined as

1 form=n=0,
Son =142 form=0Vn=0, (1.9)
4 forn#£0Am+#0

Using the Circular symmetry in the operator by interchaggiandm, and the fact that™_ > | =
ZQ/:O Z%:n the number of equations can be further reduced to 1/8 of tiggnat number of
equations (this reduction is only possibleNi: = Ay)

M m
F(ky ky) ~ > > F(mAz,nAy) [Smn cos (kymAx) cos (k,nAy)

m=0n=0
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+ S/ cos (k;nAr) cos (kymAy)} (1.10)
with S7 defined as

0 forn=m,
2 forn=0vm=0, (1.11)
4 form#0An+#0

andM x N being the user specified size of the desired short operasinglthe shorter matrix
notation equation (1.10) can be rewritten as

F =TF (1.12)

with F the desired short operator afi‘('jbeing its spatial Fourier transform, yielding an approxi-
mation of the exact phase shift operator. Equation (1.8) thi¢ quarter, or equation (1.10) with
the octal part has to be solved for the unknown operator cositisF,,,, = F(mAx,nAy)) for

all wavenumbersk,, k,) of interest. Therefore a weighted error functiis defined as

£ = EPAE (1.13)

with

E=TF-F (1.14)

andA a diagonal matrix containing a weighting function on itytinal. The introduced weight-
ing function gives a good control over the desired functiibpaf the space-frequency operators.
The least-squares solution of equation (1.13) is given by

F-[["AL] L"AF (1.15)

whereLl” AT is a square matrix. The weighted least-squares methodg@bbed as WLSQ)
can be used in the calculation of short (2-D) spatial comatuoperators but also in the cal-
culation of series expansion factors. In DELPHI Volume V443 Appendix A, the WLSQ
method was used to solve the 1-D optimization problem. Fedtb optimization problem the
WLSQ method has another advantage; the m&ittiA T which has to be inverted has a Toeplitz
structure and can be inverted fast by using the Levinsomseh&or the 2-Dimensional prob-
lem standard LINPACK routines are used to calculate a QRrdposition of the matriL" A T
and with this decomposition the solution of matrix equa(ibib).

In Figure 1.1 the wavenumber spectrum of a WLSQ optimiz@d 19 points spatial convolu-
tion operator is given fot28 x 128 k,, k, points withc = 1000ms™!, f = 25Hz, Ax = Ay =

Az = 10m and a maximum angle of intere@t,,,...) of 65°. In the remainder of this Chapter
these parameters will be used in all further examples wigiphessent a phase shift operator. The
WLSQ method gives an accurate operator which has a wavemspéetrum close to the exact
phase shift operator as shown in Figure 1.1. Note that dueetoptimization on a rectangular
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Fig. 1.1 The wavenumber spectrum of a WLSQ optimized operatorl@ith19 spatial points,128 x

128 k,, ky points withc = 1000ms™ !, f = 25Hz, Az = Ay = Az = 10m and a maximum
angle of interest 065°.

grid the operator has a somewhat square symmetrical sifafye.+ Ay the matrix definition
which uses the octal symmetry, given in equation (1.10),bmansed in the implementation of
the WLSQ solution. This scheme reduces the operator caloalime with a factor of 2 in
comparison with equation (1.8) and the matrix problem dosteess degrees of freedom so the
unknown parameters are better defined.

Impulse response of an extrapolation operator

An impulse response experiment is used to test the behaioe extrapolation operator in an
explicit finite-difference migration algorithm. In the nuilé of a spatial limited homogeneous
medium a point source is defined with the source signatunersioFigure 1.2. The zero-phase
Ricker wavelet is centered at 0.512 seconds. The constideta set is transformed to the fre-
guency domain and extrapolated to deeper depth levels éoy énequency of interest. At every
depth level an imaging step is carried out and the depth insagfered in memory. At the end
of the calculation for all frequencies the final depth imageviitten to disk. The block-scheme
of this algorithm is shown in Figure 1.3. For the other extdapion algorithms discussed in
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time (s) freq (s~ )
a) Time signature b) Amplitude spectrum

Fig. 1.2 a) Time signature and b) Amplitude spectrum of the waveést irsthe migration experiments.
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Fig. 1.3 Processing scheme for the impulse response experimerd.tiNtdtthe extrapolation block in
the scheme is different for every different extrapolatioplementation.

this Chapter the extrapolation block in Figure 1.3 is repthwith the extrapolation algorithm
of interest, everything else in the scheme remains the s&amethe synthetic experiment the
following parameters are used:= 1000ms=!, fin = 5Hz and fr,ee = 45Hz, Az = Ay =
Az = 10m, At = 0.004s and55 depth steps are taken on a x,y gridléf x 111 samples wide.
Note that the maximum frequency is positioned in the waveremdomain a0.9 * - (= ky).

A reference output of this experiment can be calculated lnyguthe exact expression of the
extrapolation operator in the spatial domain. The exadiapzperator is defined by the dipole
pulse response which is given by

11
Go(r,k,¢) = —1;231{:7’ cos ¢ exp (—jkr) (1.16)

with k& = “ cos¢ = 2 andr = /2% + 22 4 y%. Using the complex conjugat&; of the dipole

response in a non recursive version of the scheme given uré-iy3 a reference impulse re-
sponse can be calculated for the synthetic model descrlitmdea

How the zero-offset depth image is built up is shown in Figuee In this Figure the time re-
sponses for several depth steps are shown together in donegpi€he imaging step at a certain
depth level is equivalent with selecting the zero time védrell x- and y-positions. The low-
est event in Figure 1.4 is the time response of the pulse afténverse extrapolation step of
100 m, every higher event represents a depth level 100 m def@esee that for the deeper
event the crossing with t=0 is converging to the x=0 posiaod will finally disappear if the
depth exceeds 512 m. From this figure we can also derive tbay eepth slice corresponds to
a certain dip angle. For example for a depth slice at 200 mifhample is given byos ¢ =
z(cto)_1 = ¢ ~ 67°. In Figure 1.5 three cross sections out of the 3-D depth ino&tjee refer-
ence experiment are shown; the right pictures in FigureHo%s vertical cross section for x=0
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Fig. 1.4 Time responses for several depth steps. The lowest evhattisie response of the pulse after
an inverse extrapolation of 100 m every higher event repitsse depth level 100 m deeper.

(top) and x=y (bottom), the left hand side picture in Figurggdhows a horizontal cross section
at a depth of 220 m which corresponds to a reflector dip of 65esdmy Note that everywhere in
this chapter the presentation of impulse responses wihésame as in Figure 1.5.

Using 2 Dimensional9 x 19 convolution operators obtained with the introduced WLS@hod
gives the depth image shown in Figure 1.6a. In the spatialaation scheme the even sym-
metry in the operator is used explicitly by folding the dattbicommon operator point parts,
which reduces the number of multiplications significanlthythe calculation of the convolution
operator only 1/8 th of the total spectrum is used by makirgafishe circular symmetry and the
fact thatAz = Ay. In Figure 1.6a we see that the artefacts in the depth imags&sts of inner
‘circular’ events at the higher angles which have a squavetsire. This square structure is due

-500-400-300-200-100 O 100 200 300 400 500

-500-400-300-200-100 O 100 200 300 400 500
0

Impulse response for reference operator soo

Fig. 1.5 Reference output for the migration experiment with leftdepth slice at z =220 m. Top right
shows a vertical slice for x=0 and bottom right a verticakslifor x=y. Note the perfect cir-
cular shape and the accuracy at the higher angles.
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(0]

a) 19x19 point convolution operator

-500-400-300-200-100 O 100 200 300 400 500

b) 25x25 point convolution operator

-500-400-300-200-100 O 100 200 300 400 500

-500-400-300-200-100 O 100 200 300 400 500

¢) 31x31 point convolution operator

Fig. 1.6 Results of the WLSQ optimized operators for different dpeisizes. Note that the artefacts
which are present in the result for the 19x19 operator diggydor the larger operator sizes.
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to the fact that the solution of the optimization problemascalated on a rectangular grid. In
the presentation of the paper of Kao et al (1994) similaiest were observed. Using a longer
2-D convolution operator as shown in Figure 1.6b f@ba< 25 and in Figure 1.6¢ for a1 x 31
points operator these rectangular artefacts have vanighetmbre detailed discussion of the er-
rors in the extrapolation operators is given in the last satisn of this section. In Appendix A
the computation times for the direct convolution methodvenq for different operator sizes on
the different machines used in our research group.

1.3.2 Hankel Transformations

A disadvantage of the direct optimization method discussehe previous section is that the
use of a rectangular grid is displayed in the results andithalar symmetry of the operator is
not used to its limits. By using the circular symmetry in thepe shift operator the operator
optimization problem is better defined by using less equabtesolve the unknowns. This may
reduce the artefacts caused by the use of a rectangulangtigil consume less computation
time. The circular optimization problem can be derived byrigng the continuous Fourier

transform pair

kx,k // (x,y)exp (jksx) exp (jkyy)dx dy (2.17)

F(x,y) 47?2// F(ky, ky) exp (—jk,x) exp (—jkyy)dk, dk, (1.18)

with the aid of polar coordinates. For a circular symmetniedtion in the wavenumber domain
with k, = \/k2 + k2, k, = k, cos0, k, = k,sin6d and the Jacobiaitk, dk, = k. dk, df the
continuous inverse Fourier transform can be rewritten to

2
F(z,y) =17 2/ / ) exp (—jkyz cos ) exp (—jk,ysin )k, d dk,
m (1.19)
1 0o . 27
F(z,y) = ﬂ/ F(k:r)krdkr/ exp (—jk,(z cos € + ysin 0))do (1.20)
w2 Jo 0
Introducingr = x cos p + ysinp = 2 + y? (r = rcos p, y = rsinp)gives
2T
= —/ ) ke dk,— / exp (—jk,rcos (6 — ¢))dd (1.21)
0

With the definition of the zero order Bessel function as (Aboavitz and Stegun 9.1.18 (1968)
)

Jo(1) = — /O.W cos (T cos (#))d6 (1.22)
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Fig. 1.7 The wavenumber spectrum of a circular WLSQ optimized opevéth 19 x 19 spatial points
and128 x 128 k,, k, points withc = 1000ms™!, f = 25Hz, Ax = Ay = Az = 10m and
a maximum angle of interest 65°.

Jo(T) = % /07r exp (—j7 cos (0)) + exp (j7 cos (0))do (1.23)
Jo(T) = % /OQF exp (—j7 cos (9))do (1.24)

substituted into equation (1.21) gives

1

F(T):%

/ T B (k) To (k) (1.25)
0
So the spatial convolution operator and its Fourier trams&ion are both circular symmetric

and are related by the Hankel transform. Which is illusttdig the following formulations in
polar coordinates

F(r) = % /0 T B k) Jo(ker )k dks (1.26)
Fk,) =27 /O T F(r) Jo (k) dr (1.27)

The spectral limited and discrete version of the Hankelsii@mn is given by

F(pAr) = Z F(nAk,)Jo(nAk,pAr)nAk, (1.28)

NA

with Ak, = 2% Thislast equation isimplemented in the WLSQ optimizatioheme of equa-
tion (1.15) in which the matriX' is defined by the zero order Bessel functigik,r) in place
of the cosine terms of the Fourier transform. The solutiotihisf problem is an optimized short
operator as function of. In the optimization problem we can choose the pointssuch a way



1-12 Chapter 1: 3-D recursive extrapolation operators

WOiZ //,/ .;z.;g'{ §§ "\\\\\\ i%lll g:j
@
“ "33“»1:\\ f :‘%\
0., \\jéw,' \ III '" ” “ \\l\\!“‘\:\ﬁ&\\;ﬁl

I//f ,W» tll’llll"’ ' "l‘m‘”! “‘ v‘ff:‘iﬁ‘l‘l"‘i““““

lv,mvu'“
llh. I'l'¢ q V' 0‘»2&‘

Fig. 1.8 The wavenumber spectrum of a rotated Fourier reconstruofetator with19 x 19 spatial
point, 128 x 128 k,, k, points withc = 1000ms™!, f = 25Hz, Az = Ay = Az = 10m and
a maximum angle of interest 65°.

that they coincide with the spatial grid. The wavenumbecspen of the calculated solution is
shown in Figure 1.7 where the same parameters are used agine Hil. The spectrum shown
is far from good and cannot be used in an extrapolation dlgaori The problem with the Han-

kel transformation is that for the spatial position= 0 it is not possible to define a suitable
value. If we make it zero we get a singular matrix and makimpit-zero is a random choice.
So the Hankel transformation cannot be used directly taytesicular symmetric convolution

operators.

1.3.3 Rotated Fourier reconstruction

The idea of rotating a 1 dimensional operator as describdueiprevious section can also be
used in the wavenumber domain. In the previous section islvag/n that the desired 2-D con-
volution operator must have a circular symmetric frequelesponse. The projection onto aline
oriented with an angle from one of the spatial axes is identical with an optimal 1leDwolution
operator (Kato and Matsumoto, 1982). A slice along the sameatation in the Fourier domain
corresponds to the Fourier transform of the 1-D convolubiperator. This is known as the pro-
jection slice theorem. Thus the circularly symmetric freqcy response is exactly described by
one single projection. The problem of obtaining the circ@d® convolution operator from the
spectrum of the optimized 1-D convolution operator can Iheeshis several ways. The McClel-
lan transformation is one of them and described in sectidn Another method is the Fourier
reconstruction method which is described in this section.

The 2-D circular convolution operator is obtained by takimginverse Fourier transform of the
rotated 1-D spectrum of the optimized 1-D spatial operattirlngth N. To eliminate the Gibbs
phenomenon the outer region of the circle is filled with thebigt value of the 1-D spectrum.
Note that the rotated wavenumber spectrum has the circgdametry only in the circular cen-
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a) 19x19 point convolution operator

-500-400-300-200-100 O 100 200 300 400 500

b) 31x31 point convolution operator

Fig. 1.9 Results of the rotated Fourier reconstructed operatorslfix19 and 31x31 point convolution
operators. Note that some of the artefacts in the resultHer9x19 operator disappear for
the longer operator.

trum, therefore the projection of the 2-D spectrum is ongniical with the 1-D spectrum along
the vertical and horizontal directions. The projectionngl@ny other direction is not exactly
identical with the 1-D spectrum but gives a good approxioratAfter the inverse Fourier trans-
form the result is truncated to the original length of the tdhvolution operator (NxN). Since
the projection is of finite length N, the obtained convolataperator has a nearly finite support.
Therefore the rectangular windowing distorts the circédaquency response only slightly.

So basically the rotated Fourier reconstruction methodists of designing a 1-D optimized
spatial operator, computing and rotating its frequencpaase in the 2-D wavenumber plane,
filling the undetermined region with the Nyquist value of th® wavenumber response, per-
forming the 2-D inverse Fourier transformation and thendsining the result. The wavenum-
ber spectrum of an operator obtained in this way is showngduaiéi 1.8.

The impulse responses for the operator sizes 19 and31 x 31 are shown in Figure 1.9.
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Note that the depth image has a perfect circular symmetrnnkthe middle of the circle there
are some irregular artefacts visible. In the vertical cresstion a ghost event is observed after
and before the main event. In the future we will try to redueese artefacts and will use this
very simple and attractive method to calculate 2D operatoasmore sophisticated way. For
example it is possible to use another interpolation methi@smooth window, to truncate the
operator in the spatial domain.

1.3.4 Error analysis

From an engineering point of view it is interesting to invgate how the different parameters
in the optimization procedure must be chosen to obtain efftadperators which are accurate
up to a desired maximum angle. For this analysis it is necgs$salefine accuracy in a useful
way. In Appendix C the most common used definitions of acgueaie given. In this section
we will use theL, and theL ., norms in a certain domain of interest. The domain of intagest
defined byk, < ksin (@maz) (= Krmaz) With k = £,

The following L, and L, error norms are defined over the domain of interest

T ,max r 2 %
[f;:o JeZ I1F (k) = F (e, )| ki iy d<z5]
kr

2T N — (1.29)
Jomo S 26 N F (k) 1Py ey dp
Foo = ogk%%fmJ 1E (k)| = [1F (k)] |
+,, max |1 F(k)] A |F (K] > 1.0} (1.30)
Tk OF 2
P — /4 / r,maz =2 k,||* dk, do (2.31)
¢=0Jk,=0 Ok,
with

B, = arg F(k,) — arg F(ky, ¢)

Whereﬁ(kr) is an approximation to the true functidf(k..), , is the normalized least squares
error, % the maximum amplitude error arél a measurement for the derivative of the phase
error with respect to the polar distanke. The normalized, error is a global error and is re-
lated to the accuracy of the operator. The amplitude ernagsgan indication of the stability
of the operators in a recursive extrapolation scheme. Nuwatg|#'(k,.)||* = 1 in the domain

of interest. Included in the? error is a stability measurement fbsin (ane:) < kr < k.

If the amplitude of the operator in this domain is higher thabthen it contributes to the,
error. Thez? error is defined in such a way that it is sensitive to errorbédrcular symmetry

of the operator. In the ideal case titeerror should be zero because of the circular symmetry
of the operator. To compute the derivative with respedét.ta three point finite difference op-
erator is used to compute the derivative with respedt,tandk,. With these derivatives the

& _ 0 Oks | O Oky; . -
Ok = ks ok T Bk ok 1S calculated. If the phase error is large and the derivaite respect
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Operator 5Hz 20 Hz 40 Hz

weight €9 ‘ g% ‘ eP €9 ‘ g% ‘ eP €9 ‘ ee ‘ eP
le-5 1.5e-3| 1.9e-2| 4.4e-4| 5.6e-4| 2.8e-2| 8.4e-4|| 3.9e-4| 1.3e-2| 1.1e-3
5e-5 2.9e-3| 2.6e-3| 8.4e-4| 1.4e-3| 2.3e-3| 1.6e-3|| 8.3e-4| 4.2e-3| 1.4e-3
le-4 4.1e-3| 3.8e-3| 1.2e-3|| 1.7e-3| 3.6e-3| 2.1e-3| 1.3e-3| 5.3e-3| 1.5e-3
5e-4 6.9e-3| 7.4e-3| 1.9e-3| 2.8e-3| 7.3e-3| 2.6e-3|| 1.9e-3| 8.1e-3| 2.5e-3
le-3 7.9e-3| 9.1e-3| 2.0e-3| 3.4e-3| 9.4e-3| 2.7e-3|| 2.4e-3| 9.2e-3| 3.2e-3
5e-3 1.0e-2| 1.6e-2| 2.1e-3| 6.0e-3| 1.7e-2| 2.8e-3|| 4.0e-3| 1.1e-2| 7.6e-3
le-2 1.2e-2| 2.0e-2| 2.1e-3|| 8.0e-3| 2.4e-2| 3.6e-3|| 5.4e-3| 1.3e-2| 1.1e-2

5e-2 2.1e-2| 3.6e-2| 1.6e-3|| 1.5e-2| 3.5e-2| 9.4e-4| 1.1e-2| 2.3e-2| 2.2e-2

Table1.2 Error analysis for different weighting factors with a coast operator size19 x 19) and
maximum angle of interesB({°).

to k.. is also large then the operator will have a detectable nander character.

To determine the errors due to the recursive use of the apedrah homogeneous medium
(which is a worst case situation) the difference with respethe reference impulse response
is calculated for every depth slice according to

A~

f:O 5:0 HF(.I‘,y,Z) —F(SC,y,Z)H dx dy

65(2) - : Tmax [Ymazx
fm:O (ng:O ||F(ZE,y,Z)||2 dx dy

(1.32)

This spatial error will be presented in an error curve astionof the angle (=depth).

The calculation of the wavenumber errors in equation (1.2930) and (1.31) gives three val-
ues for one operator defined for one frequency. For a morelusefinition three frequencies,
within the frequency range of interest, are analyzed: orelatv frequency (in our example 5
Hz.), a central frequency (20 Hz) and at a high frequency (20.Ho have a better idea how
the different errors in the operators are exposed in thendepge a number of experiments is
carried out where the error in the operators is changing. €fta in the operator can be var-
ied by changing the weighting function, the operator leragtth the maximum angle of interest.
From these experiments it is possible to derive an erragreoit for the calculated operator er-
rors which can be used as a measure of accuracy for the ebdtiapoesult. These experiments
are done with different WLSQ optimized operators with a wagyweighting function, a change
in operator size and a varying maximum angle of interestotlér parameters remain the same.

The error for three characterizing frequencies is givenabld@ 1.2 for different weighting fac-
tors, which are given in the first column. The weighting fagsodefined as the value of the
box-shaped weight function outside the domain of intel@side this domain the weight func-
tion is given the value 1.0. A practical limit of the weighgifector is 5e-5, because smaller
factors gives unstable operators (reflected irctherror). The error for a varying operator size
is given in Table 1.3 and for the results for different maximangles is shown in Table 1.4.

e changing weight factor
In Figure 1.10 two impulse responses are displayed whidérdifith respect to the used weight-
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-500-400-300-200-100 O 100 200 300 400 500
0

a) weightfactor = 1e-3, = 4.2¢ — 3

-500-400-300-200-100 O 100 200 300 400 500

-500-400-300-200-100 O 100 200 300 400 500
0

b) weightfactor = 5e-255 = 1.7¢ — 2

Fig. .10 The impulse response as function of the weighting factoe dépth cross section is equiv-
alent with an angle 065°. Note that for larger weighting factors the error grows art
result contains more artefacts.

ing factor in the operator calculation. Theerror given in the Figures is the average error over
the three characterizing frequencies. From this FigureTaide 1.2 the following conclusions
can de drawn;

(1) For the stable weight factors thgand the=¢_ errors are increasing if the weighting factor
increases. The unstable weight factor (1e-5) is only refteot the stability part (second equa-
tion on the right hand side of equation (1.30)) of tie error. Thes? and the=, error are not
sensitive for instabilities outside the domain of interddte best weighting factor is therefore
that factor which gives an operator which remains just stabhis factor is easily to determine
because it can be chosen constant for all frequencies foed éigerator size.

(2) An average, error (averaged over all frequencies of intererest, indithyz,) smaller than
2e-3 gives an accurate depth image up to the desired maximgla.aA largerz, error gives
artefacts ’inside’ the main event as observed in Figure.1.10

(3) If the &5 error is small than the other errors are not by definition stoal This fact can
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a) Amplitude errror b) Phase errror

Fig. .11 Amplitude and phase errors for an operator at 40 Hz with a Wefgctor of 1e-3 and an
operator size ofil9 x 19 points. Note the high error values at the edges of the domfain o
interest.

be explained by looking at the amplitude and phase errorshwdrie shown in Figure 1.11 for
an operator at 40 Hz with a weight factor of 1e-3. These eunctions have big peaks at the
higher angles. Inthe calculation of the globakrror these peaks are averaged out. In the depth
images of Figure 1.10 these peaks in the error function aceradt visible, but one can imagine
that if these peaks become too big the recursion scheme camieeunstable and inaccurate.

e changing operator size

In Figure 1.12 two different operators are displayed whidfedwith respect to the operator
size. From this Figure, Figure 1.6 and Table 1.3 the follgMonclusions can de drawn;

(1) A larger operator size will give more accurate resultg,for a certain accuracy (which is
reached for this problem at an operator siz&®fx 25 points with an average, error in the
order of 1e-3) the improvement, by using a larger operais, €in the result is little. So there
exists an optimum efficient operator size.

(2) The large=%, error for 40 Hz operator with siz& x 37 is due to the fact that the operator
has a little amplitude jump aft@&0° on the diagonat, = &, which is taken into account by the
stability part in the=?_ error. This effect can be detected by the smatinde? error. Choosing
a slightly bigger maximum angle&%°) will give a stable operator. The jumps at the edges of

Operator 5Hz 20 Hz 40 Hz

size 52‘5&,‘51’ 52‘530‘51’ 52‘5&,‘51’
13x13 6.1e-3| 3.7e-3| 1.9e-3|| 3.1e-3| 3.1e-3| 4.2e-3| 2.7e-3| 4.4e-3| 6.6e-3
19x19 2.9e-3| 2.6e-3| 8.4e-4|| 1.3e-3| 2.3e-3| 1.6e-3| 8.3e-4| 4.2e-3| 1.4e-3
25x25 1.7e-3| 1.8e-3| 4.4e-4| 6.1e-4| 1.6e-3| 6.3e-4|| 4.1e-4| 2.0e-3| 6.8e-4
31x31 1.3e-3| 1.0e-3| 2.7e-4| 3.5e-4| 1.0e-3| 3.1e-4| 2.5e-4| 7.6e-4| 5.8e-4

37x37 | 8.5e-4| 1.1e-3| 1.6e-4| 2.4e-4| 6.8e-4| 2.7e-4| 1.8e-4| 2.3e-2| 4.7e-4

Table 1.3  Error analysis for different operator sizes with a constargighting factor (5e-5) and max-
imum angle of interes(?).
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a) operator size = 13x133 = 3.6e — 3

-500-400-300-200-100 O 100 200 300 400 500

b) operator size = 37x3%, = 3.9¢ — 4

Fig. .12 The impulse response as function of the operator size. Ttk deoss section is equivalent
with an angle of0°. Note that a small operator size gives problems at highetemg

the domain of interest are typically for least squares daesigthods. These peaks can be sup-
pressed by changing the weighting function at the edgeseaddmain or by using an aditional
optimization step which uses the results of the first step.

(3) Using a small operator and defining a relative large marmangle gives errors which are
typically of the form as shown in the vertical cross sectibiirigure 1.12a). These artefacts
are due to errors at the higher angles and are most cleargsaped by the, error. For the
13 x 13 operator the averag® error is 4e-3, for the other, larger, operators this erremsller
than 2e-3. From these experiments we can conclude th@atemor smaller than 2e-3 will give
no visible artefacts in the depth image. The artefacts aeetdihe peaks at the edges of the
domain of interest. In these critical examples the phase exifor angles larger than the max-
imum angle already large while the amplitude error is stilbdl. So the large phase error is
not supressed by a small amplitude error and gives artedaatbserved in the Figures. In our
research group there are some methods developed to supiesartefacts (Hoff, 1995).
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a) maximum angle 30°; &, = 3.7¢ — 2

-500-400-300-200-100 O 100 200 300 400 500

b) maximum angle 45°; &, = 3.0e — 3

Fig. 1.13 The impulse response as function of the maximum angle oééht@ith an operator size of
13 x 13. The depth cross section is taken at the maximum angle oéattéNote that the very
small angles give problems.

e changing maximum angle

In Figure 1.13 two different depth images are displayed whliéfer with respect to the maxi-
mum angle of interest in the operator. The operator sizeasemfixed at3 x 13. The result
with a maximum angle o75° is unstable. From this Figure, Figure 1.12a and Table 1.4 Th
following conclusions can de drawn;

(1) A smaller maximum angle does not automatically givesteebperformance for an operator
with the same size. From thé_ error in Table 1.4 it is observed that there exists an optimum
angle which is , for thé3 x 13 operator with the chosen weight factor (5e-5), an angle éetw
30 and 45 degrees. This optimum is most clearly observeceigitlerror.

(2) Thee, ande? are of little use because these are not defined for anglesietl® domain of
interest.

(3) Note that we kept the weighting factor constant throughbe different experiments, by
changing the weight factor it is possible to make a very sbpetator which is also stable out-
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Operator 5Hz 20 Hz 40 Hz
angle ) ‘ g% ‘ eP ) ‘ g% ‘ eP €9 ‘ e ‘ epP
15 2.1e-3| 3.3e-3 - 7.6e-4| 5.4e-2| 2.0e-5| 6.2e-4 | 9.6e-2| 4.9e-5
30 1.2e-3| 1.5e-3| 4.1e-5| 7.2e-4| 1.1e-3| 1.2e-4|| 5.3e-4 | 6.6e-2| 1.5e-4
45 2.9e-3| 3.0e-3| 4.7e-4| 1.0e-3| 3.2e-3| 3.1e-4| 8.0e-4 | 3.0e-3| 4.8e-4
60 6.1e-3| 3.7e-3| 1.9e-3| 3.1e-3| 3.1e-3| 4.2e-3| 2.7e-3 | 4.4e-3| 6.6e-3
75 1.2e-2| 3.1e-3| 6.5e-3| 7.8e-3| 3.9e-1| 2.4e-2|| 6.14e-3| 1.3e-0| 3.8e-2

Table 1.4 Error analysis for different maximum angles with a constaeighting factor (5e-5) and a
fixed operator size of3 x 13.

side the domain of interest (see below).

From the experiments described above we can develop aa@nitehich can be used to deter-
mine if a certain operator calculation method gives stahl® @curate results in a recursive
extrapolation algorithm. To use this criterion the wavebemspectrum of the operator must
be calculated for three characterizing frequencies anehthx€_ ands? errors have to be calcu-

lated for every frequency. These errors must obey the fatigwelations;

e &, < 2¢? accuracy measurement

o 2 < 3¢~ stability measurement

e cP < le~? circularity measurement

Thec? error is not tested very well in this section, but in the secabout the McClellan method

thee? error turns out to be very usefull and there we will defineheriterion better.

Operator 5Hz 20 Hz 40 Hz

size €9 ‘ £2 ‘ eP €9 ‘ e ‘ epP €9 ‘ €5 ‘ epP
19x19 || 2.4e-2| 3.9e-2| 4.0e-3|| 5.7e-3| 1.3e-2| 6.2e-3|| 4.6e-3| 1.0e-2| 6.7e-3
25x25 | 1.8e-2| 3.2e-2| 2.4e-3| 4.8e-3| 1.3e-2| 3.8e-3| 2.3e-3| 1.0e-2| 1.6e-3
31x31 | 1.9e-2| 3.6e-2| 2.5e-3| 3.7e-3| 1.3e-2| 2.2e-3| 1.6e-3| 5.1e-3| 2.8e-3

Table 1.5 Fourier reconstructed operators which are accurate up toaximum angle o60°. The 1-D
operators are obtained by using the 1D WLSQ method.

The performance of the rotated Fourier reconstruction otetian be analyzed with the defined
error criteria. In Table 1.5 the errors are given for difféareperator sizes. The 1-D operators
are obtained by using the Remez exchange algorithm (sineisallts were obtained by using a
WLSQ operator). The largse, errors indicate that the overall spectrum of the operatoras-
curate. A better interpolation method (better than lineard smoother window in the spatial
domain may improve the result. With the used linear inteappoh method a larger operator size
does not improve the result significantly.

Upto now we have calculated the errors in the wavenumber otoamal interpreted these errors
in the spatial domain. But with the aid of the reference remioidl equation (1.32) it is possible
to calculate an error directly in the spatial domain. In Feli.14 this error is shown for the
19 x 19 and31 x 31 operators which impulse response is displayed in FigureThe vertical
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a) 19x19 point operator

-500-400-300-200-100 O 100 200 300 400 500 1.0]

error

0.0
| | | | | |
0% 15°  30°  45° 60°  65°

-500-400-300-200-100 O 100 200 300 400 500
0

b) 31x31 point operator

Fig. 1.14 The spatial error as function of angle (=depth) togetherhathorizontal (for65°) and ver-
tical (for = y) cross section of the error. Note that the all cross sectemesdisplayed with
the same scaling factor.

cross section is displayed for the diagomat y and the horizontal cross section for an angle
of 65°. The top picture on the right hand side shows the error agibmof the angle (=depth).
From these errors the following observations are made:

(1) The increasing error line for higher angles as displagdéigure 1.14 is due to amplitude
errors and artefacts for the higher angles.

(2) Increasing the operator size increases the accurasyaléefacts and a better amplitude.
(3) From the impulse response alone it is difficult to intetphe accuracy of the operator, com-
paring it with the reference operator gives a good indicatitthe errors in the operator and the
influence of the recursive application of the operators.

Given the error criteria we can also determine how the wdagitor and the operator size must
be chosen for a maximum angle of interest. The results oktbgperiments are summarized
in Table 1.6. The small angld$° and30° are difficult to optimize for the given maximum

angle, but by choosing a slightly bigger angle the operaarlecome stable and accurate for
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the smallest operator size possible. For example to getgrator for30° a maximum design
angle of40° degrees has to be chosen. For the higher angles this prolbesnndt occur. If
one wants to design operators with small maximum anglegefést and suppression of all the
higher angles a larger operator size must be chosen thaméhgven in Table 1.6. The larger
P error in the75° operators is not as bad as it looks, the largest error peeksoaitioned at the
edges of the domain of interest.

Operator 20 Hz Average
angle| size |weight| e | e | e g | & | e
15 5x5 le-5 || 1.6e-3| 3.2e-3| 1.6e-5| 2.4e-3| 2.2e-3| 7.1e-5
30 9x9 2e-5 | 1.4e-3| 3.0e-3| 5.6e-4|| 1.9e-3| 2.9e-3| 2.7e-4
45 | 13x13| 4e-5 | 1.0e-3| 3.3e-3| 3.5e-4| 1.5e-3| 3.1e-3| 3.9e-4
60 | 19x19| 4e-5 || 1.2e-3| 2.4e-3| 1.6e-3|| 1.5e-3| 2.9e-3| 1.2e-3

75 | 31x31| 6e-5 || 1.7e-3| 1.2e-3| 4.8e-3|| 1.9e-3| 1.4e-3| 4.3e-3

Table1.6 Optimum operators which are accurate up to a maximum anglatefest. Note that for
small angles these operators are stable but dont suppritésgher angles.

Note that for small operator sizes the higher frequenciesvarst sensitive to errors, for the
larger operators the lower frequencies are more sensdieerors. This behavior is related to
the WLSQ optimization method. A very small operator has atéchnumber of "error’ peaks
in the frequency domain due to the limited number of contriflguiwavenumber components.
The WLSQ optimization method with a limited number of waverner components cannot
have very large peaks (Berkhout, 1984). If there are morewamber components the WLSQ
method can build up large peaks in the error function (GibdEnpmenon).

1.4 McClellan transformation

The McClellan transformation transforms a 1-D convolutiperator to a 2-D convolution op-
erator with a certain symmetry. This transformation is dérast because the implementation
is simple and the computation of the transformation coeffits can be done efficiently. Hale
(1991a) introduced the McClellan transformation into tleo@hysical world and described two
related technigques which can replace the direct 2-Dimeasgpatial convolution: (1) transfor-
mation of thenon-recursive -Dimensional symmetrical filter in a 1-Dimensionatursiveilter

by using the Chebyshev recursion formula (see Appendix B Yhe McClellan transformation
of a 1-Dimensional filter to a circular symmetric 2-Dimensabfilter. We will first discuss the
transformation from a 1-Dimensional filter to a 2-Dimengibfilter. Next the Chebyshev re-
cursion formula is explained and at the end of this sectioprs¢ methods are discussed which
optimize the steps and coefficients used in the McClellamsfaamation.

McClellan Transformation form 1-D to 2-D

If the operator has a circular symmetry it is possible to oedilne computation time of the 2-
Dimensional filter by means of a McClellan transform. The N&tl@n transform (McClellan,
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1973) defines a mapping from a 1-D wavenumber axis to the 2-Bmanber domain. The
change of variables to be described depends on the factdttathe operator approximations
in 1 and 2-Dimensions can be written as sums of cosine fumetidhe 1-Dimensional filter
problem of an even symmetrical operator can be rewrittenate the similarity with equation

(1.8)

F(k,) = F(0) +2 % F(mAzx) cos (k,mAx) (1.33)

F(k,) ~ % F'(mAx) cos (k,mAx) (1.34)
m=0

F(k,) ~ % F(mAz) cos (k,Az)™ (1.35)
m=0

with the choice of a suitable set of coefficied?temAx) that approximate the 1-D extrapolation
operatorF (k). In equation (1.34y" =2F, form=1,...M andF/, = F,, form = 0. The
last step from equation (1.34) to equation (1.35) can be bgéetting¢ = cos (k. Az). Then
cos (k,mAz) = cos (marccos (¢)) = T,,(¢), whereT,,(¢) is the Chebyshev polynomial of
order m (see Appendix B). Each cosine term in equation (In8) then be expressed in the
form

N
cos (k, mAz) = ap,, cos (kAz)™ (1.36)
n=0
where thev,, ,, are real coefficients and easily obtained with the Chebystmwusion formula.
Equation (1.34) reduces then further to

M
F(k Z F'(mAx)T, => F C(mA) ¢ (1.37)

m=0 m=0
where both right-sides of the equation are now polynomrais i

The cosine terms in equation (1.35) can be approximated bRpian2nsional filter (assuming
Ax = Ay)
P Q
cos (k, Az) = > ¢y cos (ky pAz) cos (ky, gAy) (1.38)
p=0q¢=0
wherec,, are called the McClellan factors (McClellan, 1973). By nmakthe substitution of
equation (1.38) into equation (1.35) it reduces to
~ M N .o
F(k,)~ > > F(mAz,nAy)cos (k,Az)™ cos (k,Ay)" (1.39)

m=0n=0
which can be put in the form (using Chebyshev’s recursiomtda again)

M N
F(k)~ Y > F(mAz, nAy) cos (k, mAx) cos (k, nAy) (1.40)

m=0n=0
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Fig. 1.15 The wavenumber spectrum of a first order McClellan operatith & 1-D operator of 19
spatial point,128 x 128 k., k, points withc = 1000ms™ !, f = 25Hz, Az = Ay = Az =
10m and a maximum angle of interest@i.
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Fig. 1.16 Contour plots for the first and second order McClellan tramsfation. Note that for higher
wavenumbers both approximations deviate from the idealtar (dashed) line.

which is the desired form for a 2-Dimensional filter which vei®ady shown in equation (1.8)
(Note that/” and " are scaled versions @f). For example fo® = @ = 1 the transformation
for circular symmetry reduces to a 9-term McClellan contiolu operator (also called a first
order approximation) which is given by Hale (1991a) whergy = ¢1p = co1 = ¢1; = 0.5 and

cos (k, Az) =~ —1 + 0.5(1 + cos (k;Ax))(1 + cos (k,Ay)). (1.41)

In Figure 1.15 an extrapolation operator is shown which gsgieed with the first order McClel-
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lan transformation of equation (1.41) and a 1-D oper#tonAz) of 10 points (19 point full
operator length). Note the square shape of the operatondovaivenumbers near the Nyquist
wavenumber (the edges of the figuré).= Q = 2 gives a 17-term McClellan transform (sec-
ond order approximation) which is also given by Hale (1991a)

cos (k, Az) ~ =1+ 0.5(1 + cos (k,Az))(1 + cos (k,Ay))
— 0.5¢(1 — cos (2k, Ax)) (1 — cos (2k,Ay)). (1.42)

with ¢ = 0.0255. The McClellan factors, can be derived by defining points in thg, &, plane
which map to a point on thk-axes of the 1-D operator such that all coefficients are wetiqu
defined (for the first order McClellan transform 4 points aeeded). The problem with the
McClellan transform, given the original McClellan factamsequations (1.41) and (1.42), is that
for higher angles the transformation deviates from thelideeular shape. The contour plots
shown in Figure 1.16 represent the contours of the first oxtieLlellan (P = @ = 1) and
the second order McClellarP(= @) = 2) transformation. In the contour plots the deviation
for the higher wavenumbers is observed clearly. The secaher eransformation reduces the
deviation a little but remains still significant.

Chebyshev recursion formula

The second improvement in the computation scheme is theftnanation of the non-recursive
1-Dimensional filter to a 1-Dimensional recursive filterigled from the recursive formula of
the Chebyshev polynomials

cos (m@) = 2cos (¢) cos ((m — 1)¢p) — cos ((m — 2)¢) (1.43)

This Chebyshev filter structure is not useful for 1-Dimensidilters. Direct convolution is
both simpler and more efficient. The Chebyshev structur@iremdvantageous for 2-Dimensional
operators with an even symmetry, such as the circular synoestrapolation operators. Writ-
ing equation (1.43) for the first four terms in the 1-Dimemsibcase gives

F(ky) = Fy+2XM_| F,, cos (k,m) (1.44)

P; >+ h(xy) |T2h(x,y) ‘

-

2h(x,y) h 2h(x,y)

Fyy 2F 1% 2F2§; 2F
S S .
p 1+1

Fig. 1.17 Chebyshev recursion scheme. Tk, y) boxes represent the 2-D McClellan transformation
of cos (k,), F),, represents the coefficients of the 1-D convolution operator
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+2F[cos(k,)]
+2F5[2 cos(k,) cos(k,) — 1]
+2F3[2 cos(ky) ((2 cos(ky) cos(ky) — 1)) — cos(k,)]

+2F,[2 cos(kx)(2 cos(kx)((2 cos(k,) cos(ky) — 1)) - cos(k:x)> — (2 cos(k,) cos(k,) — 1)]

This recursive scheme can be implemented in the computeoutimuch effort. McClellan and
Chan (1977) have analyzed this so called Chebyshev steuctutetail and observed that the
scheme requires the minimum number of multiplications imparison with the direct scheme
and itis the most stable scheme with respect to the rounaén In Figure 1.17 a flow diagram
for the Chebyshev recursion scheme is given. Note that belgaoefficients of the 1-D operator
are involved. Hence the number of computations dependarlinen the lengthV of the 1-D
operator and not o2 as in the implementation of a direct 2-D convolution. The patation
times for several 1-D operator lengths and different opesat are given in Appendix A.

-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0

a) 13x9 McClellan operator

-500-400-300-200-100 O 100 200 300 400 500

b) 13x17 McClellan operator

Fig. 1.18 Depth images obtained with the original McClellan transf@tion. For the higher angles
both operators deviate from the ideal circular shape. Nb&deviation at the higher angles
in the diagonal slice.
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In Figure 1.18 the migration results of the McClellan tramsfation combined with the Cheby-
shev recursion scheme are shown for both the first (a) anehd€bporder McClellan transfor-
mation. The optimized 1-D convolution operator has a fulgign of 25 points and is obtained
with the Remez exchange algorithm (see Appendix C for a léetgiscussion on the Remez
algorithm). The Chebyshev recursion scheme makes use ef/#resymmetry in the operator
so only 13 points of the 1-D operator are needed as expareims tin the recursive scheme.
The notation of the operator size used in Figure 1.18 givsstfie number of terms in the ex-
pansion and second the size of one single term. For exampledtation13 x 9 means that
the expansion is done in 13 terms where every term consisis operator with 9 points. How
many multiplications and additions are actually neededpdagned in Appendix A.

The cross-sections in Figure 1.18 give a good view of how tik€Mllan transformation han-
dles the higher angles. Note that the deviation of the idezledor the second order (17 term) is
only alittle less than for the first order (9 term) McClellaarisformation. The noise around the
source position in the x-slice is an artefact of the used Jp&ator. The 1-D Remez optimized
operator is chosen because it gives, in some way, the besidefator and the even symmetry
of the 1-D operator is used explicitly in the optimizatiomeme.

Despite the deviation at the higher angles the McClellarsfiamation combined with the Cheby-
shev recursion scheme is a very powerful and useful apprddehperformance at higher an-
gles can be improved in several ways. In the subsections,1L.41.2, 1.4.3 and 1.4.4 four im-
provements are discussed.

1.4.1 Hazra and Reddy Coefficients

A\\ '/ rrsss

#

A
550
’ / TN
=
{/f_« =
)
"

0.8 A ll':, 'o;o,‘ S 'S 4
%\\W/ L ‘9‘; \\\\\ \gf\\ ;
Oq 9\“

;//"I:: «m‘v‘“‘ .m %\\W

\

' ity
}\%%," ""’ ‘:;Q;mm;’zg:“ ||| ﬁ' ’\\\ g
.|||‘ W ||||I"’"| Vi

Fig. 1.19 The wavenumber spectrum of a first order McClellan operaith the optimized Hazra and
Reddy coefficients and a 1-D operator of 19 spatial pointh Wi x 128 k,, k,, points with
c = 1000ms~ !, f = 25Hz, Az = Ay = Az = 10m and a maximum angle of interest of
65°.
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Optimized for 20 Hz (¥, = 0.13) Optimized for 40 Hz (k= 0.26)

number [m™']
number [m™']

K, —wave
Ky—wave

Fig. 1.20 Contour plots of the optimized Hazra and Reddy transforomator two different frequen-
cies. Note the improvement in the circular shape in comparigith the original McClellan
transformation.

Optimizing the design of the McClellan factatg, in equation (1.38) is a good way to improve
the performance of the McClellan transformation. The firgeo filter is of special interest be-
cause it is a small and therefore fast operator. The aim detttenique proposed by Hazra and
Reddy (1986) is to make the maximum contour of interest o2tz operator approximate a
circle with a high degree of accuracy. This better approxiomas achieved by mapping an ad-
ditional point of the cut-off boundary of the 2-D operatot@the cut-off boundary of the 1-D
filter (the cut-off boundary is defined by the maximum wavebenof interest). This mapping
of the additional point is obtained by making the cut-off waumber of the 1-D filter as one of
the design parameters. A consequence of this is that thenuwavser of the cut-off boundary
of the 2-D operator on thé,-axis andk,-axis may be different from the cut-off wavenumber
of the 1-D filter.

The first order original McClellan transformation maps thigio (0, 0) in the (k,, k,) plane
onto the point, = 0 of thek,-axis in the wavenumber response of the 1-D operator. The@poi
(kzn,0),(0,k, n) and(k, v, k, n) from the(k,, k,) plane all map ont@, = k, n. With the
definition of these four points the coefficients in the firgt@arMcClellan transform are uniquely
determined. This mapping has the following propertiesti{&)ontours of the McClellan trans-
formation are approximately circular for low valuesipfand deviates considerably from circu-
lar contours ag,. increases and is squarekat= 1, (2) the original McClellan transformation
makes the frequency response of the 2-D operator along thgis and along thé,-axis iden-
tical to the frequency response of the original 1-D operaidre contour plots in Figure 1.16
show that the deviation from the circular contour is maxirmear the neighborhood of the di-
agonal joining the point&), 0) and(k, v, k, n) in the (k,, k,) plane. Itis possible, for a given
maximumk,., to improve the contour by forcing an appropriate point as tliagonal to be on
the circular contour. With this mapping of an extra point e tircular contour, it is not possi-
ble, to make the frequency response of the 1-D operatoricémd the frequency response of
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the original 1-D operator along tig-axis and along thg,-axis. Thus the mapping of the extra
point on the diagonal is only possible when the cut-off waweher along thé, axes is one of
the design parameters. The McClellan factors accordingairddand Reddy are dependent on
the maximum wavenumber of interest and are given by

ab — 2ac 1
C11 =

W’ 001201025—011, coo =1 —co1 —cio — i1
where
k k b—2c b
b=sin? (—=2), c=sin?(—==), g =2+ ,a=— 1.45
) (Go5) 9 o= (1.45)

k., =2sin"! (Va)

and wheré,. is the maximum wavenumber of interest of the circular symmim2tD filter on the
k.-axis andk.. is the maximum wavenumber of interest of the 1-D operatorafoore detailed
discussion on the derivation of the parameters in equali@gtb] the reader is referred to Hazra
and Reddy (1986). In Figure 1.20 two contour plots are sh@wiwio different frequencies. Up
to the desired maximum value these contours are circultsidaithe desired value the contours
are not circular shaped.

In the extrapolation algorithm first the McClellan factors aalculated according to 1.46 for a
givenk,. which gives besides the optimized McClellan factors alép #r the 1-D operator.
With this calculated:. value the 1-D operator is designed. Note thais always smaller than
k... Due to the choice of the coefficients this 1-D operator iststred to a correct 2-D operator.
To compensate for this stretch the 1-D convolution opernattost be calculated with a scaled
Az. This can be explained by regarding the effect of the optchidazra and Reddy factors as
a scaling of thé:,-axes. The 1-D phase shift operator is then given by

F(ky) = exp (= [K* — (ak,)?]? Az)

-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0 5

-500-400-300-200-100 O 100 200 300 400 500

13x9 Hazra and Reddy operator

Fig. 1.21 Depth images obtained with the optimized Hazra and Reddystoamation. Note the im-
provement in the circular shape in the depth slice in congmariwith the original McClellan
transformation.
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= exp (5 [(5)? 42} 0) (1.46)

Whereg = k. andaAz is the scaled depth step.

The migration results for the Hazra and Reddy optimizedfments are shown in Figure 1.21.
The circular shape of the depth slice is good and the artefcthe diagonals, which were
present in the original McClellan transformation, are aibsBote that the computation time of
the optimized coefficients is very small, only a few multgaliions and additions per frequency,
so the same computation effort is required as for the origiteClellan transformation which
makes the method very attractive. It will be interestingneesstigate if it is possible to adjust
the 17-points McClellan transformation with the same mdtho

1.4.2 Optimized McClellan factors

The aim in optimizing the McClellan transformation is to oise the McClellan factors,, in
equation (1.38) such that the contours produced by theftnanation have some desired shape.
For some examples it is sufficient to control the shape of argescontour. In other problems
it is necessary to design the shape of the contours in a sppaifi of the wavenumber domain
(Mersereau et al., 1976, (Mersereau et al., 1976)). The fennation which has to be optimized
for a circular contour design is given by

E = M(cpg, ks, ky) — cos /2 + kI with

M(cpg, by, ky) = XP: XQ: Cpq €08 (k) cos (ky) (1.47)

p=0g¢=0

Equation (1.47) is a non-linear function of the unknown pagters, so a computation intensive
non-linear optimization scheme must be used for the miration. However, it is possible to
reformulate the problem as a linear approximation probleartive at a sub optimum solution
(Mersereau et al., 1976). In the example shown in this seetimon-linear optimization scheme
(CFSQP, written by C.T. Lawrence, J.L. Zhou and A.L. Tits,sien 2.0, february 1994) is used.
With this scheme we try to optimize several contours witlhi@ band of interest and put the
constraint

P Q
1Y > epgcos (ky pAz) cos (ky gAy)| < 1 (1.48)
p=0¢=0
7r T
0<hks <hen (= )0 ky Shyw (= A—y>

for all points of the mapping in thg:,, &, ) plane. The contours to be optimized in the objective
function of equation (1.47) are defined by the maximum wawder value of interest. With this
definition of the optimization problem the first order Mc@&al transformation cannot be opti-
mized any further, but the second order transformatiorh(ait expansion to 25 points, which
means that all cross terms within the second order are uaadyecimproved. In the implemen-
tation of the McClellan operators we make explicitly usehaf tircular symmetry in McClellan
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Fig. 1.22 The wavenumber spectrum of a second order McClellan openatb optimized coefficients
and a 1-D operator of 19 spatial points witB8 x 128 k., k,, points withc = 1000ms 1, f =
20Hz, Az = Ay = Az = 10m and a maximum angle of interest &f°.

operator ifAxz = Ay. In Figure 1.23 the migration puls response is shown for ptigrozed 25-
point McClellan operator with frequency dependent coeffits and a 1-D operator of 25 points
(13 terms). The non-linear computation time can be redugexlzulating the optimized coef-
ficients for a wavenumber range instead of every wavenunhiéne shown example we have
used only four sub domains in the total wavenumber domaintefest which keeps the time to
compute the McClellan factors small. It also possible taroze the coefficients independent
of the wavenumber frequency or for different shaped Mc@tefliters (Blacquére, 1991).

1.4.3 Rotated Coefficients

Biondi and Palacharla (1994) describe a method which regileeerror of the deviation of the
circle at the diagonal in th¢:,, k,) plane by using a rotated McClellan operator, the rotation
angle being;. In the downward extrapolation scheme the rotated McGiedlgerator and the
original McClellan filters are alternately used as convolubperator. The convolution with
the rotated McClellan operator can be implemented in aniefiiavay. For a more detailed
discussion the reader is referred to Biondi and Palachh894)).

1.4.4 Series expansionin cos (k,Ax)

All improvements descriped thus far make use of the Chelwsdwirsion sheme, but it is also
possible to use a direct expansiorin (k.Ax). To see the difference between the two schemes
the Chebyshev recursion scheme and the direct scheme are giv

~ M

F(k,) = Y FnTn(cos (k.Az)) (1.49)

m=0
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-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0

13x25 optimized McClellan operator

Fig. 1.23 Depth slice at z=220 m, a vertical slice for x=0 (top right)chbhottom right a vertical slice
for x=y with optimized McClellan coefficients. Note the aler shape and the small arte-

facts.
Pl —>e— N(x.,v) ro h(x,y) r————————--
aop aj ap Gpr—1 apnr
N N N P.

1+1

Fig. 1.24 Direct scheme for series expansionciss (k. Ax). Note the simple structure in comparison
with the Chebychev recursion scheme.
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-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0

a) 13x9 with original McClellan coefficientso

-500-400-300-200-100 O 100 200 300 400 500

b) 13x9 with Hazra and Reddy coefficientsoo

-500-400-300-200-100 O 100 200 300 400 500

c) 13x9 with WLSQ optimized coefficientssoo

Fig. .25 Impulse response of the expansiordn (k. Ax) with original McClellan, Hazra and Reddy
and WLSQ optimized coefficients fok (k. Az). The series coefficients in all examples are

optimized by using the WLSQ method.
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M
~ > apycos (kAz)" (1.50)
m=0
Mo
~ Y anh™ (kg ky) (1.51)
m=0
with
h(ky, k) ~ cos (k,Ax) (1.52)

In equation (1.51) (defined in equation (1.52)) is optimized first and with thip@ximation to
cos (k,Az) a,, is optimized. In equation (1.49), the Chebychev recursatreme, the optimiza-
tion of cos (k.Ax) is independent of the optimization &f,. The scheme of equation (1.51) a
better operator can be designed, because the optimizdtibe series coefficients is dependent
on the approximation teos (k,.Az) To optimize thei,, the WLSQ method is used. To approx-
imatecos (k.Axz) the McClellan or Hazra and Reddy transformation can be uzmédt is also
possible to use the WLSQ optimization method describedatisel.3.1.

The recursive convolution scheme of equation (1.51) isrgineFigure 1.24. This scheme is
less complicated to implement in the computer and more itapbit can be optimized better
by the compiler (see Appendix A). In Figure 1.25a the impuésponse is shown with the Mc-
Clellan coefficients of equation (1.41) and in Figure 1.2%bimpulse response is shown with
the Hazra and Reddy optimized coefficients for the approtiondo cos (k.Ax). The number
of terms is in both schemes equal to 13. Note that with thisotkthe results are better circu-
lar and contain only small artefacts even with the small (8rator. In Figure 1.25c the series
expansion iros (k.Ax) is done with an approximation tes (k,.Ax) obtained with the WLSQ
method introduced in section 1.3.1. Note that with a 9 pgipreximation tocos (k,Az) the
result is accurate upto the higher angles. In the next stibeexcdetailed error analysis is given
for all discussed McClellan methods.

1.4.5 Error analysis

Using the analysis technique, which was introduced by thectimethod, it is possible to an-
alyze the performance of the different McClellan transfations. In Table 1.7 the errors are
given for five types of McClellan transformations; the onigiiMcClellan transformation in first
(*x9) and second (*x17) order, the optimized Hazra & Reddstdes (HR) in first order, the
non-linear optimized factors in the expanded second oft@5] and the series expansion in
cos (k.Ax) with the Hazra and Reddy coefficients and the WLSQ operafenen the results
in the Table and Figures 1.18, 1.21, 1.23, 1.25 the followargarks can be made;

(1) For higher frequencies th# error in the original McClellan transformation increasegs s
nificantly for both the first and second order approximation.

(2) The differences in pulse responses between the methithistiae original McClellan fac-
tors, the Hazra & Reddy factors, the non-linear optimizedidis or the series expansion can be
determined from the” error. In Figure 1.26 the phase error and g%?of the phase error for
the different methods are displayed at a frequency of 40 Har, a maximum angle @f0®
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Operator 5Hz 20 Hz 40 Hz

McClellan €9 ‘ g% ‘ eP €9 ‘ g% ‘ eP €9 ‘ ee ‘ eP
10x9 1.7e-3| 1.0e-3| 4.5e-4|| 6.6e-3| 2.2e-3| 4.8e-3|| 5.1e-2| 1.5e-3| 3.8e-2
13x9 1.4e-3| 1.2e-3| 3.2e-4|| 6.3e-3| 1.7e-3| 3.9e-3|| 5.2e-2| 1.4e-3| 3.8e-2
16x9 1.1e-3| 1.3e-3| 2.3e-4|| 6.3e-3| 1.1e-3| 3.7e-3|| 5.1e-2| 1.6e-3| 3.9e-2

10x17 1.7e-3| 1.0e-3| 4.4e-4| 1.8e-3| 2.4e-3| 2.7e-3|| 2.4e-2| 1.5e-3| 2.2e-2

13x17 1.3e-3| 1.2e-3| 3.1e-4|| 1.1e-3| 2.0e-3| 1.4e-3|| 2.4e-2| 1.6e-3| 2.3e-2

16x17 1.1e-3| 1.3e-3| 2.3e-4|| 7.8e-4| 1.4e-3| 9.7e-4|| 2.4e-2| 1.9e-3| 2.3e-2

HR 5Hz 20 Hz 40 Hz

10x9 2.6e-3| 1.2e-3| 8.1e-4|| 7.2e-3| 1.7e-3| 2.8e-3| 8.2e-2| 7.7e-3| 1.8e-2

13x9 1.2e-3| 6.7e-4| 2.9e-4| 7.1e-3| 2.7e-3| 2.3e-3|| 8.2e-2| 1.6e-2| 1.8e-2

16x9 1.4e-3| 1.4e-3| 3.2e-4| 7.2e-3| 1.7e-3| 1.9e-3|| 8.2e-2| 2.7e-2| 1.8e-2
Optimized 5Hz 20 Hz 40 Hz

10x25 1.7e-3| 1.0e-3| 4.4e-4|| 1.8e-3| 2.4e-3| 2.6e-3|| 7.2e-3| 1.5e-3| 9.4e-3

13x25 1.4e-3| 1.2e-3| 3.2e-4|| 1.2e-3| 2.0e-3| 1.4e-3|| 7.2e-3| 1.9e-3| 8.6e-3

16x25 1.1e-3| 1.3e-3| 2.3e-4| 9.2e-4| 1.4e-3| 1.0e-3|| 7.2e-3| 2.3e-3| 8.5e-3

Series HR 5Hz 20 Hz 40 Hz
10x9 5.2e-3| 2.5e-3| 1.6e-3|| 1.7e-3| 1.8e-3| 2.5e-3| 8.4e-3| 2.3e-3| 6.7e-3
13x9 2.0e-3| 1.5e-3| 5.3e-4| 9.8e-4| 1.3e-3| 1.4e-3|| 8.4e-3| 2.4e-3| 5.6e-3
16x9 1.5e-3| 7.7e-4| 3.6e-4| 6.4e-4| 1.2e-3| 8.4e-4| 8.4e-3| 2.2e-3| 5.2e-3
Series WLSQ 5Hz 20 Hz 40 Hz
10x9 2.8e-3| 1.8e-3| 8.2e-4| 5.1e-3| 1.7e-3| 3.8e-3|| 2.2e-3| 2.3e-3| 4.5e-3
13x9 1.3e-3| 6.2e-4| 3.4e-4| 5.0e-3| 1.4e-3| 3.4e-3| 2.0e-3| 1.6e-3| 3.6e-3
16x9 5.3e-4| 3.4e-4| 1.1e-4| 5.0e-4| 4.1e-4| 3.2e-3|| 1.9e-3| 4.2e-4| 3.4e-3

10x25 2.2e-3| 1.2e-3| 6.4e-4|| 8.3e-4| 8.4e-4| 1.2e-3| 1.4e-3| 1.6e-3| 2.8e-3

13x25 1.3e-3| 4.1e-4| 3.2e-4|| 4.3e-4| 6.9e-4| 5.9e-4|| 1.2e-3| 1.2e-3| 1.5e-3

16x25 5.7e-4| 2.7e-4| 1.2e-4| 1.9e-4| 2.9e-4| 2.6e-4| 1.1e-3| 3.4e-3| 1.4e-3

Table 1.7 Errorsinthe extrapolation operators for; the original Mé&llan transformation in first (*x9)
and second (*x17) order, the optimized Hazra & Reddy fadidR) in first order, non-linear
optimized factors in the expanded second order and thessexigansion iros (k,.) with the
Hazra and Reddy coefficients and WLSQ operators. The maxangla of interest i$0°.

and 13 terms in the expansion. The second order method vatbriginal McClellan factors
give a rapidly increasing phase error where the largesteaccurs at the diagonal froffy, 0)

to (k. n, ky n). The phase error of the Hazra & Reddy method is less rapidhgasing and the
smallest error is positioned at the diagonal fr@nm) to (k, v, k, ). The non-linear optimized
method gives error peaks at the edges of the domain of intnelshas the largest error at the
diagonal from(0, 0) to (k. n, k, v). The series expansion method with a WLSQ approximation
to cos (k. Ax) gives the smallest errors with error peaks at the edgés andk, axes.

(4) The approximation toos (k.Az) can be done with many different methods. Crucial in the
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Fig. 1.26 Phase errors and the radial derivative of the phase errotif@rdifferent McClellan methods.
Note the different scales on the vertical axes.

performance of the operator is that the coefficients in thEaegion (Chebyshev or series) are
optimized by using the approximation ¢os (k. Ax).
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Fig. 1.27 Error in the impulse response of the Chebychev expansiousitk, Az) with original Mc-
Clellan (a) and for a series expansionadns (k,Ax) with WLSQ optimized coefficients (b).

In Figure 1.27 the spatial error is given for a horizontalsreection at5° and a vertical cross
section atr = y for both the original McClellan transformation (13x17) ahd series expansion
in cos (k.Ax) (13x9). The original McClellan scheme gives dispersivefadts for the higher
angles. The expansionins (k. Ax) (with less coefficents in the approximationds (k. Ax))
does not have these artefacts but is less accurate in adgftauthe higher angles.

In Table 1.8 the shortest accurate operator is given asiumat the maximum angle of interest.
For small angles the original first order McClellan transfation in Chebyshev series gives al-
ready good results. For intermediate angles the secondMid&ellan scheme or the first order
Hazra & Reddy factors are sufficient, for higher angles thieesexpansion with WLSQ opti-
mized series coefficients gives the best results. The HaRaddy factors have a large for
the higher frequencies due to stretching of the operatartifey5° angle a 5x5 approximation
to cos (k.Ax) is needed.
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1.5 Single series expansion

In the previous sections the direct convolution and the Mtan transformation were explained
and impulse responses were shown for different operattws McClellan transformation uses
the coefficients of a 1-D convolution operator and approx@sdhe 2-D Fourier components
with an optimum filter. However, it is also possible to appnoate the phase shift operator with
an expansion other than the cosine terms of the Fouriefftnanation. Writing space-frequency
wave field extrapolation in an operator notation (Berkh@982).

P+(Zm+1) = W+(Zm+17 Zm) * P+(Zm) (153)

whereW *(z,,.1, z,) is the propagation operator aitt (z,,,) is the down going wave field at
depth levelz,,. In this notation the most simple approximation to finitefiénce wave field
extrapolation is made by a single Taylor series expansiorthe spatial domain witl\z =
Zma1 — 2Zm this @approximation is given by

Az 0P (2) N AZ* 9Pt (z,) N A2 PP (2,) N

I 0z, 2! 022, 3! 0z

P (zpy1) = Pt (2m) + .
m (1.54)

The extrapolation scheme given in (1.54) can be dividedtimtoparts; one part deals with the
estimationof the derivative% with respect ta;,,, and the other part deals with theediction

with the aid of the Taylor series. In the wavenumber domamdpproximation, withglz'—: =

Operator 40 Hz Average
angle| size | method| e | e | & s | & | e
15 4x9 McC || 1.7e-3| 2.9e-3| 1.5e-4| 1.8e-3| 2.0e-3| 1.0e-4
30 5x9 McC || 3.9e-3| 2.0e-3| 1.0e-3| 3.1e-3| 2.0e-3| 5.4e-4
45 7x17 | McC | 5.2e-3| 2.5e-3| 3.3e-3|| 3.1e-3| 2.0e-3| 1.5e-3
60 10x9 | Series | 2.2e-3| 2.3e-3| 4.5e-3|| 3.4e-3| 1.9e-3| 3.0e-3

75 | 18x25| Series || 6.9e-3| 2.6e-3| 2.6e-2|| 4.7e-3| 1.9e-3| 1.2e-2

Table 1.8 Optimum operators which are accurate up to a maximum angieterfest.

Fig. 1.28 Series expansion in terms bf. The H; boxes represent the 2-D convolution with the op-
timized spatialc, ~ H; operator, thei,, represent the optimized coefficients in the series
expansion.
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—jk,P*, is defined as

Pt (zpmi1) = P (z) — e
(1.55)
This truncation of the series expansion is an approximatidime phase shift operator by a poly-
nomial ink., according to
A 2

exp (—jk.Az) =~ 1 —jAzk, + %(/ﬂz)Q + O(k.)? (1.56)
The coefficients in the series expansion can be obtainedihyg tise constants in the Taylor
series as given in equation (1.56) or by using an optiminagghnique. In the next two sub-

sections two different optimization methods are used; th&QY method with thd., norm and
the Remez exchange method with the norm.

1.5.1 Expansionin k, with Ls-norm

The advantage of an expansionkinis that if thek, operator can be approximated by a short
spatial convolution operator and the number of terms in énees expansion of the phase shift
operator remains small the computation time can be reduceainparison with the direct 2-D
convolution. To arrive at the direct spatial convolutioheme, which is given in Figure 1.28,
thek, operator is transformed in an optimum way to the space doaralrapplied several times
to the data. Every time a 2-D convolution (indicated by the BHg) with the spatiak. operator

is carried out on the data, a new term is added to the seriemeign. The scheme given in
Figure 1.28 is more sensitive to numerical errors than theb@éhev recursion scheme but if the
number of terms remains small the Chebyshev structure wilimprove the result (in the next
subsection we will use the Chebyshev recursion scheme)idtaresting to note that an exact

oo 758>
(SSSATLIRS, Q555555
RSN 774L7 KKK N 00: 22,
S SN

SN
ST
KRS Il"lz'l
4
o

55
SR

S

oo seedes
55

NN
4 S \Z
s NN
N
AN\

N\
TN
N

i)

QAR

XX0RK
DO

555555
s
Sosessest

ot
ll Il i .:..‘IIII

Fig. 1.29 Wavenumber spectrum of a circular Fourier reconstructedtigp ., convolution operator
(5x5).
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Fig. .30 Error in wavenumber and phase spectrum fgr= 0 with 4,5,6,7 and 8 terms in the series

expansion and WLSQ optimized coefficients for the circutaurier reconstructed:, oper-

ator of sizeb x 5.

analytical expression foH(x,y)

(H1<:>F11 = k,) can be derived (see Berkhout (1982),

appendix E). However, a weighted least-squares versidtdsygeshorter operator.

The factorsi,, of the series expansion in Figure 1.28 are obtained by a$epsires optimiza-
tion method with respect to the wavenumber spectrum obpitenizedH; operator. The cir-
cular Fourier reconstruction of thie operator results in a circular short spatial convolution op
erator, the spectrum of an operator is shown in Figure 1.2@fox 5 operator. Using this
2-D convolution operator the computational effort can lwiceed in comparison with the direct
method if the number of terms in the series expansion rersaiadl. It is therefore interesting to
determine how the different parameters must be chosen tabs&esand accurate operator. The
error in the wavenumber and phase spectrum ank,fer 0 is shown in Figure 1.30 with 4,5,6,7
and 8 terms in the series expansion and WLSQ optimized ciagfficfor the circular Fourier
reconstructed, operator of sizé x 5. Note that for more terms in the series expansion both
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-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0

a) 10x(5x5)k, series operator

-500-400-300-200-100 O 100 200 300 400 500

b) 10x(7x7)k, series operator

Fig. 1.32 Depth images of pulse responses obtained with the seriemsixm ink,. a) shows a short
basis operator (5x5) with 10 terms in the series expansidy) anlonger basis operator (7x7)
is used which gives a better circular shape and less artefact

the amplitude and phase error decrease. Beyond a certaibemwhterms the error remains
the same while the number of terms is increased. In that base ts not a better approxima-
tion possible with the optimized basis functionféf. For a better approximation a better basis
function must be chosen.

In Figure 1.31 the wavenumber spectrum of the approximatadgshift operator is shown for
a nine order series expansion with optimized coefficientthi@approximated:, operator with
a spatial size ob x 5 points (the same parameters are used as in the example fdiréioe
method). Outside the band of interest,(, = 65°) the exactk, operator (which is used as
object function in the optimization) is tapered to zero. &ltftat with only nine terms there is
already a good match with the analytical spectrum.

In Figure 1.32 two pulse responses are shown for differergtrpaters in the single series ex-
pansion method. The convolution with the short basis famotif 5 x 5 points gives an image
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with a non-circular depth slice. Increasing the number ohtein the series expansion from
10 to 15 will reduce the artefacts around the event, but tmea@ular behavior remains the
same. The longer basis function witk 7 points gives a better circular slice, but requires more
computation time.

1.5.2 Expansionin k, with L..-norm

Using an optimization method which makes use of thenorm and the Chebyshev recursion
structure for the implementation of the convolution may ioye the result. Optimization for
the series expansion terms with thg norm can be done by reducing the polynomial synthesis
to symmetrical spectral synthesis with the aid of a sim@adformation (see Appendix C). In
this optimization only the extreme values of the wavenungpexctrum of the4; operator are
used and not, as with thig, optimization, the whole spectrum of tli§ operator. The transfor-
mation from polynomials to spectral synthesis reduces tBecptimization problem to a 1-D
optimization problem which can be solved with the Remez arge algorithm in a fast way.
The terms in the series expansion and the spatiaperators are calculated for every frequency.

In Figure 1.33 one impulse responses is shown for a 5 poiig basvolution operator with 10
terms in the expansion. The basis operator is not accuratgyérto define the circular shape
properly. A 7 point operator with the same number of terms$ gwles a better result (see the
error analysis in the next subsection). The difference Witffoptimization is that due to the
equiripple character of thé., solution the error is smeared over the whole wavenumber do-
main. In theL, optimization the biggest error occurs at the edges of theadtoof interest (de-
fined byk = 2 anda) which gives the artefacts as shown in Figure 1.32. Noterttwaie terms

-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0 L

10x(5x5) k, in Chebychev recursion scheme

Fig. 1.33 Depth image of an impulse response obtained with the Chelyslcursion scheme and a
L optimization for the coefficients in the expansioftina short basis operator (5x5) with
10 terms is used.
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in the series expansion with the same basis operator wiliaesithe artefacts but it will not
improve the circular shape.

1.5.3 Error analysis

In Table 1.9 the errors are given for the series expansidn with the direct implementation
and the Chebyshev recursion scheme. From the results irathle the following remarks can
be made;

(1) The expansion i, gives large=, errors for most frequencies. So the operator is not very
accurate which can be observed in the artefacts in the irapetponses.

(2) Increasing the number of terms with the same size of tkeslmgerator does not improve
the result. Increasing the size of the basis operator wélséime number of terms gives an im-
provement. This means that the approximation to the basistgr is the most important factor
in the performance of the operator.

(3) Thee? error indicates that the used basis operator ofsizé in the single series expansion
does not have a good circular shape. The larger operatoreTf st 7 gives an improvement
but is still inaccurate.

(4) Optimization of the series coefficients with the, norm and the use of the Chebyshev re-
cursion scheme gives a better result tiiaroptimization and a direct recursion scheme.

size 5Hz 20 Hz 40 Hz

Series ) ‘ g% ‘ eP €9 ‘ g% ‘ eP €9 ‘ e ‘ epP

10x(5x5) | 1.8e-3| 1.8e-3| 4.3e-4| 1.5e-2| 3.6e-3| 7.5e-3| 2.0e-2| 5.6e-3| 7.5e-3

15x(5x5) | 7.4e-4| 6.3e-4| 1.4e-4| 1.5e-2| 3.9e-3| 7.6e-3|| 2.0e-2| 5.2e-3| 7.1e-3

10x(7x7) | 5.8e-4| 1.2e-3| 1.1e-4| 7.6e-3| 1.8e-3| 3.5e-3|| 1.2e-2| 1.9e-3| 8.9e-3

15x(7x7) | 4.7e-4| 1.2e-3| 6.5e-5| 7.6e-3| 3.8e-3| 3.5e-3|| 1.2e-2| 4.0e-3| 8.6e-3

Chebyshev 5Hz 20 Hz 40 Hz

10x(5x5) | 1.9e-2| 2.1e-3| 2.8e-3|| 2.1e-2| 2.8e-3| 9.1e-3|| 3.5e-2| 2.5e-3| 5.2e-2

15x(5x5) | 2.0e-2| 2.2e-3| 2.7e-3| 2.1e-2| 4.3e-3| 8.9e-3|| 3.5e-2| 2.5e-3| 5.3e-2

10x(7x7) | 9.2e-2| 2.5e-3| 2.6e-3| 3.6e-2| 1.1e-2| 1.4e-2|| 1.4e-2| 2.7e-3| 2.1e-2

15x(7x7) | 9.2e-3| 2.1e-3| 2.7e-3| 3.6e-2| 1.5e-2| 1.4e-2| 1.3e-2| 2.4e-3| 2.1e-2

Table 1.9 Errors in the extrapolation operators for the direct seregansion irk, and a Chebyshev
recursion scheme ih,. The maximum angle of interestGg°.

The shortest accurate operator as function of the maximuie arf interest is not worked out
for the expansion ik, because this method is cannot be designed accurate enotigh avi
reasonable computation effort.
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1.6 Double series expansion

By using an additional series expansion, ike.is expanded in terms df> + k;2( k%) (see
equation (1.57)) ,

k2 (k2)2 <k2>3 5(k2)4 7(k2)5 6
ky=k\1-k~k(l--+—- -~ — T - k>
? " ( 2 8 16 128 256 +O0((k)")

(1.57)

there is an extra advantage (Berkhout (1982), chapter 1@ .basic spatial convolution oper-
ators are reduced to the simple 1-D convolution operatd(g:) andds(y). The double series
expansion irk? + k; is given in equation (1.58)

exp (jk,Az) ~ 1—
L2k + k2) —
(1= jkAz) (k2 + k2)? —
2(1— jhAz + UERTy (2 4 g2)3 4

O((k2 + k;) ) (1.58)

16kJ

where the terms of the series expansion are derived fromdiiTseries, but this is not an

optimum choice (Hoff, 1995) This same expansion can alsef@rded as an approximation to
the cosine terms in equation (1.35). So there are two diffemays to look at the double series
expansion

Fo(ka, k) = eXp (—jk,A2) (1.59)
Z Ty (cos (k) (1.60)
~ Z b T (K (1.61)
n;;O
~~ Z cmk (1.62)

whereT,, is a Chebyshev polynomial of the m’'th order. In subsecti@llequation (1.62) is
regarded with the series expansion scheme. In subsedfi@efuation (1.61) is discussed with
the Chebyshev recursion scheme.

1.6.1 Expansionin k2 + k2 with Ly-norm

The same techniques as discussed in the section with thes seqpansion ik, can be used
again: the spatial versions bf andkg, i.e. ds(x) anddsy(y), are determined by a weighted least-
squares process. In Figure 1.34 two wavenumber spectra@magor short spatial convolution
operators, with operator lengths of 5 and 7 points, whicheggnt the second order differentia-
tion. Note that for these short operator the approximatahé exact function within the band
of interest is within a reasonable error. The convolutidmesce is given in Figure 1.35 where
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5 point d(x) operator 7 point §(x) operator

0.0 on 072 0’3 00 ol 072 0’3

K;fwavenumber m" K;fwovenumber [m"

Fig. 1.34 Spectrum of two differentiation operator for 5 and 7 poirithie maximum wavenumber of
interest is given by, = 2223 ~ 0.16.

P; —>e dy(x,y) do(x,y)

Fig. 1.35 Series expansion in terms fof + k:g = L. Theds(z,y) boxes represent the two 1-D convo-
lutions with the optimized Laplacian operator, the represent the optimized coefficients in
the series expansion.

dy(x,1) stands for the spatial Laplacian operadofz) + d,(y). The factors),, of the series
expansion in Figure 1.35 are obtained by a weighted leasirsg optimization method with
respect to the wavenumber spectrum of dpgimizedk? + k:j operator. The length of the 1-
D convolution operators depends on the maximum wavenunfbetevest (Hoff, 1995). Hoff
(1995) also showed that the value of the coefficients in thesexpansion grows rapidly with
increasing order. For the higher order terms values in tHer@f 1e19 are normal. This means
that after a certain number of terms the accuracy cannnebhpeied any further.

The scheme proposed in this section is similar to that oficcalhd Arntsen (1994), but there

are some small differences; to obtain the series coeffeitietwhole wavenumber spectrum is
used while Sollid and Arntsen use only the diagaiwal) to (k, v, k, n). For the least squares

optimization we use a (fast) WLSQ scheme while Sollid andtgen use a non-linear scheme
and finally the implementation is done in a series expansiodmat in an Chebychev recursion

scheme.

In Figure 1.36 the impulse responses is shown for a 3,5 7¢@mhbination with 15 coefficients.
The impulse response shows artefacts at the higher angleb afe due to edge effects of the
used WLSQ method. In WLSQ design the edges of the domainer&st contain relative large
error peaks. It may therefore be better to uséamorm in the design of the series coefficients.
In the next subsection this second approach, after Soylvaths Chebychev recursion scheme
is explained and results are shown.
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15x(6.5+6.5) with WLSQ coefficients

Fig. 1.36 Depth images of pulse responses obtained with the seriemsiqnm ink? + k7.with a ba-
sis operator with optimized operator lengths with 15 term#hie series expansion (example
made by Jochum Hoff).

1.6.2 Expansionin k2 + kj with L..-norm

Soubaras (1992) used the same type of expansibiH'mz, but in his method the optimization
technique for both the terms in the series expansion anditigtution operators is the Remez
exchange algorithm with thé_, norm. The advantage of the Chebyshev recursion scheme,
given in Figure 1.37 over the series expansion, which wasudied in the previous subsection,

is that the coefficients in the Chebyshev expansion are égssta’e to numerical errors. A dis-
advantage are the increasing number of additions needed.

Optimization of the differentiation operators with the, norm gives equiripple operators. Op-
timization for the series expansion terms with the norm can be done by reducing the poly-
nomial synthesis to symmetrical spectral synthesis wighaild of a simple transformation (see

Fig. 1.37 Expansion in terms of? + kf/ = L. Thedy(z,y) boxes represent the two 1-D convolu-
tions with the optimized operator, theB,,, represent the optimized coefficients in the series
expansion.
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-500-400-300-200-100 O 100 200 300 400 500 -500-400-300-200-100 O 100 200 300 400 500
0

a) 12x(7+7) expansion iR,

-500-400-300-200-100 O 100 200 300 400 500

b) 15x(7+7) expansion iA,

Fig. 1.38 Depth images of pulse responses obtained with the seriemsxm ink2 + ki with L., op-
timization; a) shows a 7 point 1D convolution operator withtérms in the series expansion
and b) with the same basis operator and 15 terms in the sexigansion. Note that more
terms in the series expansion gives a better result.

Appendix C). In this transformation only the extreme valoéthe wavenumber spectrum of
the differentiation operator are used in the optimizatiot aot, as with thd., optimization the
whole spectrum of the differentiation operator. The transfation from polynomials to spec-
tral synthesis reduces the 2-D optimization problem to adpiimization problem which can
be solved with the Remez exchange algorithm in a fast wayhdrektrapolation scheme the
differentiation operator remains the same for all frequescHowever, the terms in the series
expansion are calculated for every frequency.

In Figure 1.38 two pulse responses are shown for a 7+7 poarabg with 12 and 15 terms in
the expansion. The 7 point operator with 12 terms in the sonrscheme is shown in Figure
1.38a and has a circular response with only small artefddssng 15 terms with the same 7
point operator gives an even better result with less ari®fac
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1.6.3 Error analysis

In Table 1.10 the errors are given for the series expansiaf in k; implemented in a direct
recursion scheme with, optimization and the Chebyshev recursion scheme lvitloptimiza-
tion . From the results in the Table the following remarks bamade,;

(1) In both optimization methods the number of terms is Isseetial to the accuracy than the
length of thel, operator. Increasing the number of terms improves thetreslyl a little, while
increasing the length of thé operator gives a significant improvement on the result.

(2) The artefacts present in the impulse response with thessexpansion scheme are due to
instabilities at the higher angles. This effect is possthlg to the use of the, norm optimiza-
tion (Hoff 1994, (Hoff, 1995)). In thd... norm optimization unstable error peaks are not likely
to occur. The artefacts can be removed with an addition@inigdtion step in the., optimiza-
tion.

(3) Although thes,, errors for the lower frequencies in tihg, norm optimization are larger than
the errors in thd., norm optimization the impulse response contains lessaatef

The difference with the reference error in the spatial donsagiven in Figure 1.39. In this Fig-
ure the series expansion method with 15x(3,5,7) terms/anaptimization can be compared
with the Chebychev recursion scheme of 15x(7+7) terms/apdptimization. From this com-
parison we see that the errors in the optimization are smeared out over the whole wavenum-
ber range while thé, optimization has error peaks. The amplitude and phaseancarbetter

for the L, optimization, but it suffers from artefacts at the higheglas. Choosing larger bass
operator and more terms will solve this problem.

In Table 1.11 the shortest accurate operatdrjnoptimization is given as function of the max-
imum angle of interest. The error is the most sensitive error in tihg, optimization. Forl 5°
and30° angle the same number of terms must be used, a lower numbesntf teads to unac-
ceptables, errors for the low and middle frequencies. The optimum opersize can be found
by trying to make the, as small as possible by choosing the number of terms highoptie
mum number of terms is then found by lowering the number ohseuntil thes, is changing

size SHz 20 Hz 40 Hz
Direct ) ‘ g% ‘ eP €9 ‘ g% ‘ eP €9 ‘ e ‘ eP

10x(3,5,7) || 5.8e-3| 1.9e-3| 1.8e-3|| 3.2e-3| 3.7e-3| 4.6e-3|| 3.4e-3| 3.4e-3| 6.4e-3
12x(3,5,7) || 6.1e-3| 2.8e-3| 1.9e-3|| 3.0e-3| 3.2e-3| 4.1e-3|| 3.1e-3| 3.4e-3| 5.1e-3
15x(3,5,7) | 6.1e-3| 3.5e-3| 1.9e-3|| 2.4e-3| 3.2e-3| 3.3e-3|| 3.0e-3| 3.9e-3| 4.8e-3
Chebyshev 5Hz 20 Hz 40 Hz
10x(7+7) || 4.0e-2| 3.7e-3| 2.3e-3|| 7.1e-3| 3.0e-3| 4.5e-3|| 4.3e-3| 1.9e-3| 6.5e-3
12x(7+7) || 4.0e-2| 7.6e-3| 2.1e-3|| 7.1e-3| 5.0e-3| 4.4e-3| 4.1e-3| 4.9e-3| 5.8e-3
15x(7+7) || 4.0e-2| 1.2e-2| 2.4e-3|| 6.8e-3| 5.8e-3| 3.4e-3| 4.1e-3| 6.5e-3| 5.0e-3

Table 1.10 Errors in the extrapolation operators for the direct ser@gansion irk§+k§ and a Cheby-
shev recursion scheme i + k2. The maximum angle of interesttig’.
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a) Series expansion withy
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b) Chebychev expansion with.,

Fig. 1.39 Error in the impulse response of the Chebychev expansiousitk, Az) with original Mc-
Clellan (a) and for a series expansionadns (k,Ax) with WLSQ optimized coefficients (b).

significant. The high average errors are due to the highsat® Hz. For a maximum angle of
75° it is not possible to obtain stable operators.

Operator 20 Hz Average
angle| size e | et | e g | & | e

15 | 5x(7+7)| 8.6e-3| 5.1e-3| 1.7e-4| 9.6e-3| 9.7e-3| 5.0e-4
30 | 5x(7+7)|| 3.0e-3| 1.9e-3| 3.9e-3| 1.2e-2| 6.1e-3| 3.7e-3
45 | 7X(7+7)|| 5.0e-3| 4.5e-3| 2.0e-3|| 1.5e-2| 5.8e-3| 1.0e-2
60 | 9x(7+7)|| 8.3e-3| 1.8e-3| 6.3e-2| 1.7e-2| 2.3e-3| 4.0e-2

Table 1.11 Optimum operators which are accurate up to a maximum angiletefest.
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1.7 Discussion and Conclusions

The 3-D extrapolation algorithm that is used in recursivetdenigration can be implemented
in several ways. In this Chapter the direct method, the M&@ig¢ransformation and three se-
ries expansion methods have been discussed. For the dietisbdha 2-Dimensional convo-
lution operator is needed. The proposed weighted leastregwptimization method is an effi-
cient procedure which gives stable and accurate convoloperators (Thorbecke and Rietveld,
1994). This method can be further improved by a second opditioin step; for example, the
Lawson algorithm (Rise and Usow, 1968 (Rice and Usow, 1988)ich will adjust the weight
function in such a way that after several steps it will cogedo a Chebyshev-norm solution see
for example Algazi et. al 1986 (Algazi et al., 1986). The Reureconstruction method is a fast
and simple method to obtain 2-D circular convolution operibut must be improved further
to give accurate results.

The McClellan scheme which makes use of the 1-D optimizedadpecoefficients is attractive
with respect to the computation effort and by using optimiZkeClellan factors the accuracy for
the higher angles can be improved significantly without mefébrt. Using a series expansion
of the phase shift operator also reduces the computatiom itincomparison with a direct 2-
Dimensional convolution. Two expansions were discussatli;mChapter one ik, and one
in k2 + k:; These different approaches to the phase shift operatobe@ummarized in the
following equations

Fo(ky, k) = exp (—jk.Az) (1.63)
M N
~ > > Epp cos (kymAz) cos (kynAy) (1.64)
m=0 n=0
B M
Fo(ke, ky) = Y FT(cos (y/k2 + k2Ax)) (1.65)
m=0
M
Ay amcos™ (k2 + k2Ax) (1.66)
m=0
. M
Fo(ke, ky) = Y ByTn(kl + k) (1.67)
m=0
M
~ 2 2\m
R~ Z b (K3 + k) (1.68)
Fo(ky, ky) Z CoTon( (1.69)
~ Z okl (1.70)
m=0
with
P Q

cos (k2 4+ k2) &= D> Y cpqcos (k) cos (gky) (1.71)

p=04¢=0
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cos (/K2 + k2) = ag + by /K2 + k2 (1.72)

Equation (1.64) represents the direct method, equati@b)Xtombined with equation (1.71)
is the McClellan approach with the Chebyshev recursionmeehd=quation (1.66) is the series
expansion irvos (k.Az) with a dependent optimization between the series coefteiemd the
approximation taos (k,Ax). Equation (1.67) with equation (1.72) is the expansiok?in- k§

with the Chebyshev recursion scheme. Equation (1.68) is¢hies expansion ik? + £2; the
use of this series expansion in recursive migration wasdyr@roposed by Berkhout (1982).
Equation (1.69) represents the expansioh.im a Chebychev recursion scheme and Equation
(1.69) the series expansion/n.

From an efficiency point of view the expansioniifi+ &; and the use of the McClellan trans-
formation are the most interesting schemes. An extra adgartf the expansion iy + k:§ IS
that short 1-Dimensional convolution operators can be .usatisadvantage of these schemes
is that it is not possible to write the algorithms in compubeendly’ way due to the recursive
structure in the scheme. This fact is displayed in the coatprt times given in Appendix A.
The most accurate extrapolation is the direct convolutreme. Another advantage of the
direct scheme is that the algorithm can be designed in anesffizray. A disadvantage of the
direct scheme is the intensive computation of the 2-D cautiarh operators.

The approximation toos (k.Ax) can be done with many different methods. Crucial in the per-
formance of the extrapolation operator is that the coefiisiéen the expansion (Chebyshev or
series) are optimized by using the approximationdo(k, Ax).

| Method | accuracy | stable | circ | operator | simple | vector | scalar |

Direct ++ + ++ - ++ + +
McC1 0] ++ o] + 0] + ++
McC2 0] ++ o] + 0] + ++
McC2+ + + + + - + +
cos (k,Ax) +/++ + ++ 0 + + ++
k. - o] o] o] + - o]

k2 + k2 Lo 0 0 + + o) 0 +
k2 + k) Lo 0 + + ++ - 0 +

Table 1.12 Comparison of the different extrapolation methods witlpees to computation effort and
stability. Note that in the McClellan schemes the optimigedlellan factors are used.

In this table the different columns have the following meani

e accuracy the average, error over the whole frequency range.

e stable the stability of the method over the whole frequency rargeafl wavenumbers:=(_
error). A o means that some wavenumber components canm keagaastable.

e circ: the circularity of the impulse respons# grror). The McClellan in Chebychev expan-
sion and the:, scheme have problems with the circulariry.

e operator. the effort to compute all the coefficients which are needdle convolution scheme.
For example in the direct method a 2-D convolution operatostuomputed, in the McClellan
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scheme a 1-D convolution operator and the (optimized) M&Zidactors are needed. In the
table ++ means a minimum computation effort to compute tleffiorents. Note that the oper-
ator coefficients can be calculated in advance and storedaperator table.

e simple the simplicity of the implementation of the convolutionh& recursive schemes re-
quire more complex algorithms, so the compilers have to loel gooptimization to make these
schemes fast. In the recursive schemes it is difficult to nta&grogram faster by changing
the algorithm in a more computer ‘friendly’ way. A direct amtution requires more multipli-
cations and additions but the algorithm can be made veryegificThis fact explains the fast
computation time of the direct scheme in comparison witlother schemes (see Appendix A).
e vector. the performance of the scheme on a vector computer. Thetdickeme is the only
scheme which can be implemented in a vector efficient way.

e scalar. the performance of the scheme on a modern scalar computés. that some scalar
computers may have an architecture which can be more adygoua for some implementa-
tions.

In conclusion taking into account tikemputation timef the different methods, tr@mplicity

of the algorithms and most important taecuracyof the result then thdirect method (1.64)

is the best method for 3D extrapolation. The 2-D convolutperators should be stored in an
efficient way, by using the even symmetry of the operator @mtant need be stored only), inan
operator table that can be calculated in advance. Note thialgorithm of the direct scheme
can be made faster by also taking the circular symmetrAfif = Ay) of the operator into
account.

If a series expansion version is used we prefer the expamsioss (k,.Az) (1.66). It is our
opinion that Chebychev recursion is not an advantage.
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Appendix A: Computation times

The computation times of the different 3-D extrapolatiortmoels in the space-frequency do-
main discussed in this chapter are given in table 1.13. Thengiime represent 55 recursive
depth steps for one frequency (20 Hz.) with= 1000ms—!, Az = Ay = Az = 10m on

a x,y grid of111 x 111 samples wide. All routines which are used are written in C tod
tran and are translated with the same type of compiler optiothout using options for parallel
computation (see Table 1.14). However, parallel procgssieasily implemented on the main
frequency loop in the extrapolation algorithm. On the Con@&220) the -O2 option is used for
vectorization of the loops. It was not possible to vectotimeC-code with specific compiler di-

Direct McClellan 1 McClellan 2
Machine | 19x19 | 25x25 | 31x31 | 10x9]| 13x9| 16x9 | 10x17[ 13x17] 16x17
SUNC | 635 | 1046 | 1573 | 245|31.1|38.7| 334 | 448 | 553
SUNF | 526 88.0 | 144.8 | 20.3|27.0|31.7| 288 | 39.0 | 47.8
ConvexF| 34.7 61.9 859 | 12.4|17.4|21.6] 211 | 276 | 335
DECC | 283 46.9 716 | 94 [13.7] 157 134 | 17.8 | 215
DECF || 115 19.9 280 || 56| 72|88 67 | 86 | 105
HP C 18.6 30.0 447 | 100|132 16.5| 205 | 235 | 27.7
HP F 6.8 10.6 151 | 66 [ 86 [10.6] 19.2 [ 20.8 | 245

McClellan 2+ cos (k,Az) x9 cos (k,Az) x25
Machine | 10x25 | 13x25 | 16x25 | 10x9| 13x9| 16x9 | 10x25[ 13x25| 16x25
SUNC | 419 55.0 67.2 [ 18.0] 23.5] 29.2| 35.0 | 45.9 | 59.9
SUNF | 36.8 48.0 583 || 16.8|21.1|25.7] 326 | 429 | 54.3
ConvexF| 33.4 455 541 | 11.6]|16.2| 185] 34.0 | 423 | 53.9
DECC | 146 18.5 243 || 70| 93 |10.8] 121 | 156 | 19.2
DECF 75 9.6 118 | 44|56 |67 62 | 79 | 96
HP C 23.3 26.4 304 || 7.9 |10.3|123] 134 | 17.0 | 20.8
HP F 15.1 18.2 220 | 40 | 51 | 62| 122 | 146 | 174

k. K2+ k) Ly K2+ k2 Lo
Machine || 10x(5x5)| 15x(5x5)| 10x(7x7) | 12x5| 12x7| 15x7 | 12x5 | 12x7 | 15x7
SUNC | 363 54.3 61.2 [ 25.7]32.8]41.2] 334 | 41.9 | 517
SUNF | 332 49.0 572 || 21.2|26.2| 355/ 27.9 | 32.0 | 39.9
ConvexF| 315 49.6 711 [[15.1]19.7][ 24.3] 19.0 | 24.2 | 30.0
DECC | 118 17.6 263 || 86 | 96 | 11.9] 136 | 152 | 19.2
DECF 6.2 9.1 85 || 56| 56| 68| 70 | 77 | 98
HP C 12.8 18.8 185 [ 159[21.4[274] 146 | 18.1 | 223
HP F 9.5 14.7 20.1 || 135]20.0| 253] 11.8 | 15.8 | 18.3

Table 1.13  2-D convolution computation time (in seconds) for one fegauy on different machines for
different operator sizes and extrapolation methods.
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rectives, therefore the convolution schemes were writiétortran code which vectorizes well.
Note that the Fortran compilers are better in optimizati@ntthe C compilers.

In the direct implementation of the 2-D convolution the eggmmetry in the convolution op-
erator is used. This implementation is designed to workdast Vector computer. In the imple-
mentation of the McClellan transformation and theexpansion the circular symmetry in the
basis operators is used by first adding the common terms boather and then multiplication
with the appropriate operator point. This reduces the nurobeultiplications with a factor 8

in comparison with a full convolution. The computation tsrggven in Table 1.13 are real-time
computation times measured during the calculation. The tiseded to calculate the operators
is not included in this time.

Due to the use of the even symmetry in the operator the cortipuaitane for the direct convolu-
tionis areal challenge for the other methods (Note thatitleet.kscheme can be made even faster
whenAz = Ay and the circular symmetry is used). The first and second dideiellan im-
plementations and the series expansiowi k,.Ax) are the fastest algorithms on all machines.
The series expansion i and ink? + k; are comparable with the McClellan transformation.
The difference between thé + k§ expansion inL, andL, is that in theL, scheme the direct
series expansion is used and for fhe the Chebyshev recursion scheme is used. From the table
it is clear that the hardware design of the computer systenbeaoptimum for some specific
implementation. For example the HP has a good performanteeatirect scheme and less on
the McClellan schemes. The DEC has a good performance oxpahsion schemes.

Which scheme is preferred depends also on the desired agafrthe result. If one uses the
extrapolation only to get a first idea of the subsurface, estonate the macro model, a first or-
der McClellan can be used. For a higher accuracy the direatatotion or a series expansion
method with a high number of terms can be used.

Machine | type |RAM |bits| C | F [ C-opt|F-opt |
SUN 10/514 256 | 32 | gcc| f77 -02 -02
Convex C-220 256 | 32 | cc fc -02 | -02
DEC 3000-500f 96 64 | cc fr7 -02 -03
HP 9000-735| 144 | 32 | cc | fort77| +04 | +0O4

Table1.14 Specification for the used machines. Note that the optimizas done for one CPU and
parallel processing is not used.

In Table 1.14 a detailed specification for the different miaek is given. On the SUN the gcc
compiler is used because it produces faster code than théasthcc compiler delivered by

SUN. Note that for the optimization options only the most coom used options are chosen,
it may therefore be possible that by choosing another optierscheme will perform better as
described in this Appendix (suggestions for better optemeswvelcome).

In Table 1.15 the computation effort of the different methaglcalculated. The values in this
table are calculated for a spatial dimensior dbf x 111 samples with only one depth step for
one frequency. The computation times are for the HP withcs®oode written in C. Add(f) and

Mul(f) are respectively floating point additions and muitgtions, (i) gives integer additions
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Method ||  Size [ Add(f) | Mul(f) | Assign| Add(i) | Mult() | Time
Direct V 19 x 19 768 | 492 | 570 | 0.32 | 0.13 | 0.34
Direct V 25 x 25 1289 | 833 | 932 | 034 | 0.14 | 055
Direct V 31 x 31 19.43 | 12.62 | 13.85| 0.35 | 0.14 | 0.80
Direct 8 19 x 19 10.25 | 271 | 2.84 | 17.00| 0.05 | 0.56
Direct 8 25 x 25 17.64 | 4.48 | 4.62 | 29.72| 0.05 | 0.94
Direct 8 31 x 31 27.03| 6.70 | 6.84 | 45.98| 0.05 | 1.42

k. Se 15 x 25 8.99 2.81 3.60 | 14.05| 0.10 | 0.31
k. Se 15 x 49 15.89 | 4.19 5.00 | 29.23| 0.10 | 0.57
k. Ch 15 x 25 9.66 3.47 429 | 1405 | 0.10 | 0.39
McC1 10 x9 2.44 1.36 211 291 0.10 | 0.19
McC1 13 x9 3.25 1.80 2.78 3.80 0.10 | 0.25
McC1 16 x 9 4.07 2.24 3.45 4.68 0.10 | 0.30
McC2 10 x 17 421 1.80 2.57 5.57 0.10 | 0.24
McC2 13 x 17 5.62 2.39 3.40 7.34 0.10 | 0.31
McC2 16 x 17 7.02 2.98 4.22 9.12 0.10 | 0.39
McC2+ 10 x 25 5.99 2.02 2.80 9.12 0.10 | 0.26
McC2+ 13 x 25 7.98 2.69 3.69 | 12.07| 0.10 | 0.34
McC2+ 16 x 25 9.98 3.35 459 | 1503 | 0.10 | 042

)| 244 | 212 | 182 | 163 | 010 | 0.18
(5+5)| 3.82 | 281 | 257 | 301 | 0.10 | 0.37
(7+7)| 520 | 350 | 293 | 439 | 0.10 | 0.62
K2+ k2 |[15x(9+9)| 658 | 419 | 329 | 577 | 0.10 | 1.84
2+ k> |[10x(5+5)| 246 | 1.82 | 1.70 | 202 | 0.10 | 0.15
K2+ k> [[12x(5+5) | 3.01 | 222 | 2.04 | 241 | 0.10 | 0.18
K2+ k2Ch|10x (5+5)| 288 | 2.24 | 1.93 | 2.02 | 0.10 | 0.20

(5+5)

(5+5)

(T+7)

(T+7)

(T+7)

K24k, |[156x(3+3
ki4+k2 | 15x (5+5
ki4kl |15 x (T+7

K24+ k2Ch|12x (5+5)| 352 | 274 | 234 | 2.41 | 010 | 0.25
K24+ k2Ch| 15x (5+5)| 448 | 347 | 294 | 301 | 010 | 0.31
2+ k2Ch|[10x (7+7)| 377 | 269 | 217 | 2.90 | 0.10 | 0.25
K2+ k2Ch|12x (7+7)| 461 | 328 | 263 | 350 | 0.10 | 0.29
K2+ k2Ch|[15x (7+7)| 586 | 416 | 331 | 438 | 0.10 | 0.36
cos (k) 10 x 9 224 | 116 | 169 | 291 | 0.10 | 0.14
cos (k) 13 % 9 298 | 153 | 221 | 3.79 | 0.10 | 0.19
cos (k) 16 x 9 372 | 1.90 | 273 | 468 | 0.10 | 0.20
cos (k) 10x25 | 579 | 1.82 | 236 | 912 | 0.10 | 0.21
cos (k) 13x25 | 7.71 | 242 | 311 | 12.07| 0.10 | 0.27
cos (k) 16x25 | 964 | 3.00 | 3.85 | 1503 | 0.10 | 0.34

Table 1.15 Computation effort according to the number of additionsltiplications and assignments
(1e+6). The spatial size is chosen fixed at 111x111 samples.
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Method || Operator | 55x55 | 111x111| 155x155| 223x223

Direct 19 x 19 3.0 11.5 23.1 48.0
McC1 10x9 1.9 9.5 19.6 41.6
McC2 10 x 17 2.3 10.1 21.2 449
k. 10 x (7 x7) 2.4 10.6 21.0 46.9

k2 + kg Ly | 12 (T+7) 1.9 8.5 18.2 41.0
k2 + kg Lo | 12 % (T4 7) 2.9 12.9 25.9 58.0

Table1.16 Computation time on the DEC Alpha for different model sizéis different operators.

and multiplications. Integer additions are used to in@ieet array element, so a large number of
integer additions indicates a lot of switching between teenents in an array. Assign indicates
the number of floating point assignments. Note that compleltiptications are counted as 2
floating additions and 4 floating multiplications (just asitmplemented in C).

The Direct V scheme is designed optimimum for Vector comstbe Direct 8 scheme makes
use of the circular symmetry of the operator. The differsrimetween these two direct schemes
are clear from the table; the Vector scheme takes more fipatditions multiplications and as-
signments but only a few integer additions, the Direct 8 sehases a lot of integer additions a
little more floating additions than the Vector scheme anéithalnumber of floating multiplica-
tions. Nevertheless the Direct 8 scheme is slower than th¥scheme due to the inefficient
method to obtain the array elements. Taking into accourtahgputation effort and the perfor-
mance on the machines the series expansiaodifk, Az) is the most flexible scheme which
has a good computation performance on all machines.

In Table 1.16 the computation time on the DEC Alpha for théedént methods is given as func-

tion of the size of the model. From these results one can adecdhat the direct method on the

DEC is not necessary slower than the other methods. Not&&hebyshev recursion scheme
implemented in thé:? + kg expansion is slower than the power series expansion.
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Appendix B: Chebyshev Polynomial Approximation

The Chebyshev polynomial is a powerful function in appraiion theory Parks, (Parks and
Burrus, 1987)., because of the special properties of theydnev polynomials. The Chebyshev
approximationP(z) of a real function/'(z) is defined as

4 M
F(z)~ P(z) = 50 + Z_ A T () (1.73)

for —1 < 2 < 1and with7,,(z) the Chebyshev polynomial of order m angthe expansion co-

efficients (see for example Johnson and Riess 1977, (19@lgtdR 1967, (1967); Kogbetliantz
1960, (1960) Powell 1981, (1981)). The Chebyshev polyntsfiig(z) are usually defined in

terms of trigonometric functions by:

T (z) = cos (marccos (x)) for|z] <1
T, (7) = cosh (mcosh™ (z)) for|z| > 1 (1.74)

Using the variable substitution= cos (¢) the Chebyshev polynomials can be rewritten as
T, (x) = cos (mo) (1.75)

With this variable substitution some properties of the Gisélev polynomials can easily be de-
rived

2T (2) T () = Do () + T () (1.76)
Tins1(x) = cos ((m+ 1)¢) = 2 cos (¢) cos (m¢p) — cos ((m — 1)¢)

(1.77)

Tonsi1(x) = 22T, (2) — Thq () (1.78)

Ty(z) = 22 — 1 (1.79)

Ts(z) = 42° — 32 etc. (1.80)

with Ty(x) = 1 and7i(x) = z. The most important property is the recurrence relatioegiv
in equation (1.78). Equations (1.79) and (1.80) show That:) can be written a§” b,,2™, a
polynomial inz. The polynomiall,,,(z) has m zero’s in the interval-1, 1] which are located
at the points

m(2i 4+ 1)

x; = cos ( 5
m

) (1.81)

The Chebyshev polynomials are also orthogonal with regpelce weight functiorn1 —x2)% =
sin (¢). So

/ (1= 2 AT @) T () do —

-1
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Fig. 1.40 Chebyshev polynomials for the 0,1,2, and 3th order withaititerval [—1,1]. Note that
outside this interval the polynomials of orde¥s2 go to+..

i 0 for i#j
/ cos (i¢) cos (jo)do s 5 for i=j#0 (1.82)
’ m for i=7=0

By using this orthogonal property it can be proven (PowélBl), 1988, p. 144) that the Cheby-
shev approximatio® () in equation (1.73) is very nearly theinimax polynomialhich (among
all polynomials of the same degree) has the smallest maxigewiation for the true function
F(z). For afixed M equation (1.73) is a polynomiakinvhich approximates the functidri(x)
in the interval[—1, 1]. This particular approximating polynomial is not nece#ganore accu-
rate than some other approximating polynomial of the samerdvl (for some specified defini-
tion of "accurate”), but equation (1.73) can be truncateapolynomial of lower degree < M
thatdoesyield the "most accurate” approximation of degree n. So ttwieacy of the approx-
imation improves when the number of terms is increased.eSime7,,, (x) are all bounded be-
tweent1, the difference between the truncated(n) and the larggnpatial(M) can be no larger
than the sum of the neglected terms. In fact if the terms gmellsadecreasing, then the error
is dominated by, T,,(x) an oscillatory function with (n+1) equal extreme distriddismoothly
over the interval—1, 1]. This smooth spreading out of the error is a very importaaperty
(Press et al., 1992).
The Chebyshev polynomials have a remarkable behavior. db@ilate between +1 and -1 for
—1 < z < 1 and go monotonically ta-co outside that domain. All N of their zeros are real
and fall in the domain-1 < z < 1. In Figure 1.40 the Chebyshev polynomials for the 0,1,2,
and 3th order are plotted. Another important property ofthebyshev polynomialsis that they
satisfy the "Haar condition”. This condition is used in therfez exchange algorithm to prove
uniqueness of the best minimax approximation (for a morailkdet discussion see Appendix

Q).
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Appendix C: Optimization with the L., norm

Introduction

For the design of a spatial 1-D convolution operator an ogitsolution is desired. The opti-
mized result must be designed accurate within the band efast and stable outside this band.
In order to solve this problem the notion accuracy must benddfin a mathematical way. The
most common definitions are explained in the next subseatiouit thel,, norms. After defin-
ing the accuracy in a desired way a computation method mustditable to calculate the solu-
tion of the approximation problem. By using thg, norm the minimization problem is usually
not solvable explicit in terms of formulas. However, by fardiating theL., optimization prob-
lem as a Chebyshev approximation problem a set of condi{siated in the alternation theo-
rem) is provided which completely characterize the optifiti@r. To assure the convergence
and uniqueness of the solution in thg, norm some theorems are needed which are explained
in the section about the Haar condition. In the section almmiRemez exchange algorithm,
which calculates the unique solution in the, norm, an iterative algorithm which calculates
the L, solution is explained in an intuitive manner.

The Parks-McClellan (1972) algorithm is based on the Remelzamge algorithm and Cheby-
shev approximation theory to design convolution operataisoptimal fits between the desired
and actual frequency responses. The operators are opiirtied sense that the maximum error
between the desired frequency response and the actuatfregresponse is minimized for the
given weighting function. Operators designed this way ixfain equiripple behavior in their
frequency response, and hence are sometimes called gdgiifiiers.

The L, norms

A weighted error function, which measures the deviatiomftine true function, is defined as
le(@)I| = [| W (2)|F(x) = P()] (1.83)

There are several possible choices available for the nometifan (| ||) in equation (1.83). The
most widely used are the,, (also called the minimax, or Chebyshev) norm andih¢least-
squares) norm. The,, norm is appropriate when specifications are stated in tefm&amum
allowed stop-band attenuation or maximum allowed passtearor. Thel, error measure is
appropriate when specifications are in terms of signal gnetatistical considerations show
that thelL, norm is the most appropriate choice for data fitting, wheretiners in the data have
a normal distribution. The calculation of the best appration in theL, norm reduces to a
system of linear equations (the normal equations), whiatbessolved straightforward by using
efficientalgorithms. Thé&; normis the least used norm and can be used for fitting a desdata
set with some gross errors in it due to blunders. ThelL,, L, and L., norm are respectively
defined as

IF@Ih = [ 1F@)de (1.84)

W@l = |[1Fep]’ (1.85)
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@l = | [ 1F@da]” (1.86)
IF@)lle = mas () (1.87)

Peaks and overshoots in the frequency domain are typicakqtiéncy sampling and least-
squares designs. Windowing techniques are attempts toedta peaks in the error function
(Parks and Burrus, 1987). But how far can the maximum erroredeced? The theory of
Chebyshev approximation provides algorithms to find thdfmpents of a filter with the mini-
mum value for the maximum error. Filters that have the mimmualue of the maximum error
exhibit an equiripple behavior in their frequency respomspractical reason for using thie,,
norm is that when in computer calculations a complicatecheragatical function is estimated
by one that is easy to calculate then it is usually necessagngdure that the greatest value of
the error functiorz is less than a fixed amount. This is just the required accubitye approx-
imation which is a condition on the norfj¥’ — P||...

If there is an approximation such that thg, norm error function is small then the, norm and
Ly norm error functions are small also. This can be proven wigtGauchy-Schwarz inequality
(Powell, 1981) that with error function= {|F(x) — P(x)|;a < x < b}

el < (b= a)2lells < (b= a)llelloe (1.88)
The different norm functions can be presented in a grapkesl shown in Figure 1.41 (after
Powell 1981, (1981)). In this Figure the poif2t 1) is approximated by one point from the line
y = x represented by, for the different norms. Thé&; norm solution to this problem is not
unigue and is given by all points lying on both A and the raldtex indicated by, (the solution
is the minimum of{|2 — z| + |1 — z| Vz}). These points range froifi, 1) to (2,2) and the
minimum distance is 1. Non-minimui, solutions are represented by the same box but on a
larger scale. Thé, norm is represented by a circle and has one unique solytién,l.5) with
distance 0.5, and is the position where the circle touchekrta A (the solution is the minimum
of {(|2— #|? +|1 — z|2)z Vz}). Other non-minimaL, solutions can be represented by circular
contours with the same midpoint but with a different radilibe L., norm is the small cube
with the dashed line, which for this simple example givesstiime solution as the, norm (the
solution is the minimum ofnax(|2 — x + 1 — z|) V).

The Haar condition

The best minimax approximation from a set of basis functior’s polynomials of the order n
(P,), to the functionF in

le(@)ll = _max W (a)|F(z) - P(a) (1.89)
is that element oA that minimizes equation (1.89). It can be proven (Powell11$874) that in
order to discover if a trial approximation is optimal oneyonéed to consider the extreme values
of the error function. Le* be a non-optimal trial approximation. The purpose is to iowpr
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Fig. 141 The Ly, L, and L, norms displayed for a simple approximation problem (aftem@ll,
1981).

the approximation by satisfying equation (1.89). The sgtahts where the error function
e*(z) = F(x) — P*(x) (1.90)
takes its extreme values is calléd This set of extreme points is characterized by the conditio
(@) = Il (1.91)
Let (P* + 0P) be a best approximation. Then equation (1.89) is obtainddrainequality
le*(z) — 0P ()| < |&¥| (1.92)

is satisfied for all points iy. Assuming that is positive in equation (1.92) it is easy to see that
for the pointsE the sign of=*(x) is the same as the sign 6fx). From this it follows (Powell,
1981) that if P* is a best minimax approximation frofto /' then there is no functio® in A
that satisfies the condition

[F(z) — P*(x)]P(x) >0 (1.93)

for all values ofz where the error function takes its extreme values. If ingtyud..93) is true
for someP then there exists a positive vald¢hat gives a better approximation. Whether con-
dition (1.93) is obtained can be tested easily if the set pf@aamating function#\ satisfies the
Haar condition. Whem satisfies the 'Haar condition’ it can also be proven that tbst lap-
proximation is unique. The Haar conditions provides alsexgellent method for calculating
the best approximations, called the (Remez) exchangeittigor

The Haar condition, stated in its most usual definition, V&giby

Condition 1 (Haar) If an element of?, has more than n zeros, then it is identically zero.
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ThusA satisfies the Haar condition if and only if, for every nonez&rin A, the number of roots
of the equatio P(z) = 0;a < z < b} is less than the dimension éf It can also be proven
that

Theorem 1 (Uniqueness forl..) Let A be alinear subspade, b] that satisfies the Haar con-
dition. Then for any f irja, b] there is just one best minimax approximation from A to F.

If A does not satisfy the Haar condition then there are funcfiong, b] that have several best
approximations irA.

Another property of the class of minimax approximation peots may be used to obtain a char-
acterization of the solution to equation (1.89). The aléion and characterization theorems
give the necessary and sufficient conditions for the besimaix approximation (Rabiner et al.,
1975):

Theorem 2 (Alternation) if P(z) is a linear combination of\/ cosine functions i.e.,

M—-1
P(z) = > a(m)cos (2rmz) (1.94)
m=0
then a necessary and sufficient condition tRét:) be the unique best weighted Chebyshev ap-
proximation to a continuous functidfi(z) on K (wavenumber domain) is that the weighted er-
ror functione(x) = W(x)|F(z) — P(z)| exhibits at least M+1 extremal frequencies in K.

Theorem 3 (Characterization) P(z) is the best minimax approximation if and only if there
exist a set of extremal frequencies of M+1 poiffs}, i = 1,2,..., M + 1 such that§; <

Er- v <& <Emyr, Withe(&) = —e(&41), 0= 1,2,..., M and|e(&;)| = max,e¢ |e(x)].

For example a function ial (algebraic polynomials of order n) has at most n sign chaniges
the error function F'(z) — P(x)| changes sign more than n times as x ranges over the linear
subspacé’ then according to the statement in equation (1/3js a best approximation. Con-
versely, if the number of sign changes does not exceed njttlsgmossible to choose the zeros

of a polynomial inA so that condition (1.93) is satisfied. Note that the Chebyglaé/nomials
satisfy the Haar condition on the interyall, 1].

The alternation theorem means that the best Chebyshevxap@ation must necessarily have
an equiripple error function. It also states that there igigwe best approximation for a given
set of frequencies, filter length N and weight functidiiz). The phrase "at least M+1 extremal
frequencies” needs some explanation. Since the best apptan for a given set of specifi-
cations is unique there witiot be one filter with M+1 extremals and another filter with M+2
extremals for the same specifications. For a given set offsggmons, the unique best filter may
have more than M+1 extremal frequencies. If for example fiteral filter has M+3 extremal
frequencies, then by the uniqueness property, there céenafilter with only M+1 extremals
for this given set of specifications.
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Theorem 3 characterizes the optimum solution so that it earebognized, but it does not di-
rectly show how to choose the filter coefficients. If the exia¢frequencies are known, the
impulse-response coefficients can be found easily by spauirinterpolation problem by a frequency-
sampling technique. The problem of designing the filter reentreduced to the problem of
finding the extremal frequencies. The Remez exchange #igors an algorithm which solves

the Chebyshev approximation by searching for these extrigetpiencies of the best approxi-
mation.

Remez exchange algorithm

The Remez Exchange algorithm is to the Chebyshev approximas the normal equations
are to the minimum least-squares solution. In both cases @ sgpansion coefficients; is
calculated that "best fit” a set of basis functions to the d#tthe definition of "best fit” is to
minimize the sum of squares then get the normal equationssaato calculate the’s. If the
"best fit” is defined to minimize the maximum error (min-maxGirebysheyv fit) then the Remez
Exchange algorithm gives the answer.

The Remez exchange algorithm for Chebyshev approximasiaiesigned to make the error
function of the filter satisfy the set of necessary and seifficconditions for the optimal solution
as stated in the alternation theorem. If the Haar conditmdd(which is true for Chebyshev
polynomials) then convergence of the exchange algorittubtasined fromanyinitial reference.

The exchange algorithm calculates the elementofa dimensional subspadethat minimize
the approximatior(z) in
|le(2)[loc = max W(zx)|F(x) — P(x)] (1.95)

0<z<kn
Instead of trying to reduce the error of each trial approxioma the algorithm adjust a reference
set of extremal frequencids; : i =0,1,...,n + 1}, so that it converges to a point S&t' :
i =0,1,...,n + 1} that satisfies the characterization theorem. The adjusthaee made by
an iterative procedure.

In order to begin the calculation, an initial reference ies#m. It can be any set of points that
satisfies the condition

a<&<&E < <G <b (1.96)

At the start of each next iteration a reference is availatée is different from the references
of all previous iterations. The calculations of each iteraiare as follows. Le{¢; : i =
0,1,...,n + 1} be the reference at the start of an iteration. First the fand?(z) in A that
minimizes the expression

max W(&)IF (&) — P(&)] (1.97)

i=0,1,2,...n

is calculated. The coefficientsin P(z) = 3, ¢;Q;(z) may be found (Powell, page 79 and 85)
by solving the linear system of equations

W(ENF (&) — PE)] = (-1D)'h  i=0,1,...,n+1 (1.98)
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Fig. 1.42 An error function of the exchange algorithm (after Powell).

where, h is defined by the linear system and can be calculasdgteally. For a given set of
n + 2 frequencies this requires the solution of the- 2 equation as given in equation (1.98).
A fast method for solving this problem is given in McClellamdaParks (1972) and Rabiner et.
al. (1975). It follows from Powell (1981) that the bounds

W] SNF = P?los < [|F = Plloa (1.99)

are satisfied, wher* is the required best approximation frohto F'. In order the make use
of the right-hand bound, and in order to obtain a suitablengbdor the reference, the error
function

e(z) = W(zx)(F(x) — P(x) a<z<b (1.100)

is considered. A typical error function for n=3 is shown igiie 1.42. We see that equation
(1.98) is satisfied, and that consequentlyas at least n turning points. The positions of the
extrema,which are called in the figure, are estimated by evaluating the error funciseveral
points within[a, b]. Itis necessary in practice to obtain these points aut@algtiin an efficient
way. Letn be a point that satisfies the equation

[E(n) = P()| = [[F = Pl (1.101)

The calculation finishes if the difference
6=[F(n)—P)|—h (1.102)
is sufficiently small, because inequality (1.99) implies Hound

|F = Plloo < ||[F = P|[c + 6 (1.103)
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Otherwise the reference is changed in order to begin anibéination. The mostimportant prop-
erty of the changes of reference is that the quamtitywhich is called the levelled reference er-
ror, increases strictly monotonically from iteration terdtion. It is helpful to take the point of
view that the purpose of the change of reference is to inereesvalue ofi(&o, &1, .. ., Enr1) =
|h|. Because expression (1.102) is small only if the levelléeremce error is close to the bound
||F' — P||~ of inequality (1.99), it is advantageous to make,, &, ..., &,+1) as large as pos-
sible. Thus the exchange algorithm is a method of solving @maation problem, where the
variables are the points of reference. The structureg&f, &1, . . ., ,11), however, is that it is
inefficient to use one of the super linearly convergent allgors that are available in subroutine
libraries.

Adjustment of the reference

The method of choosing the new reference must imply the asere

h(g;,gf,...,g:_’_l) > h(go,gl,...,gn_,_l) (1104)

in the levelled reference error whege is the next reference set. It can be shown that it is suf-
ficient if the conditions

sign[F (&) — P(§51)] = —sign[F(&") — P(&")] (1.105)
fori=0,1,...,nand
|F(&") = P& > |l (1.106)

are satisfied. Provided that at least one of the numfét&;") — P(&5)] : i =0,1,...,n+1}

is greater thanh|. Hence, several ways of obtaining an increase in the leve#ierence er-
ror are suggested by Figure 1.42. One method is to let eact pbihe new reference be an
extremum of the error function (1.100). In this case therectove of Figure 1.42 gives the
reference{&y, n1, 72, M3, {4 }and the conditions 1.105 and 1.106 are obtained. Methodisdha
change every reference point on every iteration are usoale efficient than a one-point ex-
change algorithm, in the sense that fewer iterations angnesdjto reduce the number (1.102) to
less than a prescribed tolerance. In the excellent book imeP@L981) the one-point exchange
method is discussed is further detail.

A very nice property of the exchange algorithm is that if treaHcondition holds, then conver-
gence is obtained from any initial reference. However, somitil references are better than
others. Powell gives a suitable set of reference points erinterval[a.b], obtained from the
properties of the Chebyshev polynomials, which is in somg tlva best starting point

(nt+1-im i)”) (1.107)

1 1
§i:§(a+b)+§(b—a)cos( D)

fori=0,1,...,n+ 1.
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Optimizing 2-D extrapolation operators with L norm.

The phase shift extrapolation operator is given by

Fy(ky) = exp (—jy/k2 — k2Az) for |ky| < k (1.108)

Splitting the operator in realR) and imaginary ) parts for|k,| < k gives

R {ﬁo(km)} = cos(\/k? — k2Az) (1.109)
S{F(k)} = —sin(y/k2 - k2Az) (1.110)

The inverse discrete Fourier transformation for a eventfand’'(mAxz) = F(—mAxz) is given
by

F(k,) = F(0)+2 % F(mAx) cos (kymAx) (1.111)

m=1

Splitting real and imaginary parts in equation (1.111) gitx@o independent equations

R{F(k;)} = R{F(0)}+2 f R {F(mAz)} cos (kymAz) (1.112)
& {I:’(km)} = S{F(0)}+2 Z_ S{F(mAx)} cos (k,mAx) (1.113)

substituting equations (1.109) and (1.110) into (1.112)@n113) gives

cos (\/k? — k2Az) ~ R{F(0)}+2 % R{F(mAx)} cos (k,mAz) (1.114)

—sin (\/k? — k2Az) ~ S{F(0)}+2 f: S{F(mAx)} cos (k,mAz) (1.115)

For designing a spatial convolution operator an optimaltsmh for the Real and Imag (mAxz)
is desired. The wavenumber-domain approximation problamngin equations (1.114) and
(1.115) can be written in the more general form

F(k,) = F(0) +2 % F(mAzx) cos (mAx k) (1.116)

m=1
The Chebyshev polynomial approximation problem given inaggpn (1.73)

P(k,) = % + % y, cos (marccos (k,)) (1.117)

m=1

can be shown to be equivalent with equation (1.116) by usiaghange of variables

¢ = cos (k) (1.118)
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or

k, = arccos(() (1.119)
cos (mAzx k,) = cos(mAxarccos (()) (1.120)

which results in

F(arccos (¢)) = F(¢) = F(0) +2 > F(mAxz) cos (mAz arccos (¢))

m=1 (1.121)

With the aid of these changes equations (1.114) and (1.Hibpe solved by using the Remez
exchange algorithm to find the extremal frequencies withreor @ the L ., norm. Having found
the extremal frequencigs fore = 1,2,..., M of the error function th&",,, the impulse re-
sponse coefficients, have to be calculated from it. The coefiis F;,, in the approximation
(IDFT)

N—1
F(mAz) = % > P(nAky) exp (jnAk,mAx) (1.122)

n=0

can be found by solving an interpolation problem of fitting thnctionP (k) in equation (1.122)
to the N known equally spaced frequency values in equatidi2@). This procedure amounts
to solving the following set of linear equations:

P(k,) = % E, cos (jkemAz) = F(k,) £ 0 (1.123)

m=0
fore=1,2,..., M.
Polynomial synthesis reduced to symmetrical spectrahsgis

McClellan and Chan (1977) have shown that the Chebysheststaican be used for every arbi-
trary polynomialP,(x) = T,,(Pi(x)), whereT,, (P (x)) is defined by the Chebyshev recursion
formula. The approximating of a function by polynomials igem by

F(z) = F(P(z)) = Z am P™(x) (1.124)

with P™(z) the m’th order polynomial in x given over the domaiiz) € [a,b]. For exam-
ple P(x) can bek, or k2 + lcj for the approximation of the 2-D extrapolation operatoregiv
in equations (1.67) and (1.69). The polynomial synthesisbmareduced to symmetrical spec-
tral synthesis by performing the following mapping (Sowasa(1992), Rabiner and Gold (1975)
page 151):

P(z) = g(¢) = 0.5(a — b) cos (¢) + 0.5(a + b) (1.125)
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which maps the domaiR(z) € [a,b] to ¢ € [0, 7].

The advantage of reducing the polynomial synthesis to disgpsgnthesis is that the same tech-
nique as in the 1-Dimensional operator problem can be ubedReémez exchange algorithm
with the L., norm. The inverse function d?(z) = g(¢) is given by

(1.126)

¢ = g '(P(x)) = arccos ((QP(ZL)__;; — b))

Substitution of equation (1.125) into equation (1.124kgithe desired spectral synthesis

F(g(¢)) = G(¢) = _ G cos (mg) (1.127)

m=0

Having found the solution for the,,in the L., norm for a number of term&/ we have to com-
pute the original approximatiof(x) from G(¢) by usingF(z) = G(g'(P(x))).

F(P(x)) = ZO py, COs (M arccos ((QP(EC&) __5) — %) )) (1.128)

This equation can be rewritten by using Chebyshev recufsiomula and writing = arccos (%

F(P(x)) = Z_ Qpp cos (m(Q) (1.129)
= > dm[cos ()™ (1.130)

3
I

QPZC —a—bm
m[L}

1.131
p— (1.131)

a

I
B

3
I

where F'(z) is a polynomial inP(z). Because thé. ., norm in invariant by any mapping we
have thatG(¢) is an L., approximation ofF,(g(¢)) and F/(P(z)) is a L, approximation of
Fy(P(x)).

The method of polynomial synthesis is more preferable thBayéor series truncation, because
the Remez algorithm minimizes tlig, norm on a user defined domain b, while Taylor series
truncation minimizes the error on[ac, | interval, where: is infinitely small. The difference
with the L, optimization is that the WLSQ approximation takes the tefsctrum of the opti-
mized operator into account and not just its extreme valaeés the L, norm.

)
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