SCATTERING BY A STRIP IN A HOMOGENEOUS MEDIUM

Jan Thorbecke

18 January 1991

Delft University of Technology Faculty of Mining and Petroleum Engineering Section Applied Geophysics Delft The Netherlands

Title	:	Scattering by a strip in a homogeneous medium.
Author	:	Jan Thorbecke
Date	:	18 January 1991
Laboratory	:	Applied Geophysics
Report number	:	1991-2
Abstract code	:	PA 91.90
Address	:	Delft University of Technology Dept. of Mining and Petroleum Engineering Section of Applied Geophysics P.o. Box 5028 2600 GA Delft The Netherlands

[122]

Ik ben altijd ontsteld wanneer ik iets voltooi. Ik schrik en wordt door verdriet overmand. Mijn volmaaktheidsinstinct zou me moeten beletten iets te voltooien; het zou me zelfs moeten beletten ergens aan te beginnen. Maar ik ben verstrooid en doe het toch, met als resultaat een produkt dat bij mij niet voortkomt uit de wil,maar uit de afwezigheid ervan. Ik begin omdat ik geen kracht heb om te denken; ik voltooi omdat mijn ziel de kracht mist om eerder op te houden. Dit boek is mijn lafheid.

Fernando Pessoa, Het Boek Der Rusteloosheid

Preface

Two years ago, in December 1988, I was ready to start with the last few steps of my study, but I couldn't find any motivation to start with it. I was looking for something I would never find; I was asking questions which I couldn't answer. I considered stoping to study, but I couldn't find any reason why I should stop, neither could I find any reason to finish it. For some reasons, of which I don't care anymore of not knowing them, my last steps of the study came to an end.

This thesis represents the results of my final project at the Department of Mining and Petroleum Engineering, section Applied Geophysics, at the Delft University of Technology. The accompany of this project was done by J.T. Fokkema and P.M. van den Berg, which I would like to thank for their support and understanding. I also would like to thank prof. A.M. Ziolkowski for reading this report and making many helpful comments and suggestions and, everybody who was at the 'Geophysics room', to whom I could ask everything, for helping me with all aspects of my final project and for trying to make me feel at home.

The program I have written, which is based on this report, will be used to produce a reference data set for a new theory about the removal of surface related wave phenomena in the marine case which is developed by J.T. Fokkema and P.M. van den Berg.

Contents

	pagenumber
Abstract	1
Notations and conventions	2
Introduction	5

Chapter 1 Scattering by a strip in an unbounded medium

1.0 Introduction	6	
1.1 Rayleigh's reciprocity theorem		
1.2 Green's function in a 2-Dimensional space		
1.2.1 Green's function for the Helmholtz equation		9
1.2.2 The injection source Green's function	12	
1.2.3 The force source Green's function	13	
1.3 Scattering by a strip		
1.3.1 Representation for the scattered pressure field	14	
1.3.2 Representation for the scattered particle velocity field	18	
1.4 Scattering by a perfectly compliant strip		
1.5 Scattering by a perfectly rigid strip	24	

Chapter 2 Scattering by a strip in a 2-dimensional halfspace

2.0 Introduction	29	
2.1 Rayleigh's reciprocity theorem	29	
2.1.1 Representation for the pressure field		29
2.1.2 Representation for the particle velocity field		30
2.2 Calculating the Green's function	31	
2.3 Scattering in a halfspace	33	
2.3.1 Scattering by a perfectly compliant strip	33	
2.3.2 Scattering by a perfectly rigid strip	34	

Chapter 3 Source and receiver

3.0 Introduction	37
3.1 Receiver	37
3.2 Line source	38
3.2.1 The incident pressure field	38
3.2.2 The incident particle velocity field	39
3.3 An example	40

Chapter 4 Iterative schemes based on minimization of a uniform error criterion

4.0 Introduction	43	
4.1 Direct minimization of the error	44	
4.2 Recursive minimization of the error	46	
4.2.a Computational scheme for an arbirtrary operator T		49
4.3 Selfadjoint operator LT	50	
4.3.a Computational scheme for a selfadjoint operator LT		52
4.4 Convergence	53	
4.4.1 Convergence for the recursive scheme	53	
4.4.2 Convergence for the selfadjoint and positive operator L	T 57	
4.5 Preconditioning $(T = P)$		58

Chapter 5 Numerical implementation

5.0 Introduction	60	
5.1 The operator expression LU	60	
5.1.1a Perfectly compliant strip in an unbouded medium		60
5.1.1b Perfectly rigid strip in an unbouded medium	62	
5.1.2a Perfectly compliant strip in a halfspace	62	
5.1.2b Perfectly rigid strip in a halfspace		63
5.2 The preconditioning operator	64	
5.1.1a Perfectly compliant strip in an unbouded medium		64
5.1.1b Perfectly rigid strip in an unbouded medium	65	
5.1.2a Perfectly compliant strip in a halfspace	65	
5.1.2b Perfectly rigid strip in a halfspace		65
5.3 Discrete Fourier transform	66	
5.4 Branch points	70	

5.5 Causality	72
5.5.1 Complex conjugate and causality	72
5.5.2 The Hilbert transform and causality	73

Chapter 6 Results

6.0 Introduction	75
6.1 The sea configuration	75
6.2 Reliability of the results	89
6.2.1 Arrival times and point diffractors	89
6.2.2 The numerical Green's function	93
6.2.3 The infinite compliant strip	106
References	111
Appendix A Errors in the DFT	113

Appendix B The input parameters 117

117
118

121

Appendix C The program