
fdacrtmc: An acoustic RTM code

Max Enno Holicki

June 25, 2019

1 Introduction

FDACRTMC is a Finite Difference ACoustic Reverse Time Migration code in the language C using OpenMP and
operates on wavefields travelling in two spatial and one temporal dimensions. It works by cross-correlating forward
modelled source wavefields with backward propagated receiver wavefields for the zero-lag imaging condition.

2 Options

What follows is a short description of the options offered by fdacrtmc. The mandatory inputs are:

1. file_cp= #P-wave velocity file

2. file_den= #Density file

3. file_src= #Source wavefield

These are all filenames corresponding to the input model and source array. See their corresponding sections.
The following options define how the wavefield is modelled:

4. ischeme =1 #Finite difference scheme

#1=acoustic , 2=visco -acoustic 3=elastic , 4=visco -elastic

5. iorder =4 #Finite difference order

#2=2nd , 4=4th , 6=6th

Option 4. defines the type of wave equation to model. Note that the wavefield decomposition schemes are only implemented
for the acoustic case. By default acoustic wavefields are modelled. Option 5. defines the finite difference order. The higher
the order the more exact the result in a homogeneous medium and the longer the modelling takes. Higher orders also
smooth over interfaces, degrading results there. The default is to use a fourth order scheme, which seems to have an
optimal tradeoff between accuracy and computation time.

The following options define the boundary type:

#Boundary Types:

#1: Free Surface

#2: Perfectly Matched Layers (PML)

#3: Rigid Surface

#4: Tapered boundary

6. top=1 #Top boundary type

7. bottom =2 #Bottom boundary type ,

8. left=2 #Left boundary type

9. right=2 #Right boundary type

10. npml= #Number of PML layers

11. ntaper= #Taper Length

12. R=1e-4 #Theoretical PML reflection coefficient

13. m=2.0 #PML scaling function sigma order

Options 6–9. define the type of boundary at the side of the model. By default the right, bottom and left (clockwise) are
absorbing boundaries, Perfectly Matched Layers to be precise. The top boundary by default is a free surface. Alternative
options for the model boundaries are to use rigid or tapered boundaries. The tapered boundary is an offset free-surface
boundary where the wavefield is tapered to zero before it hits the boundary. Options 10. and 11. specify the number of
PMLs at the boundary or the taper size respectively. Options 11. and 12. are related to the PML boundaries, see [?].

If you want to model wavefields the following output options are important:

1

14. file_rcv= #Output receiver data base filename

15. rcv_write =0 #Write out receiver wavefield to disk",

16. file_snp= #Output snapshot file

Option 14. defines the base filename of the output receiver data. The filename must end in ”.su”. Depending on the
selected types of receivers the component type is appended to the filename before the ”.su”. Option 15. toggles if recorded
wavefields should be written to disk. The option can also be set to zero to not record wavefields to disk but still use the
recorded wavefields as migration input. Option 16. defines the base filename of the output snapshot gathers. It must also
end in ”.su”. The snapshot type is also appended before the ”.su”.

There are two ways of specifying receiver coordinates and types. Either directly via the command line or more flexibly
via SEG-Y headers. To specify reciever coordinates via the command line the following options are pertinent:

17 rcv_top =0 #Receivers along top edge of model

18 rcv_bottom =0 #Receivers along bottom edge of model

19 rcv_left =0 #Receivers along left edge of model

20 rcv_right =0 #Receivers along right edge of model

21 rcv_p=0 #Record pressure

22 rcv_vx =0 #Record horizontal particle velocity

23 rcv_vz =0 #Record vertical particle velocity

Options 17–20. specify which boundaries along which receivers should be placed. Note that pressure receivers are placed
at the boundaries while particle velocity sensors are placed just inside the model as the code uses a staggered grid. Options
21–23. specify what wavefield components to record, respectively the pressure, and the horizontal and vertical particle
velocities.

Alternatively or additionally receiver locations can be specified using SEG-Y trace headers:

24. file_loc= #Receiver location file.

Option 24. allows one to use a seismic unix file, SEG-Y file stripped of file headers, to specify receiver coordinates. Note
that only the first field record is read to define the coordinates. The important header words here are the horizontal group
coordinate (gx) and the group elevation (gelev). Note that these coordinates are scaled by there respective scale factors,
scalel and scalco. Additionally the trace identification (trid) defines the receiver type. A value of one defines a pressure
receiver while a value of five or six define horizontal and vertical particle velocity receivers respectively.

To specify snapshots the following options are important:

25. tsnap1 =0.1 #First snapshot time

26. tsnap2 =0.0 #Last snapshot time

27. dtsnap =0.1 #Snapshot temporal sampling rate

28. dxsnap=dx #Horizontal snapshot sampling rate

29. dzsnap=dz #Vertical snapshot sampling rate

30. xsnap1=xmin #X-coordinate of upper left snapshot point

31. xsnap2=xmax #X-coordinate of lower right snapshot point

32. zsnap1=zmin #Z-coordinate of upper left image point

33. zsnap2=zmax #Z-coordinate of lower right image point

34. snapwithbnd =0 #Write snapshots with absorbing boundaries

35. snap_type_p =0 #Pressure Snapshots , default 1 if none selected

36. snap_type_vx =0 #Horizontal Particle Velocity Snapshots

37. snap_type_vz =0 #Vertical Particle Velocity Snapshots

38. snap_type_pu =0 #Up -Going Pressure Snapshots

39. snap_type_pd =0 #Down -Going Pressure Snapshots

40. snap_type_pl =0 #Left -Going Pressure Snapshots

41. snap_type_pr =0 #Right -Going Pressure Snapshots

42. snap_type_pn =0 #Normal -Going Pressure Snapshots

43. snap_vxvztime =0 #Registration time for vx/vz

#The FD scheme is also staggered in time.

#Time at which vx/vz snapshots are written:

#- 0= previous vx/vz relative to txx/txz/tzz(p) at time t

#- 1=next vx/vz relative to txx/txz/tzz(p) at time t

Option 25. specifies the first snapshot time, while Option 26. specifies the last snapshot time. If the last snapshot time
occurs before the first snapshot time no snapshots are recorded. The default is not to record snapshots. Option 27.
specifies the temporal snapshot interval. Snapshots are recorded at this rate from the first snapshot onwards. Options
28. and 29. specify the horizontal and vertical snapshot sampling rate, by default this corresponds to the model sampling

2

rate. Options 30–33. specify top-left and bottom-right corners of the spatial snapshot window. By default this covers the
entire model. Option 34. is active if these coordinates are not specified, then the snapshot area also includes the PML and
tapered boundaries. Options 35–38 specify what type of snapshot should be taken, pressure, and/or horizontal and/or
vertical particle velocity. Options 38–43. specify if directionally decomposed pressure snapshots should be recorded.
Options 38. and 39. corresponds to up- or down-going snapshots respectively while options 40. and 41. correspond to
left- and right-going snapshots respectively. Option 42. corresponds to creating a snapshot in a user defined direction.
Option 43. specifies if the particle velocity snapshots should be for the previous time instance or the next time instance
with respect to the pressure as the employed modelling scheme is staggered in time.

3 Example: Plane-Wave Migration – Synform Model

Let us begin by migrating a simple model. We are going to do a plane wave migration, meaning that we are going to
inject a horizontal plane-wave source wavefield at the surface, record the corresponding reflection response at the surface
and use that to form an image of the subsurface. We will construct the image of the subsurface by forward modelling the
source wavefield and back-injecting the recorded wavefield and zero-lag cross-correlating the two.

Note that this example will be done in bash. It is strongly recommended to install the seismic unix package1. It is
assumed that you are familiar with the seismic unix, that you have 0.1 GiB of available storage and 0.16 GiB of RAM.

We begin:

0.1: Go to the Examples/Synform directory.

cd <fdacrtmc Install Path >/ Examples/Annerveen

0.2: Display the files in the directory

ls

where <FDACRTMC Install Path> is the install path for fdacrtmc.
Inside the directory you will find three files:

1. Run.scr #The script to run the migration.

2. Synform_cp.su #The Annerveen velocity model.

3. SrcWav_Ricker_40Hz_2s.su #A 40 Hz peak -frequency Ricker wavelet.

We can have a look at the velocity model using suximage, from the seismic unix package, and at the source wavelet
using suxwigb.

0.3: Display Velocity Model

suximage <Synform_cp.su title=Synform_Velocity_Model &

0.4: Display Ricker Wavelet

suxwigb <SrcWav_Ricker_40Hz_2s.su title =20 Hz_Ricker_Wavelet &

We now wish to migrate this model using reverse time migration. To do this we need to generate some data. We will
do this by using fdacrtmc to forward model some synthetic data using a horizontal plane-wave source along the top of
the model. We will record the wavefield along the top of the model as well. To do this we need to generate an array
of sources. The model size is 601-by-2401 elements which corresponds to an actual size of 1.5-by-6 km with an element
spacing of 2.5 m in both spatial directions. We want to place sources every 2.5 meters along the top of the model leaving a
1 km gap to the vertical boundaries on either side of the model. This means that we need a horizontal plane-wave source
arry consisting of 1601 sources.

We need to prep our input source array for this. We begin by duplicating the Ricker wavelet 161 times and concatenating
the results:

1.1: Generate Base Source Array

for i in {1..1601}; do SrcWav_Ricker_40Hz_1s.su >> SrcArr.su; done

We now have 1601 identical sources inside SrcArr.su. We want to equally space them out along the top of the model
with 2.5 m spacing starting at an offset of -2 km to the top-middle of the model, which corresponds to the origin. To do
this we need to modify the source horizontal-location header word (sx) of the source array such that each source is at a
different location.

1.2: Set header words.

sushw <SrcArr.su key=tracl ,tracr ,fldr ,tracf ,scalco ,sx a=1,1,1,1,-10,-20000\

b=1,1,0,1,0,25 >tmp.su; mv -f tmp.su SrcArr.su;

1https://github.com/JohnWStockwellJr/SeisUnix/wiki (Accessed:June 25, 2019)

3

We now have a horizontal plane-wave source array consisting of 161 unique sources. It was important in this case to also
modify the scaling for elevation (scalel) and increase by a factor of 10 such that 2.5 m can be represented as the interger
25 dm.

Now that the source array is ready we can begin to model our recorded wavefields along the top of the model. For this
example we will be recording pressure data. We will now model the data using fdacrtmc.

1.3: Model Data

fdelrtmc \ #The RTM engine

file_cp=Synform_cp.su\ #The input acoustic velocity model

file_src=SrcArr.su\ #The input source array

file_rcv=RcvArr.su\ #The output receiver data base filename

top =2\ #Top boundary is absorbing , others are by default

npml =50\ #Number of absorbing layers

rcv_top =1\ #Specifies to record along the top of the model

rcv_p =1\ #Specifies to record pressure data

rcv_write =1 \ #Write out recorded data

mig_mode =0\ #Specifies to only model data , not migrate data

verbose =2; #Verbosity level , >0 so that we see something

This will take some time. Take a break, get a drink. You can check how far the modelling is at any time. Read on when
done, or if interested.

Now that modelling the data is complete we are nearly ready to migrate the data. There is just one small problem.
Our recorded data has the direct wave. We need to remove it. There are various ways to do this, the simplest is to model
it and subtract it from the recorded data.

To do this we need to create a new model that is the same as the Synform model at the top but otherwise homogeneous
such that we can model the direct wave. Luckily the Synform model is homogeneous along the top. The acoustic velocity
at the top is 1,900 m s-1. We can make homogeneous copies of the Synform model as follows:

2.1: Create Direct -Wave Models

suwind <Annerveen_cp.su itmax =50 | sugain dt=1 scale =0.0\

| sugain dt=1 bias =1900 >Direct_cp.su;

Note that we have reduced the models vertically in size to reduce computation time.
Now that we have the direct-wave models we can model the direct wave in the same way as we modelled the full

wavefield:

2.2: Model Direct -Wave Data

fdelrtmc\

file_cp=Direct_cp.su\ #Direct -wave velocity model

file_src=SrcArr.su\ #Same source array

file_rcv=DirArr.su\ #The output direct -wave record base filename

top=2 npml =50 rcv_top =1 rcv_p=1 mig_mode =0 verbose =2;

Now that we have modelled the direct-wave data we can subtract it from recorded data of the full wavefield to remove
it:

2.3: Remove Direct Wave

sudiff RcvArr.su DirArr.su >RcvArr_ND.su; #Direct -Wave -Free Data

The data is now nearly ready for migration. We just need to taper the last 50 ms of each trace such that the modelling
does not become unstable during back-injection of the recorded wavefield.

ntr=$(surange <RcvArr_ND.su key=tracl\ #We need to get the number

| sed -n ’1p’ | awk ’{print $1}’); #of traces in the file

sutaper <RcvArr_ND.su ntr=${ntr} tend =50 >tmp.su; #This tapers the data

mv -f tmp.su RcvArr_ND.su; #at the end of the trace

Note that we need the number of traces for sutaper to work.
To save on space let us delete the unnecessary data:

2.5: Clean -up

rm -f Direct_cp.su Direct_ro.su RcvArr.su DirArr.su;

Now its time to migrate. Reverse time migration is a memory intensive task as it needs to store one of the modelled
wavefields in its entirety. This migration, which is quite small, needs about 1.3 GiB of Random Access Memory (RAM).

4

Bigger models needs significantly more. As such it makes sense to talk about compression. The compression option
compresses uses the zfp package2 to compress the stored wavefield. With the default precision of 3 decimals, which is
sufficiently accurate for the generally employed fourth order finite difference scheme, the memory consumption drops down
to 0.16 GiB. The penalty that compression incurs is that the code takes about 1.5 times longer to run. If you are RAM
constrained consider turning it on for the following runs.

We migrate the data by calling fdacrtmc using an actual migration mode:

3.1: Migrate!

fdelrtmc file_cp=Synform_cp.su file_src=SrcArr.su\

file_rcv=RcvArr_ND.su\ #The input receiver data

file_mig=Synform.su\ #Base Filename of Migrated Output

top=2 npml =50\

migdt =0.0025\ #This upsamples the cross -correlation

migdx =5 migdz =5\ #This upsamples the final migration image

mig_mode =1\ #The zero -lag imaging condition

compress =0 \ #Turning this on reduces memory consumption

verbose =2;

This is going to take some more time. Take another break, eat a sandwich, etc. This will take twice as long as modelling
the original data. Continue reading when this is done.

Once the migration is done can have a look at the final migrated image:

3.2: Display Migrated Image

suximage <Synform_mig.su title=Migrated_Image

Note that “Synform img.su” contains the individual migration images.
The migration image looks acceptable, there are some low vertical-wavenumber artefacts though. The traditional fix

for this is to apply a Laplacian filter to the image. A better alternative is to directionally decompose the wavefield before
imaging and to then only image wavefield components travelling in opposite directions. This can be robustly done using
the Hilbert transform migration mode, see [?]:

3.3: Migrate Using The Hilbert Transform Imaging Condition

fdelrtmc file_cp=Synform_cp.su file_src=SrcArr.su file_rcv=RcvArr_ND.su\

file_mig=Hilbert.su\ #Base Filename of Migrated Output

top=2 npml =50 migdt =0.0025 migdx=5 migdz =5\

mig_mode =5\ #Hilbert Transform Imaging

compress =0 verbose =2;

This will take even longer, not much but a bit.
After the migration is done we can compare the migration results:

3.4: Display Migrated Image

suximage <Hilbert_mig.su title=Hilbert_Image

The image now looks like a real migration image.
Congratulations! You have successfully migrated the Annerveen model. Now go out and explore the fdacrtmc options

or apply the code to your own data.

4 Modelling Engine

At the heart of this code is the same modelling engine as used by FDELMODC3 by Jan Willem Thorbecke.

2https://computation.llnl.gov/projects/floating-point-compression (Accessed on:June 25, 2019)
3https://janth.home.xs4all.nl/ (Accessed on:June 25, 2019)

5

