
2D Finite-Difference Wavefield Modelling
Jan Thorbecke

January 26, 2023

Contents
0 Getting Started 2

0.1 Installation . 2
0.2 Compilation and Linking . 3
0.3 Running examples . 3

1 Introduction to Finite-Difference 4
1.1 Finite-difference algorithm . 6
1.2 Stability and Dispersion . 8

2 Acoustic 9
2.1 Staggered scheme . 10

3 Visco-Acoustic 11

4 Elastic 13

5 Visco-Elastic 15

6 Parameters in program fdelmodc 16
6.1 Modelling parameters . 19
6.2 Medium parameters . 19
6.3 Boundaries . 20

6.3.1 Recursive Integration PML: acoustic . 23
6.3.2 Complex frequency shifted RIPML: acoustic . 25

6.4 Source signature parameters . 26
6.5 Source type and position parameters . 30

6.5.1 Source type . 31
6.5.2 Source positions . 33

6.6 Receiver, Snapshot and Beam parameters . 35
6.6.1 Receiver, Snapshot and Beam type . 35
6.6.2 Receiver positions . 36
6.6.3 Interpolation of receiver positions . 37
6.6.4 Snapshots and Beams . 38

6.7 Verbose . 39

7 Examples to run the code 39
7.1 Example for plane waves: fdelmodc_plane.scr . 40
7.2 Example for viscoelastic media: fdelmodc_visco.scr . 41
7.3 Example for different source distributions: fdelmodc_sourcepos.scr 42
7.4 Example with receivers on a circle: fdelmodc_circ.scr 42
7.5 Example with topography: fdelmodc_topgraphy.scr . 42
7.6 Example verification with analytical results: FigureGreenDxAppendixA.scr 44

7.6.1 Acoustic . 44
7.6.2 Elastic . 47

7.7 Verification with Scattered field of a cylinder . 49

1

7.7.1 1D scattering by a slab . 50
7.7.2 2D scattering by a circular cylinder . 52
7.7.3 3D scattering by a sphere . 53

A Source and directory structure 56

B Differences in parameter use compared with DELPHI’s fdacmod 59

C Makewave 59
C.1 Parameters . 59
C.2 Examples . 62

D Makemod 62
D.1 Parameters . 62
D.2 Examples . 64

E fdemmodc 64

0 Getting Started
0.1 Installation
The software, downloaded as a gzipped tar archive, can be extracted in a directory of your choice, e.g.,
by typing

> tar -xvfz OpenSource.tgz

at the terminal command line of a Unix based operating system. You can also directly pull the source
code from its GitHub repository: https://github.com/JanThorbecke/OpenSourceand make a pull or clone
request:

> git clone https://github.com/JanThorbecke/OpenSource.git

The OpenSource directory also contains other programs (Marchenko and utilities) that are not discussed
in this manual.
The code is designed to run on current Unix-based or Unix-like system, such as Linux, Sun’s Solaris,
Apple’s OS-X or IBM’s AIX. However, the code has not been tested on any version of Windows. It is
certainly possible to make it run on a Windows platform using the appropriate tools, but do not expect
it to work simply out-of-the-box. For running the code in a Windows environment one could make use
of Cygwin. Cygwin is a virtual Linux environment running in a Windows operating system.
The package extracts itself into a directory OpenSource, with the following sub-directories:

• bin

• lib

• doc

• include

• fdelmodc

• utils

• FFTlib

The README file in that directory contains some of the quick-start information given here in condensed
format. The FFTlib directory does not contain a main program and contains source code to build a
library (libgenfft.a) with Fourier transformation functions. The fdelmodc and utils directories include
all files needed to compile and link the executables build in that directory. This means that some of the
source files in the fdelmodc and utils directory are the same. This has been done to make the compilation

2

https://github.com/JanThorbecke/OpenSource
http://www.cygwin.com/

procedure less complicated. Section A of this manual contains a brief (one-sentence) explanation of the
meaning of all the files in the source tree of this package.
The source code is in continuous development to add new features and solve bugs. The latest version of
the source code and manual can always be found at:
https://github.com/JanThorbecke/OpenSource
http://www.xs4all.nl/ janth/Software/Software.html.
The code is used by many different people and when somebody requests a new option for the code (for
example place receivers in a circle) then I will try to implement and test the new functionality and put
the updated source (and manual) on the website as soon as it is ready and tested.

0.2 Compilation and Linking
1. To compile and link the code you first have to set the ROOT variable in the Make_include file

which can be found in the directory where you have found this README.

2. Check the compiler and CFLAGS options in the file Make_include and adapt to the system you
are using. The default options are set for a the GNU C compiler on a Linux system. A Fortran
or g++ compiler is not needed to compile the code. The compilation of the source code has been
tested with several versions of GNU and Intel compilers.

3. If the compiler options are set in the Make_include file you can type

> make

and the Makefile will compile and link the source code in the directories:

• FFT library

• fdelmodc

• utils

The compiled FFT library will be placed in the lib/ directory, the executables in the bin/ directory and
the include file of the FFT library in the include/ directory.
To use the executables don’t forget to include the pathname in your PATH:

bash:
export PATH='path_to_this_directory'/bin:$PATH:
csh:
setenv PATH 'path_to_this_directory'/bin:$PATH:

On Linux systems using the bash shell you can put the export PATH='path_to_this_directory'/bin:$PATH:
setting in $HOME/.bashrc, to set it every time you login.
Other useful make commands are:

• make clean: removes all object files, but leaves libraries and executables

• make realclean: removes also object files, libraries and executables.

0.3 Running examples
Important note: The examples and demo scripts make use programs of Seismic Unix (SU). Please
make sure that SU is compiled without XDR: the XDR flag (-DSUXDR) in $CWPROOT/Makefile.config
must NOT be set in compiling SU. The SU output files of fdelmodc are all base on local IEEE data.
When the XDR flag is set in SU you have to convert the output files of fdelmodc (and all the programs
in the utils directory: basop, fconv, extendmodel, makemod, makewave) with suoldtonew, before using
SU programs.
If the compilation has finished without errors and produced an executable called fdelmodc you can run
the demo programs by running. For example the script

> ./fdelmodc_plane.scr

3

https://github.com/JanThorbecke/OpenSource
http://janth.home.xs4all.nl/Software/Software.html
http://www.cwp.mines.edu/cwpcodes/

in the directory fdelmodc/demo/. The results of this script are discussed in section 7.1. The fdelmodc/demo/
directory contains scripts to demonstrate the different possibilities of the modeling program. Most of the
scripts in the demo directory can re-produce the figures used in this manual. The examples section 7
contains also detailed explanations of the other demo scripts.
To reproduce the Figures shown in the GEOPHYICS manuscript ”Finite-difference modeling experiments
for seismic interferometry” (Thorbecke and Draganov, 2011) the scripts in fdelmodc/FiguresPaper/
directory can be used. Please read the README in the FiguresPaper directory for more instructions
and guidelines.
To clean-up all the produced output files in the fdelmodc/demo/ and fdelmodc/FiguresPaper/ directory
you can run the clean script in those directories.
To read in the SU files *.su into MATLAB you can do the following:

> sustrip < file.su > file.bin

This strips the SU headers (first 240 Bytes from each trace) from the SU files and the output contains
only IEEE little endian floating points. To read this *.bin file into MATLAB you can do:

ns=751 %number of samples per trace =>n1 of the sustrip message
ntr=31 %number of traces =>n2 of the sustrip message
nshot=1
file='file.bin'
fid=fopen(file,'r');
data= fread(fid,[ns,ntr*nshot],'float32');
fclose(fid)
data2 = reshape(data,ns,ntr,nshot);

1 Introduction to Finite-Difference
The program fdelmodc can be used to model waves conforming the 2D wave equation in different media.
This manual does not give a detailed overview about finite-difference modelling and only briefly explains
the four different Finite-Difference (FD) schemes implemented in the program fdelmodc. More important
are the (im)-possibilities of the program, and a detailed explanation is given how to use the parameters
together with certain specific implementation issues a user must be aware of. There are already many
programs available to model the 2D wave equation, and one might ask why write another one? The
program fdelmodc is open source, makes use of the Seismic Unix (SU) parameter interface and output
files, and specially aims at the modelling of measurements used for Seismic Interferometry. This means
that noisy source signals at random source positions can be modeled for very long recording times using
only one program.
The first four sections after the introduction describe the four implemented schemes; acoustic, visco
acoustic, elastic, and visco elastic. In section 6 the program parameters are described and in section 7
examples are given how the program can be applied and demonstrates the possibilities of the program.
The remainder of this introduction explains the finite-difference approximations for the derivatives used
in the first-order systems governing the wave equation, and how the discretization must be chosen for
stable and dispersion-free modelling results.
The program fdelmodc computes a solution of the 2D wave equation by approximating the derivatives
in the wave equation by finite-differences. The wave equation is defined through the first-order linearized
systems of Newton’s and Hooke’s law. For an acoustic medium the equations are given by;

BVx

Bt
“ ´

1

ρ

BP

Bx
,

BVz

Bt
“ ´

1

ρ

BP

Bz
, (1)

BP

Bt
“ ´

1

κ
t

BVx

Bx
`

BVz

Bz
u,

where Vx, Vz are the particle velocity components in the x and z-direction, respectively, P the acoustic
pressure, ρ is the density of the medium and κ the compressibility.

4

http://www.cwp.mines.edu/cwpcodes/

The first-order derivatives in the spatial coordinates (lateral position x and depth position z) are approx-
imated by a so-called centralized 4’th order Crank-Nicolson approximation,

BP

Bx
«

´P ppi ` 3
2 q∆xq ` 27P ppi ` 1

2 q∆xq ´ 27P ppi ´ 1
2 q∆xq ` P ppi ´ 3

2 q∆xq

24∆x
(2)

the first order derivative in time is approximated by a 2th order scheme:

BP

Bt
«

P ppi ` 1
2 q∆tq ´ P ppi ´ 1

2 q∆tq

∆t
. (3)

These approximations can be derived from linear combination of different Taylor expansions (Fornberg,
1988):

P px ` ∆xq « P pxq `
∆x

1!

BP

Bx
`

∆x2

2!

B2P

Bx2
`

∆x3

3!

B3P

Bx3
` O∆x4 (4)

For example, a 4th order approximation of a first-order derivative, used in the implemented staggered
grid, can be derived from four Taylor expansions on 4 points centered around x “ 0:

P px `
∆x

2
q « P pxq `

∆x

2

BP

Bx
`

∆x2

8

B2P

Bx2
`

∆x3

24

B3P

Bx3
`

∆x4

96

B4P

Bx4
` O∆x5

P px ´
∆x

2
q « P pxq ´

∆x

2

BP

Bx
`

∆x2

8

B2P

Bx2
´

∆x3

24

B3P

Bx3
`

∆x4

96

B4P

Bx4
` O∆x5

P px `
3∆x

2
q « P pxq `

3∆x

2

BP

Bx
`

9∆x2

8

B2P

Bx2
`

27∆x3

24

B3P

Bx3
`

81∆x4

96

B4P

Bx4
` O∆x5

P px ´
3∆x

2
q « P pxq ´

3∆x

2

BP

Bx
`

9∆x2

8

B2P

Bx2
´

27∆x3

24

B3P

Bx3
`

81∆x4

96

B4P

Bx4
` O∆x5

Subtracting the expansions of x´ ∆x
2 from x` ∆x

2 and subtracting x´ 3∆x
2 from x` 3∆x

2 already eliminates
the second and fourth order terms (or more general all even-power terms) :

D1 “ P px `
∆x

2
q ´ P px ´

∆x

2
q « ∆x

BP

Bx
`

2∆x3

24

B3P

Bx3
` O∆x5

D2 “ P px `
3∆x

2
q ´ P px ´

3∆x

2
q « 3∆x

BP

Bx
`

54∆x3

24

B3P

Bx3
` O∆x5

Using a linear combination of D1 and D2, to eliminate the third order term, gives the 4th order approx-
imation:

27D1 ´ D2

24∆x
«

BP

Bx
` O∆x4 «

27pP px ` ∆x
2 q ´ P px ´ ∆x

2 qq ´ P px ` 3∆x
2 q ` P px ´ 3∆x

2 q

24∆x
` O∆x4. (5)

The implemented Finite-Difference codes make use of a staggered grid and is following the grid layout
as described in Virieux (1986). In the sections for the specific solutions the staggered grid is explained
in detail. The implementation of equation 1 is also called a stencil, since it forms a pattern of four grid
point needed to compute the partial derivative at one grid point. To compute the spatial derivative on
all grid points the stencil is ’shifted’ through the grid.
The medium parameters used in the FD program are

pλ ` 2µq “ c2pρ “
1

κ
(6)

µ “ c2sρ (7)

where ρ is the density of the medium, cp the P-wave velocity, cs the S-wave velocity, λ and µ the Lame
parameters and κ the compressibility. The program reads the P (and S-wave for elastic modelling)
velocity and medium density as gridded input model files. From these files the program calculates the
Lame parameters used in the first order equations 1 to calculate the wavefield at next time steps.

5

1.1 Finite-difference algorithm
To simulate passive seismic measurements we have chosen to use a two-dimensional finite-difference
(FD) approach based on the work of Virieux (1986) and Robertsson et al. (1994). The main reason
for choosing the finite-difference method is that it runs well on standard X86 and multi-core hardware
(including graphical cards) and is easy to implement. For the moment, only the two-dimensional case
is implemented to gain experience and be able to run many experiments within a short computation
time. For reading input parameters and access files on disk, use is made of the Seismic Unix (SU)
parameter interface and SU-segy header format with local IEEE floating point representation for the
data. Four different schemes are implemented : acoustic, visco-acoustic, elastic, and visco-elastic. We
will not go into all the implementation details and only explain the specific aspects related to the modeling
of measurements that can be used to study seismic interferometry (SI). The main difference with other
finite-difference codes is the possibility to use band-limited noise signatures positioned at random source
positions in the subsurface and model the combined effect of all those sources in only one modeling step.
Existing modeling codes are able to model the same result, but are less efficient or less user friendly (more
than one program is required to do the modeling off al the passive sources). More details about the used
algorithm and the other options within the program can be found in the manual distributed with the
code. There are not that many good FD codes available as open source, and we hope that by making
the code freely available we would receive requests from users to add new options and keep on expansing
and improving the functionality of the code.
Following the flow chart of Figure 1 the algorithm is explained step by step. The program starts by
reading in the given parameters and together with default values sets up a modeling experiment. The
velocity and density models are read in together with the grid spacing. Using the model grid spacing and
the defined time sampling a check is made for the stability and dispersion criteria. The random source
positions and signature lengths are computed and all arrays are allocated. The source signatures are
calculated in advance and is explained in more detail in section 6.4.
The algorithm contains two loops: the outer loop is for the number of shots and the inner loop for the
number of time steps to be modeled for each shot. For seismic interferometry modeling with random
source positions the number of shots in the outer loop is set to one, all sources will become active within
the inner time loop.
Every time step, the FD kernel is called to update the wavefields and inject source amplitudes, followed
by storing of wavefield components on the defined receiver positions and, if requested, a snapshot of the
wavefield components is written to disk. The last task within one time step is suppressing reflections from
the sides of the model by tapering the edges of the wavefields with an exponentially decaying function.
After all time steps are calculated, the stored wavefield components at the receiver positions are written
to disk.
In summary FD modeling computes a wavefield (at all gridded x,z positions) at time step T “ t ` ∆t
given the wavefield at the current time step T “ t. If during the time stepping of the algorithm a start
time of a source is encountered the source amplitude is added to the wavefield at the position of the
source.
In the inset of Figure 1 the acoustic FD kernel is sketched in more detail. Inside the kernel, the particle-
velocity fields Vx and Vz are updated first. If there are sources active on the particle-velocity fields, these
source amplitudes are added to the Vx and Vz fields after the update. This is done for all the defined
source positions. Free or rigid boundary conditions are then handled. The pressure field P is updated
next and after the update pressure-source amplitudes are added to the pressure field. This last step
completes the FD kernel.
The update of the stress fields (P) is done after the updates of the particle-velocity fields, hence the P
field is calculated also staggered with time (` 1

2∆t) compared to the particle-velocity fields. Numerical
particle velocity (Vx, Vz) are computed at time pk ` 1

2 q∆t, and numerical stress (σzz “ P, σxz, σxx) at
time pk ` 1q∆t are computed explicitly from stress at time k∆t and from velocity at time pk ´ 1

2 q∆t
(Virieux, 1986).
The kernel operators (stencils) are shown in Figure 2. They are the implementation of the finite-difference
approximation of a first order derivative as represented in equation 1. A staggered grid implementation
has been used. This means that the grids of the Vx and Vz wavefields are positioned in between the P
grid.

6

http://www.cwp.mines.edu/cwpcodes/

free memory

write receivers

arrays

t=snaptime

shot loop

time loop

write snapshot

arrays

store receivers points

source signatures

allocate arrays

get parameters

FD kernel

FD kernel acoustic

update Vx and Vz

apply source to P

boundary conditions

update P

apply source to Vx, Vz

no

yes

no

taper edges

no

Disk

Figure 1: Flow chart of the finite-difference (FD) algorithm. The FD kernel of the acoustic scheme is
explained in the onset in more detail. The two decision loops are for the number of shot positions and
the number of time steps to be modeled. In the chart, t represents time, Vx and Vz the horizontal and
vertical particle-velocity, respectively, and P the acoustic pressure.

Vx

Vz

P

a) Kernels to compute update to Vx and Vz

Vx

Vz

P

b) Kernel to compute update to P

Figure 2: The compute kernels showing the grid points needed to update the Vx and Vz (a) and P (b)
wavefields. The wavefields all have a unique grid position. A staggered grid implementation has been
used. This means that the grids of the Vx and Vz wavefields are positioned in between the P grid.

7

1.2 Stability and Dispersion

0

500

1000

1500

2000

z
[m

]

0 500 1000 1500 2000
x [m]

a) No dispersion cp “ 1500, h “ 1,

∆t “ 0.0002 fmax “ 260

0

500

1000

1500

2000

z
[m

]

0 500 1000 1500 2000
x [m]

b) Dispersion cp “ 1500, h “ 3,

∆t “ 0.0001 fmax “ 260

1400

1500

1600

1700

1800

1900

2000

z
[m

]

700 800 900 1000 1100 1200 1300
x [m]

c) Dispersion cp “ 300, h “ 1,

∆t “ 0.0002 fmax “ 260

0

500

1000

1500

2000

z
[m

]

0 500 1000 1500 2000
x [m]

d) Stability cp “ 1500, h “ 1,

∆t “ 0.0008 fmax “ 260

Figure 3: Snapshots of dispersion (b and c) and unstable (d) schemes. The script fdelmodc_stab.scr
in the demo directory reproduces the pictures.

The first order differential equations are approximated by the finite-difference operators of equations 2
and 3. When explicit time-marching schemes are used for the numerical solution the Courant (Courant
et al., 1967) number gives a condition for convergence. The Courant number is used to restrict the
time-step in explicit time-marching computer simulations. For example, if a wave is crossing a discrete
grid distance (∆x), then the time-step must be less than the time needed for the wave to travel to an
adjacent grid point, otherwise the simulation will produce incorrect results. As a corollary, when the grid
point separation is reduced, the upper limit for the time step must also decreases. For 4’th order spatial
derivatives the Courant number is 0.606 (Sei, 1995) and for stability the discretization must satisfy:

d

λ ` 2µ

ρ

∆t

h
ď 0.606 (8)

(9)

This approximation requires that

∆t ă
0.606∆h

cmax
(10)

with ∆h “ ∆x “ ∆z being the discretization step in the spatial dimensions. If equation 10 is not
satisfied unstable results will be calculated if, within a time step ∆t, the wavefront has travelled a
distance larger than 0.606∆x. This will typically occur at high velocities when ∆tcmax is large. The
unstable solution will propagate though the whole model and can end up with large numbers and the
out-of-range representation NaN (Not a Number).

8

Besides unstable solutions wavefield dispersion can also occur. Unfortunately, finite-difference schemes
are intrinsically dispersive and there is no fixed grid points per wavelength rule that can be given to avoid
dispersion. The widespread rule of thumb ”5 points per wavelength” for a (2,4) scheme (Alford et al.,
1974) has to be understood in the sense ”5 points per wavelength for an average geophysical medium,”
and for the propagation of a 100 wavelengths through the medium(Sei, 1995). Dispersion for the 2D
wave-equation will occur more strongly and clearly visible if the following relation is not obeyed,

∆h ă
cmin

5fmax
, (11)

∆h ă
λmin

5

and will occur at small wavelengths (λmin, low velocities and/or high frequencies). In the case of dis-
persion, the program will keep on running but will give dispersive waves. Do not confuse numerical
dispersion with the physical dispersion of visco-elastic waves discussed later.
Figure 3 shows different snapshots with no dispersion (a), dispersion (b and c) and the results for an
unstable scheme (d). Note that before starting the calculating the program checks if the stability and
dispersion equations 10 and 11 are satisfied. If they are not satisfied the programs stops with an error
message and suggestion how to change the discretization interval or maximum frequency, to get a stable
scheme.The dispersion check can be overruled by using the fmax= parameter smaller than the actual
maximum frequency found in the source wavelet. For a more detailed discussion about stability in
finite-difference schemes see Sei (1995), Sei and Symes (1995) Bauer et al. (2008).
Unfortunately, the stability and dispersion criteria shown in equation 10 is not valid for visco-elastic
media. See the end of section 5 for some guidelines.

2 Acoustic
The linearized equation of motion (Newton’s second law) and equation of deformation (Hook’s law) are
given by:

BVx

Bt
“ ´

1

ρ

BP

Bx
,

BVz

Bt
“ ´

1

ρ

BP

Bz
, (12)

BP

Bt
“ ´

1

κ
t

BVx

Bx
`

BVz

Bz
u,

where Vx, Vz are the particle velocity components in the x and z-direction, respectively, and P the
acoustic pressure. In the staggered-grid implementation, ρx and Vx, ρz and Vz, and ρc2p “ 1

κ and P are
put on the same calculation grid. The computational grid (represented by ρ and cp) is placed at an offset
(one or two grid-points, depending of the field component) for efficient handling of the boundaries.
The pressure/stress wavefields are computed on different time steps than the particle-velocity fields. In
the algorithm the first time-step (it “ 0) computed for the particle-velocity fields uses pressure/stress
fields at it “ 0 resulting in particle-velocity fields at time steps pit` 1

2 q∆t. The pressure/stress fields are
computed at time steps it∆t using the particle-velocity fields at time steps pit ` 1

2 q∆t.
For the staggered-grid implementation, shown in Figure 4, every field quantity has a different origin. The
origins of the field are chosen in such a way that interpolation of one field grid to another field grid can
be done in a straightforward way (see also section 6.6.3). The derivative operators need two points on
each sides of their centre to calculate the derivative at the centre. By offsetting the grid, the extra points
needed to calculate the derivative at the boundaries of the model are added. These extra layers, needed
at the edges of the model, are also taken into account in the choice of the origin. The origins of the
medium parameters (and the different fields) are defined according to the following mapping:

rz, xs

ρxr1, 2s Ð 0.5 ˚ pρr0, 0s ` ρr0, 1sq

ρzr2, 1s Ð 0.5 ˚ pρr0, 0s ` ρr1, 0sq

κr1, 1s Ð c2pr0, 0sρr0, 0s.

9

p0, 0q

p0, 0q

p0, 0q

‚
P

‚
P

‚
P

‚
P

‚
P

‚
P

Ó
VzÓ

Vz

Ó
Vz

Ñ
Vx

Ñ
Vx

Ñ
Vx

‚
P

‚
P

‚
P

‚
P

‚
P

Ó
Vz

Ó
Vz Ó

Vz Ó
Vz

Ó
Vz Ó

Vz Ó
Vz

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Vx Ñ ρx

Vz Ñ ρz

P Ñ κ

Figure 4: Acoustic staggered calculation grid for a fourth-order scheme in space. Vz, Vx represent the
particle velocity of the wavefield in the z and x direction, respectively, and P represent the acoustic
pressure. The blue fields are auxiliary points used to calculate the black field values. Those blue points
are not updated and initialized to zero. On all sides of the model a virtual Vx or Vz layer has been added
for proper handling of the edges of the model.

Note that the choice for the origin is just a choice for convenience and nothing else.
In the code section below the io** variables define the origin-offsets used in the calculations.

2.1 Staggered scheme
c1 = 9.0/8.0;
c2 = -1.0/24.0;

/* Vx: rox */
ioXx=2;
ioXz=ioXx-1;
/* Vz: roz */
ioZz=2;
ioZx=ioZz-1;
/* P, Txx, Tzz: lam, l2m */
ioPx=1;
ioPz=ioPx;
/* Txz: muu */
ioTx=2;
ioTz=ioTx;

rox = 1/rho_x * dt/dx
roz = 1/rho_z * dt/dx
l2m = cp*cp*rho * dt/dx

/* calculate vx for all grid points except on the virtual boundary*/
for (ix=ioXx; ix<nx+1; ix++) {

for (iz=ioXz; iz<nz+1; iz++) {
vx[ix*n1+iz] -= rox[ix*n1+iz]*(

c1*(p[ix*n1+iz] - p[(ix-1)*n1+iz]) +

10

c2*(p[(ix+1)*n1+iz] - p[(ix-2)*n1+iz]));
}

}

/* calculate vz for all grid points except on the virtual boundary */
for (ix=ioZx; ix<nx+1; ix++) {

for (iz=ioZz; iz<nz+1; iz++) {
vz[ix*n1+iz] -= roz[ix*n1+iz]*(

c1*(p[ix*n1+iz] - p[ix*n1+iz-1]) +
c2*(p[ix*n1+iz+1] - p[ix*n1+iz-2]));

}
}

/* calculate p/tzz for all grid points except on the virtual boundary */
for (ix=ioPx; ix<nx+1; ix++) {

for (iz=ioPz; iz<nz+1; iz++) {
p[ix*n1+iz] -= l2m[ix*n1+iz]*(

c1*(vx[(ix+1)*n1+iz] - vx[ix*n1+iz]) +
c2*(vx[(ix+2)*n1+iz] - vx[(ix-1)*n1+iz]) +
c1*(vz[ix*n1+iz+1] - vz[ix*n1+iz]) +
c2*(vz[ix*n1+iz+2] - vz[ix*n1+iz-1]));

}
}

3 Visco-Acoustic
For a visco-acoustic medium the linearized equation of motion (Newton’s second law) and equation of
deformation (Hook’s law) are :

BVx

Bt
“ ´

1

ρ

BP

Bx
(13)

BVz

Bt
“ ´

1

ρ

BP

Bz
(14)

BP

Bt
“ ´

1

κ

τpε
τσ

t
BVx

Bx
`

BVz

Bz
u ` rp (15)

Brp
Bt

“ ´
1

τσ

ˆ

rp ` p
τpε
τσ

´ 1qp
1

κ
qt

BVx

Bx
`

BVz

Bz
u

˙

(16)

For the attenuation implementation a leap-frog scheme in time is used and shown in the implementation
below. The so-called memory variable rp (Robertsson et al., 1994) are introduced for the relaxation
mechanism.

/* calculate p/tzz for all grid points except on the virtual boundary */
for (ix=ioPx; ix<nx+1; ix++) {

for (iz=ioPz; iz<nz+1; iz++) {
dxvx[iz] = c1*(vx[(ix+1)*n1+iz] - vx[ix*n1+iz]) +

c2*(vx[(ix+2)*n1+iz] - vx[(ix-1)*n1+iz]);
}
for (iz=ioPz; iz<nz+1; iz++) {

dzvz[iz] = c1*(vz[ix*n1+iz+1] - vz[ix*n1+iz]) +
c2*(vz[ix*n1+iz+2] - vz[ix*n1+iz-1]);

}

/* help variables to let the compiler vectorize the loops */
for (iz=ioPz; iz<nz+1; iz++) {

11

Tpp = tep[ix*n1+iz]*tss[ix*n1+iz];
Tlm[iz] = (1.0-Tpp)*tss[ix*n1+iz]*l2m[ix*n1+iz]*0.5;
Tlp[iz] = l2m[ix*n1+iz]*Tpp;

}
for (iz=ioPz; iz<nz+1; iz++) {

Tt1[iz] = 1.0/(ddt+0.5*tss[ix*n1+iz]);
Tt2[iz] = ddt-0.5*tss[ix*n1+iz];

}

/* the update with the relaxation correction */
for (iz=ioPz; iz<nz+1; iz++) {

p[ix*n1+iz] -= Tlp[iz]*(dzvz[iz]+dxvx[iz]) + q[ix*n1+iz];
}
for (iz=ioPz; iz<nz+1; iz++) {

q[ix*n1+iz] = (Tt2[iz]*q[ix*n1+iz] + Tlm[iz]*(dxvx[iz]+dzvz[iz]))*Tt1[iz];
p[ix*n1+iz] += q[ix*n1+iz];

}
}

The relaxation parameters τpε , τσ are defined in the program indirectly by defining the Quality factor (Q).
This Q-factor can be defined in the program by setting the parameter Qp= for a constant-Q medium,or
by using a gridded file file_qp=, which defines a different Q-factor for every grid point. The Q-factors
are transformed inside the program to the relaxation parameters (used in the numerical scheme) by using
(Robertsson et al., 1994):

Q “
ts
`

1 ` w2tste
˘

pte ´ tsqwts
(17)

τσ “

b

1.0 ` 1.0
Q2

p
´ 1.0

Qp

fw
(18)

τpε “
1.0

f2
wτσ

(19)

τ sε “
1.0 ` fwQsτσ
fwQs ´ f2

wτσ
(20)

where fw is the central frequency (of the used wavelet) given by parameter fw=.
The relaxation parameters are defined by the following damping model:

Mpωq “ k0

˜

1 ´ L
L
ÿ

l“1

1 ` jωte,l
1 ` jωts,l

¸

(21)

Q “
ℜtMpωqu

ℑtMpωqu
(22)

TODO: explain the physical mechanism of the used damping model (mass-spring configuration).

12

p0, 0qp0, 0q

p0, 0q p0, 0q

Œ
σxz

Œ
σxz

Œ
σxz

‚
σp

‚
σp

‚
σp

‚
σp

‚
σp

‚
σp

Ó
VzÓ

Vz

Ó
Vz

Ñ
Vx

Ñ
Vx

Ñ
Vx

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

‚
σp

‚
σp

‚
σp

‚
σp

‚
σp

‚
σp

‚
σp

Ó
Vz

Ó
Vz

Ó
Vz Ó

Vz Ó
Vz Ó

Vz

Ó
Vz Ó

Vz Ó
Vz Ó

Vz

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

Vx Ñ ρx

Vz Ñ ρz

σp Ñ λ ` 2µ, λ

σxz Ñ µ

Figure 5: Elastic staggered calculation grid for a fourth-order scheme in space. Vz, Vx represent the
particle velocity of the wavefield in the z and x direction, respectively, and σppσxx or σzzq, σxz represent
the stress fields. The blue fields are auxiliary points used to calculate the black field values. Those blue
points are not updated and initialized to zero. On all sides of the model a virtual Vx, σxz or Vz, σxz layer
has been added for proper handling of the edges of the model.

4 Elastic
Linearized equation of motion (Newton’s second law) and equation of deformation (Hook’s law) are used:

BVx

Bt
“ ´

1

ρ
t

Bσxx

Bx
`

Bσxz

Bz
u (23)

BVz

Bt
“ ´

1

ρ
t

Bσxz

Bx
`

Bσzz

Bz
u (24)

Bσxx

Bt
“ ´t

1

κ

BVx

Bx
` λ

BVz

Bz
u (25)

Bσzz

Bt
“ ´t

1

κ

BVz

Bz
` λ

BVx

Bx
u (26)

Bσxz

Bt
“ ´µt

BVx

Bz
`

BVz

Bx
u (27)

where σij denotes the ijth component of the symmetric stress tensor Virieux (1986).
The derivative operators need two points on each side of their centre to calculate the derivative at the
centre. By offsetting the grid, the extra points needed to calculate the derivative at the boundaries of
the model are added. These extra layers needed at the edges of the model are also taken into account in
the choice of the origin. The origins are defined according to the following mapping:

rz, xs

ρxr1, 2s Ð 0.5 ˚ pρr0, 0s ` ρr0, 1sq

ρzr2, 1s Ð 0.5 ˚ pρr0, 0s ` ρr1, 0sq

κr1, 1s Ð c2pr0, 0sρr0, 0s

µr2, 2s Ð c2sr0, 0sρr0, 0s

λr1, 1s Ð c2pr0, 0sρr0, 0s ´ 2c2pr0, 0sρr0, 0s.

/* Vx: rox */
ioXx=mod.iorder/2;

13

ioXz=ioXx-1;
/* Vz: roz */
ioZz=mod.iorder/2;
ioZx=ioZz-1;
/* P, Txx, Tzz: lam, l2m */
ioPx=mod.iorder/2-1;
ioPz=ioPx;
/* Txz: muu */
ioTx=mod.iorder/2;
ioTz=ioTx;

/* calculate vx for all grid points except on the virtual boundary*/
for (ix=ioXx; ix<nx+1; ix++) {

for (iz=ioXz; iz<nz+1; iz++) {
vx[ix*n1+iz] -= rox[ix*n1+iz]*(

c1*(txx[ix*n1+iz] - txx[(ix-1)*n1+iz] +
txz[ix*n1+iz+1] - txz[ix*n1+iz]) +

c2*(txx[(ix+1)*n1+iz] - txx[(ix-2)*n1+iz] +
txz[ix*n1+iz+2] - txz[ix*n1+iz-1]));

}
}

/* calculate vz for all grid points except on the virtual boundary */
for (ix=ioZx; ix<nx+1; ix++) {

for (iz=ioZz; iz<nz+1; iz++) {
vz[ix*n1+iz] -= roz[ix*n1+iz]*(

c1*(tzz[ix*n1+iz] - tzz[ix*n1+iz-1] +
txz[(ix+1)*n1+iz] - txz[ix*n1+iz]) +

c2*(tzz[ix*n1+iz+1] - tzz[ix*n1+iz-2] +
txz[(ix+2)*n1+iz] - txz[(ix-1)*n1+iz]));

}
}

/* calculate Txx/tzz for all grid points except on the virtual boundary */
for (ix=ioPx; ix<nx+1; ix++) {

for (iz=ioPz; iz<nz+1; iz++) {
dvvx[iz] = c1*(vx[(ix+1)*n1+iz] - vx[ix*n1+iz]) +

c2*(vx[(ix+2)*n1+iz] - vx[(ix-1)*n1+iz]);
}
for (iz=ioPz; iz<nz+1; iz++) {

dvvz[iz] = c1*(vz[ix*n1+iz+1] - vz[ix*n1+iz]) +
c2*(vz[ix*n1+iz+2] - vz[ix*n1+iz-1]);

}
for (iz=ioPz; iz<nz+1; iz++) {

txx[ix*n1+iz] -= l2m[ix*n1+iz]*dvvx[iz] + lam[ix*n1+iz]*dvvz[iz];
tzz[ix*n1+iz] -= l2m[ix*n1+iz]*dvvz[iz] + lam[ix*n1+iz]*dvvx[iz];

}
}

/* calculate Txz for all grid points except on the virtual boundary */
for (ix=ioTx; ix<nx+1; ix++) {

for (iz=ioTz; iz<nz+1; iz++) {
txz[ix*n1+iz] -= mul[ix*n1+iz]*(

c1*(vx[ix*n1+iz] - vx[ix*n1+iz-1] +
vz[ix*n1+iz] - vz[(ix-1)*n1+iz]) +

c2*(vx[ix*n1+iz+1] - vx[ix*n1+iz-2] +

14

vz[(ix+1)*n1+iz] - vz[(ix-2)*n1+iz]));
}

}

To handle a solid fluid interface an extra layer is introduced between the interfaces. This technique is
described by van Vossen et al. (2002).

5 Visco-Elastic
Linearized equation of motion (Newton’s second law) and equation of deformation (Hook’s law) used are:

BVx

Bt
“ ´

1

ρ
t

Bσxx

Bx
`

Bσxz

Bz
u (28)

BVz

Bt
“ ´

1

ρ
t

Bσxz

Bx
`

Bσzz

Bz
u (29)

Bσxx

Bt
“ ´

1

κ

τpε
τσ

t
BVx

Bx
`

BVz

Bz
u ´ 2µ

τ sε
τσ

BVz

Bz
` rxx (30)

Bσzz

Bt
“ ´

1

κ

τpε
τσ

t
BVx

Bx
`

BVz

Bz
u ´ 2µ

τ sε
τσ

BVx

Bx
` rzz (31)

Bσxz

Bt
“ ´µ

τ sε
τσ

t
BVx

Bz
`

BVz

Bx
u ` rxz (32)

Brxx
Bt

“ ´
1

τσ

ˆ

rxx ` p
τpε
τσ

´ 1qp
1

κ
qt

BVx

Bx
`

BVz

Bz
u ´ p

τ sε
τσ

´ 1q2µ
BVz

Bz

˙

(33)

Brzz
Bt

“ ´
1

τσ

ˆ

rzz ` p
τpε
τσ

´ 1qp
1

κ
qt

BVx

Bx
`

BVz

Bz
u ´ p

τ sε
τσ

´ 1q2µ
BVx

Bx

˙

(34)

Brxz
Bt

“ ´
1

τσ

ˆ

rxz ` p
τ sε
τσ

´ 1qµt
BVx

Bz
`

BVx

Bz
u

˙

(35)

More details about visco-elastic FD modelling can be found in Robertsson et al. (1994), Saenger and
Bohlen (2004), and Bohlen (2002).
The relaxation parameters τpε , τ sε , τσ are defined in the program indirectly by defining the Quality factor
(Q). This Q-factor can be defined in the program by setting the parameter Qp= Qs= for a constant-
Q medium, or by using a gridded file file_qp= file_qs= which defines a different Q-factor for every
grid point. The Q-factors are in the program transformed into the relaxation parameters (used in the
numerical scheme) by using Robertsson et al. (1994):

Q “
ts
`

1 ` w2tste
˘

pte ´ tsqwts
(36)

τσ “

b

1.0 ` 1.0
Q2

p
´ 1.0

Qp

fw
(37)

τpε “
1.0

f2
wτσ

(38)

τ sε “
1.0 ` fwQsτσ
fwQs ´ f2

wτσ
(39)

where fw is the central frequency (of the used wavelet) given by parameter fw=.
The relaxation parameters are defined by the following damping model:

Mpωq “ k0

˜

1 ´ L
L
ÿ

l“1

1 ` jωte,l
1 ` jωts,l

¸

(40)

Q “
ℜtMpωqu

ℑtMpωqu
(41)

15

Unfortunately, the stability calculations within the program are not always valid for visco-elastic media.
There is no general rule of thumb for visco-elastic media to calculate a stability criterion. If in a modeling
experiment, with a chosen Qp and Qs, the program is not stable, the advise is to increase the smallest
Q-factor (for example from 20 to 30), or use ischeme=3, and see if that gives a stable modeling result. If
you get a stable result by increasing Q (or ischeme=3) and you want to use the lower Q, value you have
to make the dx (and possibly dt) smaller to get stable answers for that Q value as well.

6 Parameters in program fdelmodc
The self-doc of the program is shown by typing fdelmodc on the command line without any arguments.
You will then see the following exhaustive list of parameters:

fdelmodc - elastic acoustic finite difference wavefield modeling

IO PARAMETERS:
file_cp= P (cp) velocity file
file_cs= S (cs) velocity file
file_den= density (ro) file
file_src= file with source signature
file_rcv=recv.su .. base name for receiver files
file_snap=snap.su . base name for snapshot files
file_beam=beam.su . base name for beam fields
dx= read from model file: if dx==0 then dx= can be used to set it
dz= read from model file: if dz==0 then dz= can be used to set it
dt= read from file_src: if dt is set it will interpolate file_src to dt sampling

OPTIONAL PARAMETERS:
ischeme=3 1=acoustic, 2=visco-acoustic 3=elastic, 4=visco-elastic, 5=double-couple
tmod=(nt-1)*dt total modeling time (nt from file_src)
ntaper=0 length of taper in points at edges of model
npml=35 length of PML layer in points at edges of model
R=1e-4 the theoretical reflection coefficient at PML boundary
m=2.0 scaling order of the PML sigma function
tapfact=0.30 taper strength: larger value gets stronger taper
For the 4 boundaries the options are: 1=free 2=pml 3=rigid 4=taper
top=1 type of boundary on top edge of model
left=4 type of boundary on left edge of model
right=4 type of boundary on right edge of model
bottom=4 type of boundary on bottom edge of model
grid_dir=0 direction of time modeling (1=reverse time)
Qp=15 global Q-value for P-waves in visco-elastic (ischeme=2,4)
file_qp= model file Qp values as function of depth
Qs=Qp global Q-value for S-waves in visco-elastic (ischeme=4)
file_qs= model file Qs values as function of depth
fw=0.5*fmax central frequency for which the Q's are used
sinkdepth=0 receiver grid points below topography (defined bij cp=0.0)
sinkdepth_src=0 ... source grid points below topography (defined bij cp=0.0)
sinkvel=0 use velocity of first receiver to sink through to next layer
beam=0 calculate energy beam of wavefield in model
disable_check=0 ... disable stabilty and dispersion check and continue modeling
verbose=0 silent mode; =1: display info

SHOT AND GENERAL SOURCE DEFINITION:
src_type=1 1=P 2=Txz 3=Tzz 4=Txx 5=S-pot 6=Fx 7=Fz 8=P-pot 9=double-couple 10=Fz by P 11=moment tensor
src_orient=1 orientation of the source

- 1=monopole

16

- 2=dipole +/- vertical oriented
- 3=dipole - + horizontal oriented
- 4=dipole +/0/-
- 5=dipole + -

dip=0.0 dip for double-couple source
strike=90.0 strike for double-couple source
rake=90.0 rake for double-couple source
Mxx=1.0 xx component for the moment tensor source
Mzz=1.0 zz component for the moment tensor source
Mxz=1.0 xz and zx component for the moment tensor source
xsrc=middle x-position of (first) shot
zsrc=zmin z-position of (first) shot
nshot=1 number of shots to model
dxshot=dx if nshot > 1: x-shift in shot locations
dzshot=0 if nshot > 1: z-shift in shot locations
xsrca= defines source array x-positions
zsrca= defines source array z-positions
src_txt=........... text file with source coordinates. Col 1: x, Col. 2: z
wav_random=1 1 generates (band limited by fmax) noise signatures
fmax=from_src maximum frequency in wavelet
src_multiwav=0 use traces in file_src as areal source
src_at_rcv=1 inject wavefield at receiver coordinates (1), inject at source (0)
src_injectionrate=0 set to 1 to use injection rate source

PLANE WAVE SOURCE DEFINITION:
plane_wave=0 model plane wave with nsrc= sources
nsrc=1 number of sources per (plane-wave) shot
src_angle=0 angle of plane source array
src_velo=1500 velocity to use in src_angle definition
src_window=0 length of taper at edges of source array

RANDOM SOURCE DEFINITION FOR SEISMIC INTERFEROMTERY:
src_random=0 1 enables nsrc random sources positions in one modeling
nsrc=1 number of sources to use for one shot
xsrc1=0 left bound for x-position of sources
xsrc2=0 right bound for x-position of sources
zsrc1=0 left bound for z-position of sources
zsrc2=0 right bound for z-position of sources
tsrc1=0.0 begin time interval for random sources being triggered
tsrc2=tmod end time interval for random sources being triggered
tactive=tsrc2 end time for random sources being active
tlength=tsrc2-tsrc1 average duration of random source signal
length_random=1 ... duration of source is rand*tlength
amplitude=0 distribution of source amplitudes
distribution=0 random function for amplitude and tlength 0=flat 1=Gaussian
seed=10 seed for start of random sequence

SNAP SHOT SELECTION:
tsnap1=0.1 first snapshot time (s)
tsnap2=0.0 last snapshot time (s)
dtsnap=0.1 snapshot time interval (s)
dxsnap=dx sampling in snapshot in x-direction
xsnap1=0 first x-position for snapshots area
xsnap2=0 last x-position for snapshot area
dzsnap=dz sampling in snapshot in z-direction
zsnap1=0 first z-position for snapshots area
zsnap2=0 last z-position for snapshot area

17

snapwithbnd=0 write snapshots with absorbing boundaries
sna_type_p=1 p registration _sp
sna_type_vz=1 Vz registration _svz
sna_type_vx=0 Vx registration _svx
sna_type_txx=0 Txx registration _stxx
sna_type_tzz=0 Tzz registration _stzz
sna_type_txz=0 Txz registration _stxz
sna_type_pp=0 P (divergence) registration _sP
sna_type_ss=0 S (curl) registration _sS
sna_vxvztime=0 registration of vx/vx times

The fd scheme is also staggered in time.
Time at which vx/vz snapshots are written:

- 0=previous vx/vz relative to txx/tzz/txz at time t
- 1=next vx/vz relative to txx/tzz/txz at time t

RECEIVER SELECTION:
xrcv1=xmin first x-position of linear receiver array(s)
xrcv2=xmax last x-position of linear receiver array(s)
dxrcv=dx x-position increment of receivers in linear array(s)
zrcv1=zmin first z-position of linear receiver array(s)
zrcv2=zrcv1 last z-position of linear receiver array(s)
dzrcv=0.0 z-position increment of receivers in linear array(s)
dtrcv=.004 desired sampling in receiver data (seconds)
xrcva= defines receiver array x-positions
zrcva= defines receiver array z-positions
rrcv= radius for receivers on a circle
arcv= vertical arc-lenght for receivers on a ellipse (rrcv=horizontal)
oxrcv=0.0 x-center position of circle
ozrcv=0.0 z-center position of circle
dphi=2 angle between receivers on circle
rcv_txt=........... text file with receiver coordinates. Col 1: x, Col. 2: z
rec_ntsam=nt maximum number of time samples in file_rcv files
rec_delay=0 time in seconds to start recording: recorded time = tmod - rec_delay
rec_type_p=1 p registration _rp
rec_type_vz=1 Vz registration _rvz
rec_type_vx=0 Vx registration _rvx
rec_type_txx=0 Txx registration _rtxx
rec_type_tzz=0 Tzz registration _rtzz
rec_type_txz=0 Txz registration _rtxz
rec_type_dzvz=0 ... dzVz registration _rdzvz
rec_type_dxvx=0 ... dxVx registration _rdxvx
rec_type_pp=0 P (divergence) registration _rP
rec_type_ss=0 S (curl) registration _rS
rec_type_ud=0 1:pressure normalized decomposition in up and downgoing waves _ru, _rd
................... 2:particle velocity normalized decomposition in up and downgoing waves _ru, _rd
................... 3:flux normalized decomposition in up and downgoing waves _flup, _flip
kangle= maximum wavenumber angle for decomposition
rec_int_vx=0 interpolation of Vx receivers

- 0=Vx->Vx (no interpolation)
- 1=Vx->Vz
- 2=Vx->Txx/Tzz(P)
- 3=Vx->receiver position

rec_int_vz=0 interpolation of Vz receivers
- 0=Vz->Vz (no interpolation)
- 1=Vz->Vx
- 2=Vz->Txx/Tzz(P)
- 3=Vz->receiver position

18

rec_int_p=0 interpolation of P/Tzz receivers
- 0=P->P (no interpolation)
- 1=P->Vz
- 2=P->Vx
- 3=P->receiver position

NOTES: For viscoelastic media dispersion and stability are not always
guaranteed by the calculated criteria, especially for Q values smaller than 13

Jan Thorbecke 2011
TU Delft
E-mail: janth@xs4all.nl
2015 Contributions from Max Holicki

If you are not considering doing special things, the default values are most of the times sufficient and
only a few parameters have to be changed from their default values. For all types of FD modeling
experiments, the medium parameters must be given. The medium parameters describe the discretized
medium through which the modelling is carried out. The source wavelet must also be given. Besides that
no other parameters are needed and the program will start modelling with a source positioned at the top
middle of the model (z), with receivers placed at the top with a distance equal to the grid distance. This
minimum parameter set is:

fdelmodc file_cp=filecp.su file_cs=filecs.su file_den=filero.su \
file_src=wavelet.su

In the next subsections all the parameters will be described in more detail and guidelines will be given
how to use them.

6.1 Modelling parameters
The ischeme= selects the kind of finite-difference scheme to be used. Currently there are four options:

1. acoustic, see section 2

2. visco-acoustic, see section 3

3. elastic, see section 4

4. visco-elastic, see section 5

For visco-acoustic (elastic) media extra options are: Qp= (and Qs=) for selecting an overall Q factor for
all layers. This Q value is defined for a frequency at fw=, other frequencies will have slightly different Q
values. It is also possible to define a Q value for every grid point in the medium. These arrays must be
stored in SU files, have the same dimensions as the files of the gridded medium parameters. The program
parameters file_qp= (and file_qs= for elastic media) will read these Q defined values. You can
use the program makemod (see section D) to define a model and use one of medium parameters as Q
value. For example you can use the cs layer parameter to define a different Q-factor in each layer. You
can make you own gridded Q definition in for example Matlab; make sure that this gridded file has same
size as the file_cp/file_ro grids.

6.2 Medium parameters
The parameters file_cp, file_cs, file_den represent the filenames of the gridded model files in SU
format. The fastest dimension (n1, number of samples per trace, z) in the file represents depth and the
second dimension (n2, number of traces, x) represents the lateral position. The distance between the
grid points has to be the same in the z and x position. The grid distance is read from the headers d1,d2
in the model files. The origin of the model is read from the headers f1,f2 , where f1 is the depth of
the first sample and f2 is the lateral position of the first trace. If those headers are not set then the
user can define the sampling distance by using the parameters dx= dz=. The output files (receivers and

19

snapshots) will also contains the lateral coordinates in the gx headers. The gridded model files can be
generated by the, also provided, program makemod in the utils directory.
Together with the minimum and maximum velocities in the model files, the spatial- and time-sampling
the stability of the solution can be calculated (see section 1.2).
The units of the velocity in the medium is [m{s] and for the density [kg{m3]. The unit for the length
direction can also be feet (or any other length measurement), as long as the same length unit is used on
the distance and the velocity of the medium.
If you want to make a region where no waves propagate; define the (P and or S) velocity to zero, but not
the density. Otherwise fdelmodc will give an error message:

Warning in fdelmodc: Zero density for trace=0 sample=10;
Error in fdelmodc: ERROR zero density is not a valid value, program exit

In the algorithms the reciprocal value of the density is used. To avoid checking zero densities for each
loop (and therefore make the code perform slower) zero densities are not allowed.

6.3 Boundaries
There are four boundary types used in the FD schemes. The boundary type is selected with the parameters
left= right= top= bottom= and are identified with a number . The default values of these parameters
are; free surface for the top (1) and tapered (4) for the other three boundaries. The different boundary
types are:

• ’Absorbing’ tapered boundaries (4)
One of the most important boundary type is the absorbing boundary. This type of boundary is used
to avoid reflections from the sides of the model. The boundaries in a numerical model are in most
cases not physical boundaries, but artificial boundaries introduced to limit the size of the model.
Reflections coming from these boundaries are artificial and must therefore be suppressed. There
are many possible implementations to absorb these artificial reflections. In the program, the most
simple absorbing boundary condition is implemented: a taper on the Vx and Vz fields. It is difficult
to give guidelines how many grid points the taper length should be to suppress the side reflections.
The wave field is gradually tapered over a specified range of grid points (window length ntaper).
The default setting for the taper length is: 4 ˚ ppcpmax{fmaxq{dxq, 4 wavelengths. Depending on
the size of the grid a window length of 40,80 grid points might be sufficient. You may alter these,
if you like, in order to increase or decrease the amount of tapering. The larger the window length,
the better the absorption, but the longer the modeling will take.
Using the parameters and ntaper=n enables the tapered boundaries with a taper length of n points.
Besides those parameters specific boundaries must be put ’on’ for tapering by using left=4 right=4
top=4 bottom=4 . All enabled boundaries are using the same taper length and it is not possible to
use different taper lengths for different boundaries. The number of taper points should be chosen
such 1-2 times the main wavelength in the modeled data. The program calculates the number of
taper points to be five times the wavelength 5λtap “ 5

maxpcpq

fmax
;

taperrixs “ exp´p0.30 ˚
ix

ntaper
q2, (42)

where ix is an integer ranging from 0 to ntaper ´ 1 and 0.30 is the taper factor. This taper factor
can be changed with the parameter tapfact=. A larger taper factor will make the taper go steeper
to 0.0. In Figure 7 different tapfact= choices are shown. Note that if the taper is chosen too
steep (larger than 0.5) the wavelet will already start reflecting from the beginning of the tapered
boundary.
Figure 6 shows the effects of the taper in a homogenous medium. It effectively suppresses the
reflections from the sides of the model. The chosen taper length in this example is 200 points long.
This is a large number of ;pints and used for illustration purposes. Using a taper is not a very
efficient way of suppressing side reflections and there are plans to implement a better absorbing
boundary method such as the Perfectly Matched Layer (PML) approach.

20

0

200

400

600

800

1000

de
pt

h
[m

]

0 200 400 600 800 1000
lateral position [m]

0

200

400

600

800

1000

de
pt

h
[m

]

0 200 400 600 800 1000
lateral position [m]

0

0.2

0.4

0.6

0.8

1.0

tim
e

[s
]

500 1000
lateral position [m]

a) no taper

0

0.2

0.4

0.6

0.8

1.0

tim
e

[s
]

500 1000
lateral position [m]

b) 200 points taper

Figure 6: Snapshots and receiver recording in homogeneous medium with and without taper. The receivers
are placed at 300 m depth and the source is positioned in the middle of the model at (500,500). The grid
distance is 1 meter. The script fdelmodc_taper.scr in the demo directory reproduces the pictures.

• Free surface (1)
The free surface implementation for the acoustic scheme is straightforward and just sets the pressure
field to zero on the free surface. For the elastic scheme the implementation is more involved and
the free surface conditions (for the upper boundary) are :

1. σzz “ 0 is set
2. σxz “ 0 is implemented by defining an odd symmetry σxzrizs “ ´σxzriz ` 1s.
3. σxx: removed term with BVz

Bz , and add extra term with BVx

Bx , corresponding to free-surface
condition for σxx. Other boundaries (left, right and bottom) are treated in a similar way.

The linearized equation of motion (Newton’s second law) and equation of deformation (Hook’s law)
for the free surface become:

σzz “ 0 “
1

κ

BVz

Bz
` λ

BVx

Bx
(43)

σxz “ 0 “ µt
BVx

Bz
`

BVz

Bx
u (44)

In the FD code σzz is set to 0 at the free surface position z “ 0. σxz is constructed in such a way
that the difference around the free surface ends up to be zero:

σxzp0 ´ 1
2∆zq “ ´σxzp0 ` 1

2∆zq

σxzp0 ´ 1 1
2∆zq “ ´σxzp0 ` 1 1

2∆zq

21

10 20 30 40 50
grid points

0

0.5

1.0

am
pl

itu
de

Figure 7: The boundary taper as function of the tapfact= parameter is shown. The red line with the
highest amplitude has tapfact=0.1, each line with a lower amplitude has a tap fact 0.1 larger (e.g. the
green line has 0.2, the yellow line 0.3).

Note that the location in the equations above are with respect to the grid for σzz. The trick for
σxz is only needed for staggered grids to make the free surface of σxzon the same level as σzz.
For an expression of σxx on the free surface:

σxx “
1

κ

BVx

Bx
` λ

BVz

Bz
(45)

we substitute equation (43) BVz

Bz “ ´λκ BVx

Bx into and gives:

σxx “
1

κ

BVx

Bx
´ λ2κ

BVx

Bx
(46)

Using the parameters left=1 right=1 top=1 bottom=1 enables a free surface boundary for all 4
sides.

if (bnd.top==1) { /* free surface at top */
izp = bnd.surface[ixo];
for (ix=ixo; ix<ixe; ix++) {

iz = bnd.surface[ix-1];
if (izp==iz) {

/* clear normal pressure */
tzz[ix*n1+iz] = 0.0;

}
izp=iz;

}

izp = bnd.surface[ixo];
for (ix=ixo+1; ix<ixe+1; ix++) {

iz = bnd.surface[ix-1];
if (izp==iz) {

/* assure that txz=0 on boundary by filling virtual boundary */
txz[ix*n1+iz] = -txz[ix*n1+iz+1];
/* extra line of txz has to be copied */
txz[ix*n1+iz-1] = -txz[ix*n1+iz+2];

}
izp=iz;

}

/* calculate txx on top stress-free boundary */

22

izp = bnd.surface[ixo];
for (ix=ixo; ix<ixe; ix++) {

iz = bnd.surface[ix-1];
if (izp==iz) {

dp = l2m[ix*n1+iz]-lam[ix*n1+iz]*lam[ix*n1+iz]/l2m[ix*n1+iz];
dvx = c1*(vx[(ix+1)*n1+iz] - vx[(ix)*n1+iz]) +

c2*(vx[(ix+2)*n1+iz] - vx[(ix-1)*n1+iz]);
txx[ix*n1+iz] = -dvx*dp;

}
izp=iz;

}
}

Placing a pressure source exactly on the free surface will not eject any energy into the medium
and the resulting wavefield will contain only zero’s. To overcome that you can use a Fz source
(src_type=7) or place the pressure source one grid-point below the free-surface.
Note that you will always get a reflection from the free-surface. To summarise the effects:

– a P-source on a free surface can not put energy into the medium, and gives gathers with all
zero�s

– a Fz source (src_type=7) on the free-surface can put energy into the medium and is a good
alternative for a P-source

– placing a P-source one-grid point below the surface, will simulate a dipole source. The ´ part
of the dipole coming from the reflection from the free surface.

– placing receivers, just one grid-point below the free surface, also gives a dipole receiver response.
– Vz receivers on a free suface measure an wavefield, P-receivers will not measure anything on a

free surface.

To correct for the ghost of the source it is possible to de-ghost the measured response. This can
be done with the program basop option=ghost. There is also a lot of literature about ”source
de-ghosting” (google search). The basop implementation is the most simple one.

• Rigid surface (3)
The rigid boundary condition sets the velocities on the boundaries to zero. For the top surface
these conditions are met by setting:

– Vxrizs “ 0.0

– Vzrizs “ ´Vzriz ` 1s

Setting the boundary parameters left= right= top= bottom= to 3 enables a rigid surface bound-
ary for the selected boundary.

• PML (2)
Only implemented for acoustic.

• Topography
On the top of the model an irregular topography can be used. The density and velocity model must
have zero-values above the defined topography. To place a source or receiver on the topography
it is sufficient to place it at the correct lateral position above the topography. In the code the
depth is searched for the first non-zero medium parameter and at that depth the source or receiver
is placed. The parameter sinkdepth=n places the receiver position n grid-points below the found
depth point on the topography. For the source position the parameter sinkdepth_src=n places the
source position n grid-points below the found depth point on the topography. When the parameter
sinkvel=1 is used the receiver (not the source position) can also sink through a layer with a non-
zero velocity. The velocity of the first receiver is used as the velocity to sink through to the next
layer.

23

For the elastic scheme the topography is implemented as described in Robertsson (1996) and Pérez-
Ruiz et al. (2005). In those schemes the points at the topography layer are treated differently
(depending on which side of the topography the free-surface is), such that the free surface is taken
into account in the best possible way.

6.3.1 Recursive Integration PML: acoustic

The linearized equation of motion (Newton’s second law) and equation of deformation (Hook’s law) are
given by:

BVx

Bt
“ ´

1

ρ

BP

Bx
, (47)

BVz

Bt
“ ´

1

ρ

BP

Bz
, (48)

BP

Bt
“ ´

1

κ
t

BVx

Bx
`

BVz

Bz
u. (49)

On PML introduces stretched-coordinate space (in the frequency domain) following Drossaert and Gi-
annopoulos (2007) and Chew and Liu (1996):

ϵx “ 1 `
σx

jω
(50)

ϵz “ 1 `
σz

jω
(51)

BVx

Bt
“ ´

1

ρ

1

ϵx

BP

Bx
, (52)

BVz

Bt
“ ´

1

ρ

1

ϵz

BP

Bz
, (53)

BP

Bt
“ ´

1

κ
t
1

ϵx

BVx

Bx
`

1

ϵz

BVz

Bz
u, (54)

The manner with which coordinate stretching causes losses in a medium can be easily understood as fol-
lows: Given a plane wave propagating in a lossless medium described by exppjkxq, a coordinate stretching
is a change x “ x1pa`jαq. Then exppjkxq becomes exppjkax1 ´kαx1q “ exppjkax1q expp´kαx1q. In other
words, a wave becomes attenuative in the stretched x1 coordinate if the stretching variable is complex
(Chew and Liu, 1996).
Introducing auxiliary variables

Sx “
1

ϵx

BP

Bx
Ñ

BVx

Bt
“ ´

1

ρ
Sx, (55)

Sz “
1

ϵz

BP

Bz
Ñ

BVz

Bt
“ ´

1

ρ
Sz, (56)

Ex “
1

ϵx

BVx

Bx
Ez “

1

ϵz

BVz

Bz
Ñ

BP

Bt
“ ´

1

κ
tEx ` Ezu (57)

Substituting the stretch variables ϵx and ϵz into these auxiliary variables gives:

Sx `
σx

jω
Sx “

BP

Bx
, (58)

Sz `
σz

jω
Sz “

BP

Bz
, (59)

Ex `
σx

jω
Ex “

BVx

Bx
, (60)

Ez `
σz

jω
Ez “

BVz

Bz
(61)

24

To compute Sx, the other components can be done completely analogous, the following steps are carried
out. The integration over time of Sx is approximated by using trapezoidal integration.

σx

jω
Sx “

BP

Bx
´ Sx (62)

ż t

0

σxSxdt “
BP

Bx
´ Sx (63)

ż n∆t

0

σxSxdt «
1

2
∆tσxS

0
x ` ∆t

n´1
ÿ

t“1

σxS
t
x `

1

2
∆tσxS

n
x (64)

(65)

assuming S0
x “ 0 results at time step n

Sn
x p1 `

1

2
∆tσxq ` ∆t

n´1
ÿ

t“1

σxS
t
x “

BPn

Bx
(66)

Sn
x “ RAp

BPn

Bx
´ ∆tΩn´1

x q (67)

RA “
1

1 ` 1
2∆tσx

(68)

Ωn
x “ Ωn´1

x ` σxS
n
x (69)

The first few time steps in the PML regions are then computed as follows:

n “ 0 : S0
x “ RAp

BP 0

Bx
q (70)

Ω0
x “ σxS

0
x (71)

n “ 1 : S1
x “ RAp

BP 1

Bx
´ ∆tΩ0

xq (72)

Ω1
x “ Ω0

x ` σxS
1
x (73)

n “ 2 : S2
x “ RAp

BP 2

Bx
´ ∆tΩ1

xq (74)

Ω2
x “ Ω1

x ` σxS
2
x (75)

With these steps the auxiliary variables can now be computed and substituted into equations 55 for the
PML regions.

6.3.2 Complex frequency shifted RIPML: acoustic

(This PML is not yet implemented.) Stretched-coordinate space (in the frequency domain) following
Drossaert and Giannopoulos (2007):

ϵx “ κx `
σx

αx ` jω
(76)

ϵz “ κz `
σz

αz ` jω
(77)

(78)

Following the same steps as before: Substituting these stretch variables ϵx and ϵz into the auxiliary

25

variables 55 gives:

pκxαx ` κxjω ` σxqSx “ pαx ` jωq
BP

Bx
, (79)

pκzαz ` κzjω ` σzqSz “ pαz ` jωq
BP

Bz
, (80)

pκxαx ` κxjω ` σxqEx “ pαx ` jωq
BVx

Bx
, (81)

pκzαz ` κzjω ` σzqEz “ pαz ` jωq
BVz

Bz
(82)

To compute Sx, the other components can be done completely analogous, the following steps are carried
out: divide by jω results in

pκxαx ` κxjω ` σxqSx “ pαx ` jωq
BP

Bx
, (83)

κxαx ` σx

jω
Sx ` κxSx “

αx

jω

BP

Bx
`

BP

Bx
, (84)

ż t

0

pκxαx ` σxqSxdt ` κxSx “

ż t

0

αx
BP

Bx
dt `

BP

Bx
(85)

(86)

The integration over time of Sx and BP
Bx is approximated by using trapezoidal integration.

ż n∆t

0

aSxdt «
1

2
∆taS0

x ` ∆t
n´1
ÿ

t“1

aSt
x `

1

2
∆taSn

x (87)

assuming S0
x “ 0 and BP 0

Bx “ 0 results at time step n in

∆t
n´1
ÿ

t“1

pκxαx ` σxqSt
x `

1

2
∆tpκxαx ` σxqSn

x ` κxS
n
x “ ∆t

n´1
ÿ

t“1

αx
BP t

Bx
`

1

2
∆tαx

BPn

Bx
`

BPn

Bx
(88)

∆t
n´1
ÿ

t“1

pκxαx ` σxqSt
x ` p

1

2
∆tpκxαx ` σxq ` κxqSn

x “ ∆t
n´1
ÿ

t“1

αx
BP t

Bx
` p

1

2
∆tαx ` 1q

BPn

Bx
(89)

Sn
x “ RA

BPn

Bx
´ RBΩn´1

x (90)

RA “
p 1
2∆tαx ` 1q

1
2∆tpκxαx ` σxq ` κx

(91)

RB “
∆t

1
2∆tpκxαx ` σxq ` κx

(92)

Ωn
x “ Ωn´1

x ` pκxαx ` σxqSn
x ´ αx

BPn

Bx
(93)

The first few time steps in the complex frequency shifted PML regions are then computed as follows:

26

n “ 0 : S0
x “ RA

BP 0

Bx
(94)

Ω0
x “ pκxαx ` σxqS0

x ´ αx
BP 0

Bx
(95)

n “ 1 : S1
x “ RA

BP 1

Bx
´ RBΩ0

x (96)

Ω1
x “ Ω0

x ` pκxαx ` σxqS1
x ´ αx

BP 1

Bx
(97)

n “ 2 : S2
x “ RA

BP 2

Bx
´ RBΩ1

x (98)

Ω2
x “ Ω1

x ` pκxαx ` σxqS2
x ´ αx

BP 2

Bx
(99)

6.4 Source signature parameters
The parameter file_src= is used to define the filename of a SU file containing the source signature.
This source signature should not have a large value at time t “ 0, since this will represent a spike a t “ 0,
introduce high frequencies, and can make the modelling dispersive. If file_src= is not given the source
sampling can be defined by setting dt=. To avoid numerical dispersion the maximum frequency content
of the source wavelet must be limited (see section 1.2). The program tries to estimate the maximum
amplitude in the frequency domain of the source signal, and based on this maximum determines if the
modelling will be stable. The maximum frequency can also be given by the user with fmax= and will
overrule the estimated maximum frequency. This overruling of the maximum frequency can be useful
when the amplitude of the source signal is complex and the program can not make a good estimate
of the maximum frequency. The parameter fmax= can also be used to overrule the programs error
message (which stops the program) for dispersive modeling. By setting fmax= lower than the actual
maximum frequency in the wavelet (estimated by the program) dispersion can be introduced. In some
cases dispersion can be allowed, or dispersion is not relevant for the purpose of the modelling.
For example; a wavelet is created by :
makewave w=g2 fmax=45 t0=0.10 dt=0.001 nt=4096 db=-40 file_out=G2.su
verbose=1
This wavelet has a spectrum and time signal shown in Figure 8a and the maximum frequency estimated
by the program is 48.8 Hz. To calculate the maximum frequency the program searches the peak frequency
in the amplitude spectrum of the wavelet and then looks for the first frequency, larger than the peak
frequency, where the amplitude is smaller than 0.0025 times the peak amplitude.
Note that the peak in the time domain of the wavelet in Figure 8a is time shifted with 0.1 seconds.
Starting from t “ 0 the amplitude of the wavelet is increased smoothly to its peak value and in this way
avoids high frequencies. A spike at t=0 (or any other time), or a truncated wavelet as shown in Figure
8b introduces high frequencies and will cause dispersion in the solution. So it is always recommended to
check the wavelet on spikes and truncation before the modelling is started.
If the modelling is finished, and one has for example modeled a shot record with reflections, and would
like to pick travel times on the peak of the wavelet, the 0.1 s, time shift of the wavelet should be taken
into account! Good practice after modelling is to shift the peak of the wavelet back to t “ 0 by using the
parameter rec_delay=0.1. After the modeling one can also use other program, like basop choice=shift
shift=-0.1, to shift the peak back to t “ 0. When rec_delay= is set to a positive non-zero value the
modelling time recorded in the receiver array will be the total modeling time decreased by the time of
the rec_delay.
Noise signals are created (wav_random=1) by setting random values to the amplitude and phase of the
source signal up to the given maximum frequency (fmax=). This signal is transformed back to the
time domain and truncated in time to the desired source duration. Figure 9 shows 20 random signals
in the time domain with varying source duration (average duration of 2.5 s tlength=2.5). Without
any tapering this truncation in the time domain will introduce high frequencies. To suppress these high
frequencies, the beginning and the end of the source signal are smoothly extrapolated (using cubic splines)
to an amplitude value of 0.0. The bottom pictures in Figure 10 show a noise signal and its amplitude
spectrum. This signal was constructed with a maximum frequency of 30 Hz. The start and beginning

27

0 0.05 0.10 0.15 0.20
time

0

1

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0

10

20

am
pl

itu
de

a) Ricker wavelet (left) and its amplitude spectrum (right).

0 0.05 0.10 0.15 0.20
time

0

1

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0

20

40

am
pl

itu
de

b) Truncated Ricker wavelet (left) and its amplitude spectrum (right).

fmax

fmax

Figure 8: Wavelet and its amplitude spectrum. The maximum frequency in the wavelet is found by
searching from the maximum amplitude to the first frequency amplitude ď 0.0025˚Amax(indicated with an
arrow). Note that due to the truncation at t “ 0 in b) high frequencies are introduced and can cause disper-
sion. The script fdelmodc_rand.scr in the demo directory calculates the data and eps_for_manual.scr
reproduces the pictures.

of the noise signal are smoothly starting and ending at amplitude zero. The red circles and lines shows
how this signal is constructed. Despite the smooth start and ending of the signal the spectrum of the
noise signal does continue after 30 Hz, but the amplitude after 30 Hz is so low that it does not give rise
to severe dispersion in the modelling. The calculated noise source signatures are written to an SU file
if the parameter verbose>3 (see also Table 1). Note that if file_src is defined then wav_random=0 is
default set off. However, if src_random=1 is used wav_random=1 is default set on. The length (duration)
of the random signal is chosen to be a random number (between 0.0 and 1.0 multiplied) by tlength. By
setting length_random=0 all random signals will have the same length given by tlength.

28

0 1 2 3 4 5
start time in seconds

0

1

2

3

so
ur

ce
 d

ur
at

io
n

in
 s

ec
on

ds

0

1

2

3

4

5

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
source number

Figure 9: Random source signatures with varying source duration (top picture). Note that the sources
start at random times in the interval tsrc1= : tsrc2=. The script fdelmodc_rand.scr in the demo
directory calculates the data and eps_for_manual.scr reproduces the pictures.

0 1 2 3 4 5
time

0

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

2000

4000

am
pl

itu
de

0 0.01 0.02 0.03 0.04 0.05
time

0

am
pl

itu
de

3.65 3.66 3.67 3.68 3.69
time

0

am
pl

itu
de

Figure 10: Random source signature and its amplitude spectrum. The start and beginning of the source sig-
nature are smoothly (cubic spline) starting from and ending at amplitude 0. Despite this smooth transition
the frequency spectrum of the signature still contains some energy after the defined maximum frequency.
The script fdelmodc_rand.scr in the demo directory calculates the data and eps_for_manual.scr re-
produces the pictures.

29

-0.5

0

0.5

1.0

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
source number

Figure 11: Auto-correlated random source signatures with varying source duration normalized to the
maximum amplitude per trace. The longest signals (source numbers 11 and 15) have the highest auto-
correlation peak and best S/N ratio. The script Figure17_19AppendixA.scr in the FiguresPaper directory
reproduces the pictures.

30

The autocorrelation of the source signal gives an indication of the contribution of the individual sources
to a Seismic Interferometry result. In Figure 11 the normalized auto-correlation of the signals in Figure
9 is shown. The longest signals will give a contribution, and has the highest signal (peak at t “ 0) to
noise ratio. The longer the source is active the more energy it will bring into the medium and the better
the S/N ratio will be.
The cross-correlation of the source signals with each other gives how the different source signatures
interfere with each other. Ideally the signatures should not interfere. Figure 12 show 100 source signatures
and the cross-correlation. The diagonal is the auto correlation, and dominates the cross-correlation
picture, indicating that the source are not correlated to each other.

0

20

40

60

tim
e

in
 s

ec
on

ds

20 40 60 80 100
source number

20

40

60

80

100

so
ur

ce
 n

um
be

r

20 40 60 80 100
source number

0

0.2

0.4

0.6

0.8

1.0

Figure 12: The 100 source signatures on the left side have been cross-correlated with each other and the
result is shown on the right side. The script cross.scr in the FiguresPaper directory reproduces these
pictures.

6.5 Source type and position parameters
The source amplitudes are added directly on the grid at the source position(s). The FD scheme solves
the first order equations in(1) and the source amplitudes are added into these first order equations on
the P, Vx or Vz grid. For example for a pressure source in an acoustic scheme (in a homogenous medium,
to make the equations easier to read) the amplitudes are added at the P field only:

BP px, z, tq

Bt
“ ´

1

κ
t

BVxpx, z, tq

Bx
`

BVzpx, z, tq

Bz
u `

1

κ
δpx ´ x1, z ´ z1qSptq, (100)

BVxpx, z, tq

Bt
“ ´

1

ρ

BP px, z, tq

Bx
, (101)

BVzpx, z, tq

Bt
“ ´

1

ρ

BP px, z, tq

Bz
, (102)

where Sptq represents the source signature injected at position x1. Substituting Hooke’s Law in Newton’s
law gives the second order wave equation. Adding an amplitude on a grid point (representing a delta
pulse δpx ´ x1, z ´ z1q) in the first order equations, results in a source term of Btδpx ´ x1, z ´ z1q in the
right-hand side in the (second order) wave equation

B2P px, z, tq

Bt2
´ c2pt

B2P px, z, tq

Bx2
`

B2P px, z, tq

Bz2
u “ δpx ´ x1, z ´ z1q

BSptq

Bt
. (103)

To end up with a source injection in the wave equation, and not injection rates as in equation 103, the
source signature is adjusted (in the frequency domain by 1

´jω : integrating over time) before it is applied
to the grid. The input parameter src_injectionrate can be set to choose between injection rate (set
to 1) or injection (set to 0, which is the default).
For example when src_injectionrate=0 a measured P response of a P source will measure the same
source signature. The output file src_nwav.su (this file is written when verbose=4) contains the wavelet
as it is being added to the grids in the FD code. Meaning that with src_injectionrate=0 (default) it
will be a time integrated version of the wavelet given by file_src=.

31

TODO. The general source function can be described as Wapenaar 1989 page 13:

Sptq “
Bδptq

Bt
´

BFz

Bz
(104)

Monopole source (Bδptq
Bt)has same wavelet shape as Force source (dipole BFz

Bz)

6.5.1 Source type

The type of source and orientation is chosen with the parameters src_type= and src_orient= . The
source type options are:

• 1=P for acoustic scheme placed on P grid and for elastic scheme on σzz and σxx grid with amplitude
s

• 2=Txz for elastic scheme placed on σxz grid with amplitude s

• 3=Tzz for elastic scheme placed on σzz grid with amplitude s

• 4=Txx for elastic scheme placed on σxx grid with amplitude s

• 5=S-potential for elastic scheme placed on Vx and Vz grid with amplitude s (experimental)

• 6=Fx placed on Vx grid with amplitude s∆x
ρ

• 7=Fz placed on Vz grid with amplitude s∆z
ρ

• 8=P-potential for elastic scheme placed on Vx and Vz grid with amplitude s (experimental)

• 9=double-couple source, define direction with dip=0.0, strike=90.0 and rake=90.0

• 10=Fz

• 11=moment tensor, define with Mxx=1.0, Mzz=1.0 and Mxz=1.0

where s represents the amplitude of the source signal (from file_src= or a generated random signature).
The source orientation can be changed from monopole to dipole, where the orientation of the dipole
can also be changed. The implementation of the source orientation options are shown in Figure 13.
The source orientation is only implemented for three types of sources: compressional (src_type=1),
Txz (src_type=2), and pure shear source (src_type=5). For the other source types the src_orient=
parameter has no effects and a monopole source is always used.

iz ´ 1

iz

iz ` 1

ix3 ´ 1 ix3 ix5 ix5 ` 1

‚
`1

‚
`

2
‚
´

‚
´

3 ‚
`

‚
`

4

‚
´

‚
`

5 ‚
´

Figure 13: Implementation of different source orientations on the grid. The different numbers (colors)
show the options of parameter src_orient=. The ` and ´ symbol represent the sign of the source
amplitude added to the computational grid.

Note, to check source-receiver reciprocity the dipole/monopole character of the source and receiver has to
be taken into account as well. For example a dipole source with a Vz receiver (rvz) will be reciprocal with
each other. The same for a monopole source and P receiver (rp). For a monopole source and Vz receiver
this is reciprocal with a dipole source and and P receiver. For example run the code with: src_orient=1

32

and select Vz receivers and after changing source and receiver x,z positions, set src_orient=2 and use
P receivers. Those measurements are source-receiver reciprocal with each other.
Pressure source

BP px, z, tq

Bt
“ ´

1

κ
t

BVxpx, z, tq

Bx
`

BVzpx, z, tq

Bz
u ` δpx ´ x1, z ´ z1qp

1

κ
Sptqq, (105)

BVxpx, z, tq

Bt
“ ´

1

ρ

BP px, z, tq

Bx
, (106)

BVzpx, z, tq

Bt
“ ´

1

ρ

BP px, z, tq

Bz
, (107)

Force source
BP px, z, tq

Bt
“ ´

1

κ

BVxpx, z, tq

Bx
, (108)

BVxpx, z, tq

Bt
“ ´

1

ρ

BP px, z, tq

Bx
` δpx ´ x1, z ´ z1qp

1

ρ
Sptqq, (109)

BVzpx, z, tq

Bt
“ ´

1

ρ

BP px, z, tq

Bz
, (110)

Potential S source (stype=5)

Sspx, z, tq “
BVzpx, z, tq

Bx
´

BVxpx, z, tq

Bz
, (111)

(112)

vx[ix*n1+iz] += src_ampl*sdx;
vx[ix*n1+iz-1] -= src_ampl*sdx;
vz[ix*n1+iz] -= src_ampl*sdx;
vz[(ix-1)*n1+iz] += src_ampl*sdx;

Potential P source (stype=8)

Pspx, z, tq “
BVzpx, z, tq

Bz
`

BVxpx, z, tq

Bx
, (113)

(114)

vx[(ix+1)*n1+iz] += src_ampl*sdx;
vx[ix*n1+iz] -= src_ampl*sdx;
vz[ix*n1+iz+1] += src_ampl*sdx;
vz[ix*n1+iz] -= src_ampl*sdx;

Double-couple source (stype=9)
The direction of the double-couple source is defined with dip=0.0(δ), strike=90.0(Φ) and rake=90.0(λ)
and relates to Moments:

Mxx “ ´psinpδq ˚ cospλq ˚ sinp2Φq ` sinp2δq ˚ sinpλq ˚ sinpΦq2q, (115)
Mxz “ ´pcospδq ˚ cospλq ˚ cospΦq ` cosp2δq ˚ sinpλq ˚ sinpΦqq, (116)
Mzz “ sinp2δq ˚ sinprakeq. (117)

and is implemented by

txx[ix*n1+iz] -= src.Mxx*src_ampl;
tzz[ix*n1+iz] -= src.Mzz*src_ampl;
txz[ix*n1+iz] -= src.Mxz*src_ampl;

Fz source (stype=10)

tzz[ix*n1+iz-1] -= src_ampl*roz[ix*n1+iz]/(2.0*mod.dt);
tzz[ix*n1+iz+1] += src_ampl*roz[ix*n1+iz]/(2.0*mod.dt);

33

Moment-tensor (stype=11)
The Moment-tensor is defined by Mxx=1.0, Mzz=1.0 and Mxz=1.0 and implemented the same as the
double-couple source.
To have correct amplitudes between the different source types and independence of the discretization in
the finite difference code (∆t,∆x) , scaling factors are applied to the input source wavelet amplitudes.

src-type amplitude
1,2,3,4,9,11 ∆t

∆x2C
2
pρ

5,6,7,8 ∆t
∆x2

1.0
ρ

10 ∆t
2∆x3C

2
p

TODO: the relative amplitudes of the sources in the elastic scheme are correct, but still have to check
the (absolute) source amplitude factors in the elastic scheme (compare them with analytical Green’s
functions in homogenous medium).
The parameter grid_dir reverses the time of the source wavelet and can be used to back-propagate a
recorded source field into the medium.

6.5.2 Source positions

Sources can be defined in three different ways in the program. A source can be placed on single grid
point, can be placed on many grid points which are starting at the same time creating an areal source
field (or plane wave), or sources can be placed at many random positions on the grid starting at random
positions in time.

Single or regular shot distribution The position of a single source is set by the parameters xsrc=
zsrc=. The parameters nshot= together with dxshot= and dzshot= determine how many shots are
modeled and the position for each shot. For every new shot of the nshots to model the xsrc and zsrc
positions are adjusted with dxshot and dzshot. The loop over the number of shots to model is

for (is=0; is<shot.n; is++) {
shot->x[is] = xsrc+is*dxshot;
shot->z[is] = zsrc+is*dzshot;

}

For example xsrc=50 zsrc=0 dxshot=15 dzshot=0 nshot=5 will successively model 5 shots at the po-
sitions (50,0) (65,0) (80,0) (95,0) and (110, 0). In Figure 14a the black dots represent the source positions
which have been defined using a regular shot position. This means that for every black dot in Figure 14a
a shot is calculated.

Source arrays An array of sources (or an areal source) is defined with the parameters xsrca= zsrca=.
The parameters define the position of the sources. For example xsrca=50,55,67,40,12 zsrca=0,10,7,8,10
defines an areal source consisting of 5 shot positions. The shots at these positions are all fired simultane-
ously. In Figure 14b the black dots represent the source positions, which have been defined using a source
array. This means that all black dots in b) will be fired simultaneously an only one shot is calculated.
You can also use multiple sources simultaneously by placing multiple source wavelets (with different
amplitude and frequency) into the file_src file and set the parameter src_multiwav=1. The position
of these sources are read from the Seismic Unix header values; gx for the x-postion, and gelev for the
z-position of the source. Setting parameter src_at_rcv=0 will use the sx for the x-postion and selev for
the z-position. Note that these setting of the scalco (gx) and scalel (gelev) factor in the Seismic Unix
file. To �fire� multiple sources (more than 2) after each other, and construct one receiver gather that
contains the wavefields generated by these sources, can be achieved by adding a time delay to the traces
of file_src and set src_multiwav=1. All traces will start at the same time in the modeling program. In
this case some trace will only have a non-zero amplitude in the beginning and become active (non-zero)
after a certain timing.

34

0

2000

4000

6000

8000

de
pt

h
[m

]
2000 4000 6000 8000

lateral position [m]

a)

0

2000

4000

6000

8000

de
pt

h
[m

]

2000 4000 6000 8000
lateral position [m]

b)

0

2000

4000

6000

8000

de
pt

h
[m

]

2000 4000 6000 8000
lateral position [m]

c)
Figure 14: Source (black dots) and receiver (white dots) positions for different choices of the positions
parameters. In
a) xrcv1=6000 xrcv2=6000 dxrcv=0 zrcv1=100 zrcv2=6000 dzrcv=100 xsrc=500 zsrc=100
nshot=50 dxshot=100 dzshot=0 has been used, for
b) xsrca=5900,5950,6000,6100,6200,6300,6350,6300,6200,6100,6000,5950,5900
zsrca=2000,2100,2200,2300,2400,2500,2650,2800,2900,3000,3100,3200,3300 xrcv1=4000
zrcv1=1000 xrcv2=4000 zrcv2=6000 dzrcv=100 dxrcv=0 and for
c) xrcv1=6000,500 xrcv2=6000,7500 dxrcv=0,500 zrcv1=100,500 zrcv2=6000,500 dzrcv=100,0
src_random=1 nsrc=150 xsrc1=500 xsrc2=7500 zsrc1=6000 zsrc2=7500 . The script
fdelmodc_srcrec.scr in the demo directory reproduces the pictures.

Sources arrays from and ASCII text file Reading many source positions with xsrca= zsrca= can
become cumbersome when many sources are needed. An option has been build in to read source locations
from a text file.
With the argument src_txt= one can specify an ASCII test file from which source coordinates should
be loaded. The file must have the following format:

25 10
50 15
75 20

each line in this file contains a source location (x,z). Loading this file would place 3 sources at (25,10),
(50,15), and (75,20). The shots at these positions are all fired simultaneously like an areal shot record.
An example of using src_txt= is fdelmodc_plane_txt.scr.

Plane wave A plane wave can be defined by using the parameters: plane_wave= nsrc= src_angle=
src_velo= nsrc= src_window=. The plane wave is implemented by placing a horizontal array of nsrc=
sources placed on every grid position symmetric around xsrc= at the horizontal depth given by zsrc=.
The angle (ray-parameter) of the plane wave is defined by src_angle= src_velo= and is implemented
by adding time delays to the shot positions on the horizontal array. Figure 17b shows the plane wave
source positions as blue dots in the model.

Source random positions src_random= nsrc= xsrc1= xsrc2= zsrc1= zsrc2= tsrc1= tsrc2= tactive=
tlength= amplitude= distribution= seed=
When the parameter src_random=1 is used, nsrc= random source positions will be created with positions
between xsrc1= : xsrc2= and zsrc1= : zsrc2=. During the model time tmod=, sources will start and at
random times in the interval tsrc1= : tsrc2= and contribute to the calculated wavefield. The maximum
signal length is defined by tlength= and the resulting average length = tlength/2. Note that if tlength=
is larger thantsrc2-tsrc1 then for some sources the time the source is being active (tlength) will be
truncated to MIN(tsrc1+tlength, tactive). The parameter tactive= gives the maximum modeling
time the sources are being active. After tactive= no sources are being active anymore. The source time
settings allows modeling of many random source positions being active by running just one modeling.

35

The amplitude distribution of the sources is default set to 0, meaning that all sources have the same
amplitude. Defining for example amplitude=10 will introduce an amplitude distribution for the different
source with a maximum amplitude of 10. This distribution can be made flat distribution=0 or Gaussian
distribution=1. The seed= parameter can be used to generate different random sequences, if the same
seed value is used modeling results can be reproduced. In Figure 14c random source positions are used
for the lower part in the model and visible as small black dots in the Figure.

6.6 Receiver, Snapshot and Beam parameters
6.6.1 Receiver, Snapshot and Beam type

The type of wavefield component of the receiver, snapshot and beam recordings which will be written
to file can be selected by using sna_type_*= for snapshots and beam fields and rec_type_*= for the
receivers, where * is one of the following characters:

• p: P registration with file extension _rp only for acoustic scheme

• vz: Vz registration with file extension _rvz

• vx: Vx registration with file extension _rvx

• txx: Txx registration with file extension _rtxx

• tzz: Tzz registration with file extension _rtzz

• txz: Txz registration with file extension _rtxz

• dzvz: BVz

Bz registration with file extension _rdzvz

• dxvx: BVx

Bx registration with file extension _rdxvx

• pp: P potential registration with file extension _rP

• ss: S potential registration with file extension _rS

• ud: up- and down-going decomposition with file extension _ru, _rd (only for receiver arrays)

In the acoustic scheme only rec_type_p=, rec_type_vz= and rec_type_vx= can be used. In elastic
media there is no pressure component, so you can not record it. However, if you set-up an elastic model
and put a water layer on top of that elastic model you can place a receiver in that water layer and the Tzz
component of the elastic modeling scheme will contain the pressure field in the water. We have made a
comparison between the Tzz component of the elastic field in a water layer with the P field in an acoustic
layer and they are identical.
The potential wavefields P and S for the elastic scheme are based on divergence and curl (rotation),
respectively, given by:

rec_pp[irec*rec.nt+isam] = (vx[ix2*n1+iz]-vx[ix*n1+iz] +
vz[ix*n1+iz2]-vz[ix*n1+iz])/mod.dx;

rec_ss[irec*rec.nt+isam] = (vx[ix2*n1+iz2]-vx[ix2*n1+iz] -
(vz[ix2*n1+iz2]-vz[ix*n1+iz2]))/mod.dx;

The up- and down-going wave fields make use of acoustic decompositions operators Wapenaar (1998).
The P and Vz fields needed to do this decomposition are automatically enabled when rec_type_ud=1 is
chosen. In the program all grid points in x, for the chosen receiver-depth level, are stored into memory
for the P and Vz fields. The decomposition is carried out, in the wavenumber-frequency domain, on these
finely sampled fields. To avoid artefacts from the edges of the model an angle filter is applied in the
wavenumber-frequency domain. The cut-off angle in this filter is estimated from the data at the receiver
level. The maximum angle present in the receiver data is estimated by summing along kx “ ksinpαq lines
in the wavenumber-frequency amplitude spectrum. The maximum angle in the data is then selected as
the angle at the average amplitude (this is just an simple method and can be improved). Figure 15 shows
the energy in the angles in the wavenumber domain for the P -field (based on the decomposition.scr in

36

the demo directory). In this example the average energy is 200 and leads to a maximum angle of 67o.
The calculated angle file is written to output file anglerp.su when the verbose option is set to 4 or
larger. The use of the calculated angle can be overruled by setting the parameter kangle=.

10 20 30 40 50 60 70 80
angle in degrees

0

200

en
er

gy

e) angle-energy plot.

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

-2000 0 2000
lateral position [m]

a) Vz-field

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

-2000 0 2000
lateral position [m]

b) P -field

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

-2000 0 2000
lateral position [m]

c) up-going field

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

-2000 0 2000
lateral position [m]

d) down-going field

Figure 15: The P (a) and Vz (b) fields and the decomposed up (c) and downgoing (d) fields from example
demo/decompostion.scr. Selection of maximum angle (e) to filter the decomposition operator in kx ´ ω
domain.

The receiver time sampling rate and number of time samples are defined by dtrcv= and rec_ntsam=.
Usually dtrcv= is chosen larger than the dt of the modeling. Note that dtrcv= must be chosen as an
integer multiple of the time step dt of the modeling. The recording can start later than the modeling,
for example to compensate for a time-delay in the source wavelet (see section 6.4) by using rec_delay=.
Seismic unix (and SEGY) uses an unsigned shot integer (16 bytes) in the header section of a trace to
store the number of samples in a trace. The maximum value of this short integer is 65536, so more
samples can not be stored in a single trace. In passive seismic modeling the recording times can be very
long and one easily exceeds 65536 samples in a trace. For long recordings multiple files are created each
with rec_ntsam= samples per trace in a file. The names of the output files are numbered starting with
001 and this number is placed in the filename just before the name of the receiver type (for example
shotA_001_rp.su, shotA_002_rp.su, shotA_003_rp.su, ...).

6.6.2 Receiver positions

Receiver linear array(s) As the name already tells, linear receiver arrays are receivers defined on
lines. Using the parameters xrcv1=, xrcv2= zrcv1= and zrcv2= multiple lines can be defined. Using
xrcv1=100, xrcv2=500 defines one receiver line starting at x-position 100 until 500 m and uses the default
z-position which is the top of the model. The distance between the receiver in the line is defined by dxrcv=
or dzrcv=.
Defining multiple lines, for example on multiple depth levels, is accomplished by using xrcv1=100,100
xrcv2=500,500 zrcv1=100,200, zrcv2=100,200 and dxrcv=10,10 defines two receiver lines from 100 to

37

500 m in the lateral direction; one on a depth level of 100 m and another one at 200 m depth. Note that
in defining multiple linear arrays the number of arguments in the parameters must be the same. The
distance between the receivers can also be different for the different lines by using dxrcv=10,5 or dzrcv.
If only one value is used for the distance parameters (one from dxrcv= dzrcv=) then all lines will use this
distance. A receiver line is defined by the end points: start (xrcv1,zrcv1) and end (xrcv2,zrcv2) and
a distance between the receivers. This distance can be given by dxrcv= or dzrcv, if both are given then
dxrcv= is used and dzrcv is calculated in the program. However, if dxrcv=0 and dzrcv is also given(and
not zero) then the given dzrcv is used. Multiple receiver arrays will be placed into the same receiver file
in the same order you have defined them. Another example to place a receiver array at the surface and
two vertical arrays at x “ 500 and x “ 1500 you can use the following parameters:
xrcv1=-2500,500,1500 xrcv2=2500,500,1500 zrcv1=0,0,0 zrcv2=0,1000,1000 dxrcv=20,0,0 dzrcv=0,10,10

Receiver array An array of receivers at specific points in the medium is defined with the parameters
xrcva= zrcva=. The parameters define the position of the receivers. For example xrcva=50,55,67,40,12
zrcva=0,10,7,8,10 defines a receiver array of 5 positions.

Receivers on circle or ellipse To put the receivers on a circle the following parameters can be used:
rrcv= for the radiation of the circle, oxrcv,ozrcv sets the origin (in meter, not grid points) of the circle
and dphi the distance between the receivers in angle. To make an ellipse use the additional parameter
arcv=. This sets the size of the vertical arc-length and rrcv= represents then the horizontal arc-length.
The distance between the receivers on the ellipse are (numerically) made equidistant (the dphi parameter
is in the ellipse option only used to compute the number of receivers (=360/dphi). Note that due to
the grid of the wavefields the receivers are not placed on exactly a circle/ellipse, but to the closest grid
point. The option rec_int_p or rec_int_vz rec_int_vx set to 3 will interpolate (bi-linear) the fields
to the exact position of the receivers on the circle. When rrcv is used the parameters rec_int_p and
rec_int_vx, rec_int_vz are automatically set to 3.

Receivers from and ASCII text file implemented by Max Holicki
Reading many receiver positions with xrcva= zrcva= can become cumbersome when many receivers are
needed. An option has been build in to read receiver locations from a text file.
With the argument rcv_txt= one can specify an ASCII test file from which receiver coordinates should
be loaded. The file must have the following format:

25 10
50 15
75 20

each line in this file contains a receiver location (x,z). Loading this file would place 3 receivers at (25,10),
(50,15), and (75,20).
A demo script to demonstrate the functionality is called RcvTextInput.scr.

6.6.3 Interpolation of receiver positions

The parameters rec_int_vx and rec_int_vz have the options

rec_int_vx=0 interpolation of Vx receivers",
- 0=Vx->Vx (no interpolation)",
- 1=Vx->Vz",
- 2=Vx->Txx/Tzz (P)",
- 3=Vx->receiver position

rec_int_vz=0 interpolation of Vz receivers",
- 0=Vz->Vz (no interpolation)",
- 1=Vz->Vx",
- 2=Vz->Txx/Tzz (P)",
- 3=Vz->receiver position

for reading the wavefield at the receiver positions from the staggered grid positions.

38

• rec_int_vz=1 interpolates Vz to the Vx position and makes use of the 4 surrounding Vz points
(blue colored items in Figure 16)

• rec_int_vz=2 interpolates Vz to the σp position and uses two 2 (top and down) Vz points (cyan
colored items in Figure 16)
interpolates σxz to the σp position and makes use of the 4 surrounding σxz points (black colored
items in Figure 16)

• rec_int_vx=1 interpolates Vx to the Vz position and makes use of the 4 surrounding Vx points
(green colored items in Figure 16)

• rec_int_vx=2 interpolates Vx to the σp position and uses two 2 (left and right) Vx points (magenta
colored items in Figure 16)
interpolates σxz to the σp position and makes use of the 4 surrounding σxz points (black colored
items in Figure 16) Using rec_int_vz=2 and rec_int_vx=2 puts Vz, Vx and σxz to the σp position.

• rec_int_vx=3 or rec_int_vz=3 interpolates all fields to the exact receiver positions given by the
user using bi-linear interpolation. In this case the receiver positions do not have to lie on a grid
position (yellow colored items in Figure 16). This option is turned on by default when receivers on
a circle are defined.

Œ
σxz

Œ
σxz

Œ
σxz

Œ
σxz

Œ‚

Ó
Vz Ó

Vz

Ó
Vz Ó

Vz

‚Ó Ñ
Vx

Ñ
Vx

Ñ
Vx

Ñ
Vx

‚Ñ Ó
Vz

Ó
Vz

‚Ó Ñ
Vx

Ñ
Vx ‚Ñ

Ó
σxz

Ó
σxz

‚Ó

Ó
σxz

Ó
σxz

Figure 16: Receiver interpolation options in the elastic staggered calculation grid. Vz, Vx represent the
particle velocity of the wavefield in the z and x direction respectively and σppσxx or σzzq, σxz represent
the stress fields.

6.6.4 Snapshots and Beams

During modeling time snapshots of complete wavefields can be written to a file file_snap=snap.su on
disk and, for example, used in a movie showing wave propagation through a model. To define time
snapshots the start-time of the first snapshot tsnap1=, the time of the last snapshot tsnap2=, and the
time interval between the snapshots dtsnap1= have to be defined. Using the default parameters the
output size of one snapshot is as large as the gridded model file. To reduce the space of the snapshot,
since it might not needed to have the snapshot on the same fine grid as the modeling, dxsnap= and
dzsnap= can be used to increase the grid distance in the x and z direction. If one is only interested in a
certain area the parameters xsnap1=, xsnap2=, zsnap1=, and zsnap2= can be used to define that area.
The finite-difference scheme is also staggered in time and the parameter sna_vxvztime defines which
registration of vx/vz times is used in the snapshots.

• 0=previous vx/vz relative to txx/tzz/txz at time t

• 1=next vx/vz relative to txx/tzz/txz at time t

Beams represent the energy of the wavefield during the complete model time. Beams are calculated as
the square root of the quadratic field quantities and can be used to investigate how energy propagates
through a model. During every time step the ’energy’ is calculated and added to the beam array. Beams

39

are enabled by setting beam=1 and the same parameters as for the snapshots are used to define grid
distance dxsnap= and dzsnap=, area of interest, and type of wavefield component. Note that the beam
calculation is done for every time-step and is an expensive computational operation, the total compute
time can easily increase by 50% or more.

6.7 Verbose
The parameter verbose prints messages and produces additional files during the running of the program.
Table 1 shows the kind of messages and the extra files printed using different values for verbose. Those
messages and files contain extra information for the user. The output files produced by different setting
of the verbose parameter are:

• src_nwav.su: file which contains the source signatures. For the noise sources each trace in this
file contains the noise signal used in the modeling. Note that this file can become large for long
wavelengths

• SrcRecPositions.su: SU file with the same size as the input model files. At every source position
a square (of 5x5 grid points) with value 1 is positioned and at every receiver position a square with
value -1 is placed. This file can be used to overlay (after scaling) the source and receiver positions
on a velocity model. For example the following command:
suop2 SrcRecPositions.su vel2_edge_cp.su w1=6000 w2=1.0 op=sum | suximage bclip=6000
wclip=0
adds source and receiver positions to the P-wave velocity file, where the weight factor w1 is set
larger than the maximum velocity in the P-wave velocity file.

• srcTimeLengthN=ns.bin: 32 bits floating point binary file with ns samples where each sample value
gives the start time of the source.

• SrcPositionsNSRC.txt: ASCII file which contains the source positions where NSRC is the number
of sources.

• RcvPositionsNRCV.txt: ASCII file which contains the receiver positions where NRCV is the num-
ber of receivers.

• src_ampl.su: when the amplitude parameter is used this file contains the amplitude distribution
of the sources.

setting messages printed to stdout files written to disk
0 no messages only warnings no files
1 model, source, receiver, snapshot and stability info no files
2 same as 1 no files
3 + file-info from model and wavelet files src_ampl.su
4 + receiver grid positions, source positions + srcTimeLengthN=ns.bin,

SrcRecPositions.su,
src_nwav.su

ą4 + source grid points, amplitude and start time, topography
surface points

same as 4

Table 1: The files and messages produced by different values of the verbose parameter. The file
src_ampl.su contains the amplitude variation of the (random) source signals when the parameter
amplitude= is set to a non-zero value. srcTimeLengthN=ns.bin is a binary file with ns samples which
give the start time of the sources. SrcRecPositions.su is a SU file with the same size as the input model
files and at every source position a cross with value 1 is positioned. The other positions in the file are set
to zero. File src_nwav.su contains the generated random source signals. Note that this file can become
large for long wavelengths (tlength=)

.

40

7 Examples to run the code
The demo directory contains scripts which demonstrate the different possibilities of the modeling program.
In the subsections below most demo script are explained and results are shown.
To reproduce the Figures shown in the GEOPHYICS manuscript ”Finite-difference modeling experiments
for seismic interferometry” the scripts in FiguresPaper directory can be used. Please read the README
in the FiguresPaper directory for more instructions and guidelines.

7.1 Example for plane waves: fdelmodc_plane.scr
Modeling plane waves can easily be done by setting the plane wave option plane_wave=1. The demo
script fdelmodc_plane.scr is set-up for an elastic medium. The number of sources used to make the
plane wave is controlled with nsrc=. The centre of the plane wave will be positioned at the source position
defined by the parameters xsrc= zsrc= . Left and right of this central position (nsrc-1)/2 sources are
placed on every grid point in the lateral (x) direction. In the example below the plane wave has been
given an angle of 5o using src_velo=1800 src_angle=5. The script file demo/fdelmodc_plane.scr
contains all the commands used to make the plane waves based figures shown in this subsection. The
runtime of the script is approximately 120 seconds.
The gridded model is shown in Figure 17 and contains one flat smooth interface, a vertical velocity
gradient, and a curved interface.

../fdelmodc \
file_cp=$filecp file_cs=$filecs file_den=$filero \
ischeme=3 \
file_src=wavelet.su verbose=1 \
file_rcv=rec.su \
file_snap=snap.su \
xrcv1=0 xrcv2=2000 dxrcv=15 \
zrcv1=400 \
rec_type_vx=1 rec_type_pp=1 rec_type_ss=1 rec_int_vx=1 \
dtrcv=0.004 \
xsrc=1000 zsrc=1700 nshot=1 plane_wave=1 nsrc=301 \
src_type=1 tmod=3.0 src_velo=1800 src_angle=5 \
ntaper=120 \
left=4 right=4 bottom=4 top=4 \
tsnap1=0.1 tsnap2=3.0 dtsnap=0.1 \
sna_type_ss=1 sna_type_pp=1 verbose=4

The receivers are placed at z “ 400 m. The measured particle velocity field Vz and the calculated P-
and S-wave potentials are shown in Figure 18a,b, and c respectively. Snapshots, where three modeling
times are added together, are shown in Figure 18d,e, and f. In the S-potential snapshot (Figure 18f) it is
observed that the S-waves are firstly occurring when the P-wave hits the curved reflector. Note also the
better resolution of the S-potential. In the run script the verbose option is set to 4, which means that
auxiliary files are also written to disk. These files contain information information about the used source
and receiver positions and can be used to plot the source and receiver positions in the model.

41

0

500

1000

1500

2000

de
pt

h
[m

]

0 500 1000 1500 2000
lateral position [m]

a)Model

0

500

1000

1500

2000

de
pt

h
[m

]

0 500 1000 1500 2000
lateral position [m]

b)Model with source and receiver positions
Figure 17: Gridded model used to model a plane wave at x “ 1000, z “ 1700. The receivers are placed
at depth level z “ 400 m, just outside the taper area at the top, which ends at z “ 360 m. Source (blue
dots) and receiver (red dots) positions are shown in b).

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

500 1000 1500 2000
lateral position [m]

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

500 1000 1500 2000
lateral position [m]

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

500 1000 1500 2000
lateral position [m]

a) Vz receivers b) P-potential receivers c) S-potential receivers

0

500

1000

1500

2000

de
pt

h
[m

]

0 500 1000 1500 2000
lateral position [m]

0

500

1000

1500

2000

de
pt

h
[m

]

0 500 1000 1500 2000
lateral position [m]

0

500

1000

1500

2000

de
pt

h
[m

]

0 500 1000 1500 2000
lateral position [m]

d) Vz snapshots e) P-potential snapshots f) S-potential snapshots
Figure 18: Panel a,b, and c show three different types of receiver measurements at depth z “ 400 m.
Panel d, e, and f show three snapshots at t “ 0.5, 0.9, 1.3 for different types of wavefield components.

42

7.2 Example for viscoelastic media: fdelmodc_visco.scr
Visco-elastic modeling is enabled by choosing the parameter ischeme=4. In the demo script fdelmodc_visco.scr
a model is created with makemod for the density and the P and S wave velocities. Besides the model
which describes the medium parameters another gridded model is created with makemod for the Q-values
(Qp and Qs) of the medium. The parameters of makemod are set-up to be used to create cp,cs and rho
gridded model files. However, it can be (ab-)used for building any gridded file, where the values of cp,
cs and rho just get another meaning. To create the Q-values with makemod the cp velocity is used as Qp

and the cs value is used as Qs, the density value is not used. In this way the Q-model is created and used
in fdelmodc. The results of running the demo script is shown in Figure 19.
Another trick has been used to subtract the direct field of the measured recordings. This is done by
running fdelmodc a second time, and this time in a homogeneous medium with the velocity of the layer
were the receivers are placed. Then the recorded fields of the direct field is subtracted from the completed
field resulting in only the reflected field. Running the fdelmodc_visco.scr takes about 10 minutes.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

[s
]

500 1000 1500
receiver position in m

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

[s
]

500 1000 1500
receiver position in m

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

[s
]

500 1000 1500
receiver position in m

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

[s
]

500 1000 1500
receiver position in m

a) Vx recordig b) Vx recording c) S-potential recording d) S-potential recording
Figure 19: Panel a,b, c and d show different types of receiver measurements in a visco-elastic medium.
Note that the direct field has been subtracted from the recordings.

7.3 Example for different source distributions: fdelmodc_sourcepos.scr
Figure 20 shows recorded data for different kind of source distributions and different source signatures.
The used source distributions are random source positions between 500 ď z ď 4100, random positions
between 2700 ď z ď 4100, and a plane layer at z “ 2700 m. For the source positions 800 sources are
used, for the sources positioned on the vertical plane (20c and f) on every grid point a source is placed.
Two types of source signatures are used; a Ricker wavelet with a frequency peak at 10 Hz, and random
source signals with a maximum frequency of 30 Hz.
The script file demo/fdelmodc_sourcepos.scr show how these 6 modeled shots can easily be modeled.
The script illustrates how to define different source distributions within the program and how a random
source signature is defined. These kind of experiments can be used to investigate the sensitivity of seismic
interferometry on different source distributions (Thorbecke and Draganov, 2011). Each modeling takes
about 100 seconds making the total runtime of the script about 10 minutes.

7.4 Example with receivers on a circle: fdelmodc_circ.scr
Receivers can be placed on a circle using the parameters rrcv= for the radiation of the circle, oxrcv,ozrcv
sets the origin (in meter, not grid points) of the circle and dphi the distance between the receivers in
angle. Note that due to the grid of the wavefields the receivers are not placed on exactly a circle, but
to the closest grid point. The option rec_int_vx or rec_int_vz set to 3 will interpolate (bi-linear) the
fields to the exact position of the receivers on the circle. When rrcv is used the parameters rec_int_vx
and rec_int_vz are automatically set to 3. The result of using this option, in a homogeneous background
medium with a contrast placed in the middle of the model, is shown in Figure 21. The runtime of this
script is 40 seconds.

43

0

1

2

3

4

tim
e

(s
)

-5000 -2500 0 2500 5000
lateral position (m)

0

1

2

3

4

tim
e

(s
)

-5000 -2500 0 2500 5000
lateral position (m)

0

1

2

3

4

tim
e

(s
)

-5000 -2500 0 2500 5000
lateral position (m)

a) random 500 ď z ď 4100 b) random z ď 2700 c) plane z “ 2700

0

1

2

3

4

tim
e

(s
)

-5000 -2500 0 2500 5000
lateral position (m)

0

1

2

3

4

tim
e

(s
)

-5000 -2500 0 2500 5000
lateral position (m)

0

1

2

3

4
tim

e
(s

)

-5000 -2500 0 2500 5000
lateral position (m)

d) random 500 ď z ď 4100 e) random z ď 2700 f) plane z “ 2700

Figure 20: To investigate the type of noise present in the reconstructed reflection from seismic inter-
ferometry different experiments have been carried out. The first 4 seconds of different types of source
signatures and source distribution are shown in a to f. Noise signatures are used in a,b and c and a
Ricker wavelet is used on d,e and f. The sources are distributed in the area indicated in the caption of
the pictures: for x-positions in the indicated z-range.

7.5 Example with topography: fdelmodc_topgraphy.scr
To make a more complicated a topography can be included. The receivers are placed on this topography.
A directly modeled result is generated with an active source in the middle of the model and is shown
in Figure 22. To include topography in a model the cp velocity must be chosen zero in the layer above
the topography. Note that the density must not be set to zero. The source and receiver positions
are then given on a horizontal surface above the defined topography. The code then searches for the
first non-zero cp value below the horizontal surface. In this way the source and receiver positions are
placed at the first non-zero cp position. The parameter sinkdepth= can be used to place the source
and receiver sinkdepth grid positions deeper than the first non-zero velocity. The command how to
make the model and how the shot record is computed is shown below and can be found in the script file
demo/fdelmodc_topography.scr. The runtime of this script is 500 seconds.
Note that the receiver (not the source) positions can also be sinked through a layer, with a non-zero
velocity, to the next interface when the parameter sinkvel= is defined . The receivers must then be
placed somewhere in that layer and only works for homogeneous layers. An example of usage is to model
OBC data where the receivers have to be placed on the topography of the sea-bottom and the sources
are close to the free surface. Using sinkvel=1 will place the receivers at the bottom of the sea layer. The
script fdelmodc_topgraphy.scr can also be used to generate OBC data. In the script you then have to
change in makemod cp0=1500 and in fdelmodc add the parameter sinkvel=1.

makemod sizex=10000 sizez=4100 dx=5 dz=5 cp0=0 ro0=1000 file_base=real2.su \
orig=0,-800 gradunit=0 \
intt=def poly=2 cp=2450 ro=1000 gradcp=14 grad=0 \

44

-3000

-2000

-1000

0

1000

2000

3000

0 500 1000 1500 2000
lateral position [m]

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

[s
]

0 100 200 300
rotation in degrees

Figure 21: The middle of the model contains a circular contrast and the receiver are placed on a circle
around this contrast. The left picture show the source (black dot) and receiver (white dots) positions.
Right is the recorded wavefield at the receiver positions.

x=0,1000,1700,1800,2000,3000,4000,4500,6000,6800,7000,7500,8100,8800,10000 \
z=-100,-200,-250,-200,-200,-120,-300,-600,-650,-500,-350,-200,-200,-150,-200 \
intt=rough var=200,3.2,1 poly=2 x=0,3000,8000,10000 \

z=400,250,300,500 cp=4500,4200,4800,4500 ro=1400 gradcp=5 grad=0 \
intt=def poly=2 x=0,2000,3000,5000,7000,8000,10000 \

z=1100,1100,1100,1600,1100,1100,1100 cp=4000 ro=2000 gradcp=8 grad=0 \
intt=def poly=0 x=0,10000 z=1750,2050 cp=4500,5100 ro=1500 gradcp=13 grad=0 \
intt=def poly=0 x=0,10000 z=1850,2150 cp=6000,4200 ro=1500 gradcp=14 grad=0 \
intt=def poly=0 x=0,10000 z=1950,2250 cp=4800,4800 ro=1500 gradcp=5 grad=0 \
intt=def poly=0 x=0,10000 z=2000,2300 cp=6100,5000 ro=1500 gradcp=13 grad=0 \
intt=def poly=0 x=0,10000 z=2100,2400 cp=3800,5000 ro=1500 gradcp=20 grad=0 \
intt=def poly=0 x=0,10000 z=2150,2450 cp=5000 ro=1500 gradcp=14 grad=0 \
intt=def poly=0 x=0,10000 z=2350,2650 cp=5800 ro=1500 gradcp=5 grad=0 \
intt=def poly=0 x=0,10000 z=2600,2600 cp=5500 ro=2200 gradcp=5 grad=0

fdelmodc \
file_cp=vel2_edge_cp.su ischeme=1 \
file_den=vel2_edge_ro.su \
file_rcv=shot_real2_x5000_topo.su \
file_src=G2.su \
dtrcv=0.004 \
verbose=4 \
tmod=3.004 \
dxrcv=20.0 \
zrcv1=-800 \
xrcv1=0 \
xrcv2=10000 \
sinkdepth=1 \
src_random=0 \
wav_random=0 \
xsrc1=5000 \
xsrc2=5000 \
zsrc1=-800 \
tsrc1=0.0 \
dipsrc=1 \
ntaper=$ntap \
left=4 right=4 bottom=4 top=1

45

0

500

1000

1500

2000

2500

3000

3500

4000

de
pt

h
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x104lateral position [m]

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

(s
)

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
lateral position (m)

▽ ▽
▽

▽

Figure 22: The receivers are placed from -5000 m to 5000 m at every 20 m on the topography. The
modeled reflection response, for a source at 5000 m placed on the the topography, is shown in the right
picture.

7.6 Example verification with analytical results: FigureGreenDxAppendixA.scr
7.6.1 Acoustic

To verify the accuracy and the correctness of the FD program we have compared the finite-difference
calculation of a Green’s function in a homogenous acoustic medium with the analytical Green’s function.
Four analytical Green’s functions have been used for verification using:

• monopole source and pressure (P) receivers,

• monopole source and vertical particle-velocity (Vz) receivers,

• dipole source and P receivers,

• dipole source and Vz receivers.

The wave equation solved by the FD program implements the following source term for volume injection
sources (parameter src_injectionrate=0, which is the default setting):

ρδpx ´ xsqδptq (118)
ρδpx ´ xsq

and for volume injection rate sources (parameter src_injectionrate=1):

ρδpx ´ xsq
Bδptq

Bt
(119)

jωρδpx ´ xsq

The analytical Green’s functions for volume injection sources are given by (Berkhout, 1987, page 141-146):

Ĝp,ppx,xsq “ Pmon “
´jρ

4
H

p2q
0 pkrq, (120)

Ĝv,ppx,xsq “ V mon
z “

cospϕq

4c
H

p2q
1 pkrq, (121)

Ĝp,vpx,xsq “ P dip “ jω
cospϕq

4c
H

p2q
1 pkrq, (122)

Ĝv,vpx,xsq “ V dip
z “

´kcos2pϕq

4ρc
H

p2q
0 pkrq ´

kp1 ´ 2cos2pϕqq

4ρckr
H

p2q
1 pkrq, (123)

46

where

H
p2q
0 pkrq “ J0pkrq ´ jY0pkrq, (124)

H
p2q
1 pkrq “ J1pkrq ´ jY1pkrq, (125)

r “
a

px2 ` pzs ´ zrq2q, (126)

cospϕq “
|zs ´ zr|

r
, (127)

x represents the lateral distance and zs and zr are the depth positions of the source and receiver, respec-
tively. J0 and J1 are the Bessel functions of the first kind of orders 0 and 1, respectively. Y0 and Y1 are
the Bessel functions of the second kind of orders 0 and 1, respectively. The wavenumber k “ ω{c, where
c is the velocity of the medium. The analytical responses are generated by the program ’green’, included
in the source code distribution in the utils directory. In the beginning of section 6.5 it is explained that
an injection source is implemented (and not injection rate). Sometimes in literature equations 120-123
have an extra factor jω when injection rates are used.

Note that in 2D media the far field expression of the Hankel functions in equations (120)-(123) contain
a 45 degree phase-shift. This phase shift is of course also present in the computed FD results. For
example if you have a Ricker wavelet as input source (e.g. modelling in a homogeneous medium), then
the recorded wave will have a 45 degree phase shift compared to the input Ricker wavelet. Another way
to see this is, is to realise that a point source in 2D is represented by a line source in 3D. For a more
detailed explanation see also (Berkhout, 1987, page 141-146).

In the staggered-grid implementation, the P - and Vz-fields are positioned at different spatial grids and
the Vz fields have been interpolated to the P -field grid position to be able to compare them with the
analytical solution positioned at the P -field position. The FD scheme is also staggered in time and the
modeled P-field is shifted half a time step compared to the Vz-field. For the implementation of a dipole
source, two grid positions are used and this gives an extra time delay of 0.5∆z

c , where c is the velocity
at the source position and ∆z the discretization step in the z-direction. In the comparison with the
analytical Green’s functions these discretization effects have all been taken into account.
The reference medium has a velocity of 2000 m/s and a density of 1000 kg/m3. The source is positioned
500 m below the receiver. For the finite-difference code a spatial grid of 2.5 m and a time step of 0.5 ms
has been used to compute the results.
The comparison between the analytical Green’s functions and the finite-difference computed results are
shown in Figure 23 for the four different configurations mentioned. The curves are perfectly overlapping
and only after zooming in at the peak of the wavelet it is possible to observe differences. The difference
between the analytical Green’s function and the FD results is less then 1% of the peak of the analytical
Green’s function.
The script to reproduce the verification figures can be found in FiguresPaper directory (FigureGreenAppendixA.scr).
The difference between the analytical Greens function and the finite-difference result is less then 1% and
shown in Figure 24 for the same Green’s functions shown in Figure 23. The small peak at 0.4115 seconds
is caused by the program to compute the shift of -0.1 seconds and caused by the the limited number of
time samples. This shift puts the peak of the input wavelet at t “ 0. To have the wavefields on the same
grid the Vz grid has been interpolated to the P grid and also an extra time shift of a half ∆t has been
used to compensate for the staggering in time.
The difference between the analytical Green’s function and the finite-difference result using a smaller
grid spacing will give smaller errors and larger grid spacing will give larger errors. This is shown in
Figure 25. Note that for ∆ “ 5 dispersion is staring to become visible in the difference plot, but the
error is still smaller than 1.2%. The script to reproduce the pictures of Figure 25 can be found in the
fdelmodc/FiguresPaper directory (FigureGreenDxAppendixA.scr). The FD program takes 60 seconds
to model the result using a grid spacing of ∆ “ 5, 200 seconds with ∆ “ 2.5 and 800 seconds with
∆ “ 1.0.

7.6.2 Elastic

This section is made together with Karel van Dalen, who has derived the Green’s function in a homogenous
elastic medium.

47

0 0.1 0.2 0.3 0.4 0.5
time in seconds

-0.04

0

0.04

0.08

A
m

pl
itu

de

0.256
time in seconds

7.86

7.88

7.90

7.92

7.94

7.96

x10 -2

A
m

pl
itu

de

a) P field of monopole

0 0.1 0.2 0.3 0.4 0.5
time in seconds

-2

0

2

4
x10 -8

A
m

pl
itu

de

0.256
time in seconds

3.86

3.88

3.90

3.92

3.94

3.96
x10 -8

A
m

pl
itu

de

b) Vz field of monopole

0 0.1 0.2 0.3 0.4 0.5
time in seconds

-0.002

-0.001

0

0.001

0.002

0.003

0.004

A
m

pl
itu

de

0.243 0.245
time in seconds

3.80

3.82

3.84

3.86

3.88
x10 -3

A
m

pl
itu

de

c) P field of dipole

0 0.1 0.2 0.3 0.4 0.5
time in seconds

-1.2

-0.6

0

0.6

1.2

1.8

x10 -9

A
m

pl
itu

de

0.243 0.245
time in seconds

1.85

1.87

1.89

1.91

1.93

x10 -9

A
m

pl
itu

de

d) Vz field of dipole

Figure 23: Comparison of Green’s functions in an acoustic homogeneous medium for monopole (top)
and dipole sources (bottom) with pressure (P) and particle velocity (Vz), left and right, respectively,
recorded wavefields. The onsets show the differences for the positive peak of the wavelet, the lower
line represents the finite-difference result. The script FigureGreenAppendixA.scr in the FiguresPaper
directory calculates the data and reproduces the pictures.

To verify the accuracy and the correctness of the FD program we have compared the finite-difference
calculation of a Green’s function in a homogenous elastic medium with the analytical Green’s function.
Four analytical Green’s functions have been used for verification :

• force source in x-direction source and vertical particle-velocity (Vz) receivers (Fx=1),

• force source in z-direction source and vertical particle-velocity (Vz) receivers (Fz=1)„

• deformation source in x-direction source and vertical particle-velocity (Vz) receivers (Tx=1),

• deformation source in z-direction source and vertical particle-velocity (Vz) receivers (Tz=1).

General Green’s functions:

Ĝv,f
i,j px,xsq “

jω

ρ
t
1

c2s
δijĜspx,xsq ´

1

ω2
BiBjpĜppx,xsq ´ Ĝspx,xsqqu (128)

Ĝppx,xsq “
´j

4
H

p2q
0 pkprq,with kp “

ω

cp
(129)

Ĝspx,xsq “
´j

4
H

p2q
0 pksrq,with ks “

ω

cs
(130)

BiBjĜpx,xsq “
´j

4
t´

x̄ix̄j

r2
k2H

p2q
0 pkrq ` kp2

x̄ix̄j

r3
´

δij
r

qH
p2q
1 pkrqu (131)

BzBzĜpx,xsq “
´j

4
t´

z̄2

r2
k2H

p2q
0 pkrq ` kp2

z̄2

r3
´

1

r
qH

p2q
1 pkrqu (132)

BzBxĜpx,xsq “
jcospϕqx̄

4r
tk2H

p2q
0 pkrq ´

2k

r
H

p2q
1 pkrqu (133)

(134)

48

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k a) P field of monopole

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k b) Vz field of monopole

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k c) P field of dipole

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k d) Vz field of dipole

Figure 24: Difference between the analytical Green’s function and the finite-difference result in an acoustic
medium for monopole and dipole sources for P and Vz recorded fields. The difference is shown as
percentage of the maximum peak in the analytical Green’s function. A grid spacing of ∆ “ 2.5 m is
used. The script FigureGreenDxAppendixA.scr in the FiguresPaper directory calculates the data and
reproduces the pictures.

The corresponding analytical Green’s functions are given by:

Ĝv,fxpx,xsq “ ´
j

ωρ
tBzBxpĜppx,xsq ´ Ĝspx,xsqqu, (135)

“
z̄x̄

4ωρr2
tpk2pH

p2q
0 pkprq ´

2kp
r

H
p2q
1 pkprqq ´ pk2sH

p2q
0 pksrq ´

2ks
r

H
p2q
1 pksrqqu (136)

Ĝv,fz px,xsq “
jω

c2sρ
Ĝspx,xsq ´

j

ωρ
tBzBzpĜppx,xsq ´ Ĝspx,xsqqu, (137)

“
ω

4c2sρ
H

p2q
0 pksrq (138)

´
kp

4ωρr2
t´z̄2kpH

p2q
0 pkprq ` p

z̄2 ´ x̄2

r
qH

p2q
1 pkprqu (139)

`
ks

4ωρr2
t´z̄2ksH

p2q
0 pksrq ` p

z̄2 ´ x̄2

r
qH

p2q
1 pksrqu (140)

(141)

Ĝv,τxz px,xsq “ (142)
(143)

Ĝv,τzz px,xsq “ (144)
(145)

49

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k a) Vz field of monopole ∆ “ 1

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k b) Vz field of monopole ∆ “ 5

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k c) Vz field of dipole ∆ “ 1

0 0.1 0.2 0.3 0.4 0.5
time in seconds

0

0.5

1.0

R
el

at
iv

e
er

ro
r

in
 p

er
ce

nt
ag

e
of

 p
ea

k d) Vz field of dipole ∆ “ 5

Figure 25: Difference between the analytical Green’s function and the finite-difference result in an acous-
tic medium for monopole and dipole sources for Vz recorded fields using a grid spacing of 1 and 5
meter. The difference is shown as percentage of the maximum peak in the analytical Green’s function.
The larger errors for the ∆ “ 5 model results indicates that dispersion starts to develop. The script
FigureGreenDxAppendixA.scr in the FiguresPaper directory calculates the data and reproduces the
pictures.

where

H
p2q
0 pkrq “ J0pkrq ´ jY0pkrq, (146)

H
p2q
1 pkrq “ J1pkrq ´ jY1pkrq, (147)

x̄ “ x ´ xs, (148)
z̄ “ z ´ zs, (149)

r “
a

px ´ xsq2 ` pz ´ zsq2q, (150)
r “

a

px̄2 ` z̄2q, (151)

cospϕq “
|z ´ zs|

r
, (152)

x represents the lateral distance and zs and z are the depth positions of the source and receiver, respec-
tively. J0 and J1 are the Bessel functions of the first kind of orders 0 and 1, respectively. Y0 and Y1 are
the Bessel functions of the second kind of orders 0 and 1, respectively. The wavenumber k “ ω{c, where
c is the velocity of the medium. The analytical responses are generated by the program ’green’, included
in the source code distribution in the utils directory.

7.7 Verification with Scattered field of a cylinder
The directory demo/matlab contains 3 Matlab scripts that compute the scattered field of a cylinder due
to a point source. The scripts compare the analytically computed scattered field of a cylinder with the
finite difference solution for one selected frequency. The cylinder has a radius of 40 meter and its center
is the origin of the coordinate system. The source is placed at position z “ ´100, x “ 0 [m] and the
receiver-array is placed at level z “ ´60, x “ ´100 : 100 [m]. The analytical solution of the cylinder
problem is explained in detail in van den Berg (2017) and the Matlab scripts have kindly been provided
by Peter van den Berg.
The results in Figure 26 show that the finite difference solution of the scattered field has a maximum
error of 5%. This error will become smaller when a smaller discretisation step is chosen.

50

 c-grid

-100 -50 0 50 100

x
1

-100

-50

0

50

100

 x
3

1500 2000 2500 3000

 -grid

-100 -50 0 50 100

x
1

-100

-50

0

50

100

 x
3

1500 2000 2500 3000

a) cylinder model
100 200 300 400

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Relative error

b) Relative error of scattered field

-100 -50 0 50 100

-200

-150

-100

-50

0

50

100

150

Real part of P inc

-100 -50 0 50 100

-150

-100

-50

0

50

100

150

Imaginary part of Pinc

-100 -50 0 50 100

130

140

150

160

170

180

190

200

Absolute value of Pinc

f=50.05Hz FiniteDiff

f=50.05Hz Analytic

c) comparison between the analytic and finite difference solution of incident field

-100 -50 0 50 100

-30

-20

-10

0

10

20

30

Real part of P
sct

-100 -50 0 50 100
-30

-20

-10

0

10

20

30

Imaginary part of Psct

-100 -50 0 50 100

10

15

20

25

30

Absolute value of Psct

f=50.05Hz FiniteDiff

f=50.05Hz Analytic

d) comparison between the analytic and finite difference solution of scattered field

Figure 26: Comparison for a frequency of 50.0488 Hz between an analytical computed field and the
finite-difference solution in an acoustic medium with a circular contrast. The finite difference code is
modeled with a gridsize of 0.5 m.

The following explanation and theoretical derivation is an excerpt from the book van den Berg (2017).

In order to have a necessary check on the correctness of the coding of the domain integral
equations at hand, we present the analytical expressions for some simple configurations. We
first start with the one-dimensional scattering by a homogenous slab. Secondly, we discuss
the two-dimensional scattering by a homogeneous circular cylinder, where we consider the
special case of no contrast in wave speed.
The theoretical expressions are derived in the following subsections. Note that

γ̂0 “ s{c0, γ̂sct “ s{ĉsct (153)

where s “ 10´16 ´ i 2πf , where f denotes the frequency. Note that Q̂ “ Q̂psq is the wavelet
in the frequency domain.

51

7.7.1 1D scattering by a slab

In order to generate synthetic data for an one-dimensional configuration, we consider the scat-
tering problem by a homogeneous slab (Fig. 27). The slab has a thickness of 2a. The medium
inside the slab is characterized by the constant mass density ρ̂sct and constant compressibility
κ̂sct. Then, the wave speed ĉsct is constant as well. The center of the slab is at x1 “ 0. The
pressure of the acoustic wave field is generated by a planar source at xS

1 and is given by

p̂incpx1|xS
1 q “

Q̂

2
exp

“

´γ̂0|x1´xS
1 |
‰

. (154)

The amplitude of the pressure of the incident field at x1 “ ´a is given by

p̂incp´a|xS
1 q “

Q̂

2
exp

“

γ̂0pxS
1 `aq

‰

. (155)

This is is a common factor in all wave field quantities.

.............

.............

xS
1

xR
1

❄

O s

i1

x1 = −a

x1 = a

ρ0,κ0

ρ0,κ0

ID
′

sct

ρsct,κsct IDsct

ID
′

sct

Figure 27: The 1D configuration with homogeneous slab.

The different wave constituents are considered to be generated at the interfaces. Taking
into account the causality condition for the reflected field, we write the reflected field in the
negative x1-direction as

p̂rflpx1|xS
1 q “

Q̂

2
exprγ̂0pxS

1 `aqs R̂ exprγ̂0px1`aqs, x1 ă ´a . (156)

The wave field inside the the slab consists of two waves propagating in opposite directions,
hence, we write the pressure of this interior wave field as

p̂intpx1|xS
1 q “

Q̂

2
exprγ̂0pxS

1 ` aqs

!

Â expr´γ̂sctpx1`aqs ` B̂ exprγ̂sctpx1´aqs

)

, (157)

when ´a ă x1 ă a. For x1 ą a, the field transmitted in the positive x1-direction is given by

p̂trmpx1|xS
1 q “

Q̂

2
exprγ̂0pxS

1 `aqs T̂ expr´γ̂0px1`aqs . (158)

The unknown factors R̂, Â, B̂ and T̂ follow interface conditions at r “ ´a and r “ a, where
the pressure is continuous and the inverse of the mass density times the normal derivative of

52

the pressure is continuous. This leads to

lim
x1Ò´a

rp̂incpx1|xS
1 q ` p̂rflpx1|xS

1 qs “ lim
x1Ó´a

p̂intpx1|xS
1 q , (159)

lim
x1Ò´a

1

sρ0
B1rp̂incpx1|xS

1 q ` p̂rflk px1|xS
1 qs “ lim

x1Ó´a

1

sρ̂sct
B1p̂

intpx1|xS
1 q , (160)

lim
x1Òa

p̂intpx1|xS
1 q “ lim

x1Óa
p̂trmpx1|xS

1 q , (161)

lim
x1Òa

1

sρ̂sct
B1p̂

intpx1|xS
1 q “ lim

x1Óa

1

sρ0
B1p̂

trmpx1|xS
1 q . (162)

Substitution of the wave-field expressions into these interface conditions leads to the following
set of equations:

1 ` R̂ “ Â ` expp´2γ̂sctaq B̂ , (163)

´
1

Z0
`

1

Z0
R “ ´

1

Ẑsct

Â `
1

Ẑsct

expp´2γ̂sctaq B̂ , (164)

expp´2γ̂sctaq Â ` B̂ “ T̂ expp´2γ̂0aq , (165)

´
1

Ẑsct

expp´2γ̂sctaq Â `
1

Ẑsct

B̂ “ ´
1

Z0
T̂ expp´2γ̂0aq , (166)

where
Z0 “ ρ0 c0 , and Ẑsct “ ρ̂sct ĉsct . (167)

Elimination of R̂ from the first and the second equation and T̂ from the third and the fourth
equation leads to two equations for Â and B̂, with solution

Â “
τ̂

1 ´ ρ̂2 expp´4γ̂sctaq
, B̂ “

´τ̂ ρ̂ expp´2γ̂sctaq

1 ´ ρ̂2 expp´4γ̂sctaq
, (168)

where
ρ̂ “

Z´1
0 ´ Ẑ´1

sct

Z´1
0 ` Ẑ´1

sct

, τ̂ “
2Z´1

0

Z´1
0 ` Ẑ´1

sct

, (169)

are the local reflection and transmission factors. Subsequently, the global reflection and
transmission factors are obtained as

R̂ “ Â ` expp´2γ̂sctaq B̂ ´ 1 , (170)

T̂ “

”

expp´2γ̂sctaq Â ` B̂
ı

expp2γ̂0aq . (171)

Note that, in case the impedance of the medium in the vertical directions does not change,
i.e., Ẑsct “ Z0, we have ρ̂ “ 0, τ̂ “ 1, Â “ 1, B̂ “ 0 and R̂ “ 0. Then, the slab is reflection
free and is invisible for acoustic waves.
As far as the scattered field is concerned, we distinguish between a point of observation above
the slab and below the slab. When we have a receiver at the point xR

1 above the slab, the
scattered wave is denoted as the reflected wave and is given by

p̂rflpxR
1 |xS

1 q “
Q̂

2
R̂ exprγ̂0pxR

1 `xS
1 `2aqs , xR

1 ă ´a . (172)

To arrive at the scattered field below the slab, we have to subtract the incident field from the
transmitted field. We obtain

p̂sctpxR
1 |xS

1 q ´ ûincpxR
1 |xS

1 q “
Q̂

2
pT̂ ´1q expr´γ̂0pxR

1 ´ xS
1 qs , xR

1 ą a . (173)

53

7.7.2 2D scattering by a circular cylinder

In order to generate synthetic data for a two-dimensional configuration, we consider the
scattering problem by a homogeneous, circular cylinder (Fig. 28). We define the spatial
position by xT “ px1, x2q. The cylinder has a radius a. The medium in the interior of the
cylinder is characterized by the constant wave speed ĉsct and constant mass density ρ̂sct. The
center of the cylinder is at x1 “ 0, x2 “ 0. The pressure of the incident wave field is generated
by a monopole line source at xS

T “ pxS
1 , x

S
2 q and is given by

p̂incpxT |xS
T q “ γ̂0

Q̂

2π
K0pγ̂0|xT ´xS

T |q . (174)

In order to solve our scattering problem at hand, we introduce polar coordinates adapted to
the geometry of the circular cylinder,

x1 “ r cospϕq , x2 “ r sinpϕq , 0 ď ϕ ă 2π . (175)

Similarly for the source and receiver coordinates, we introduce

xS
1 “ rS cospϕSq , xS

2 “ rS sinpϕSq , 0 ď ϕS ă 2π , (176)

xR
1 “ rR cospϕRq , xR

2 “ rR sinpϕRq , 0 ď ϕR ă 2π . (177)

✲

❄

s

i2

i1

ρ0, c0

ID
′

sct

▽

x
R

x
S

×

ρ̂sct, κ̂sct

IDsct

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
....
....
.....
......
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
......
.....
....
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

 ✒
r=a

Figure 28: The 2D configuration with homogeneous circular cylinder.

7.7.3 3D scattering by a sphere

In order to generate synthetic data for a 3D scatterer, we consider the scattering problem by
a homogeneous, sphere (Fig. 29). The sphere has a radius a. The medium in the interior of
the sphere is characterized by the constant wave speed ĉsct and the constant mass density
ρ̂sct. The center of the sphere is at x “ p0, 0, 0q. The incident wave field is generated by a
monopole source at xS “ pxS

1 , x
S
2 , x

S
3 q and is given by

p̂incpx|xSq “ γ̂0Q̂
expp´γ̂0|x´xS |q

4π|x´xS |
. (178)

In order to solve our scattering problem at hand, we introduce spherical coordinates adapted
to the geometry of the sphere,

x1 “ r sinpθq cospϕq , x2 “ r sinpθq sinpϕq , x3 “ r cospθq , (179)

54

with 0 ď ϕ ă 2π and 0 ď θ ă π. Similarly for the source and receiver coordinates, we
introduce

xS
1 “ rS sinpθSq cospϕSq , xS

2 “ rS sinpθSq sinpϕSq , xS
3 “ rS cospθSq , (180)

xR
1 “ rR sinpθRq cospϕRq , xR

2 “ rR sinpθRq sinpϕRq , xR
3 “ rR cospθRq . (181)

Similarly as in Chapter 1, for r ď rS , the incident acoustic pressure is represented as

p̂incpx|xSq “
γ̂2
0Q̂

2π2

8
ÿ

n“0

p2n`1q ip1q
n pγ̂0rq knpγ̂0r

SqPnrcospx,xSqs , (182)

Here, ip1q
n p¨q and knp¨q are the nth order modified spherical Bessel functions of the first kind

and second kind, respectively.
Taking into account the causality condition for the reflected wave field, we write the reflected
wave field outside the scattering sphere as

p̂rflpx|xSq “
γ̂2
0Q̂

2π2

8
ÿ

n“0

p2n`1q Ân knpγ̂0rq knpγ̂0r
SqPnrcospx,xSqs . (183)

The wave field inside the sphere has to be bounded at r “ 0, hence, we write this interior
wave field as

p̂intpx|xSq “
γ̂2
0Q̂

2π2

8
ÿ

n“0

p2n`1q B̂n i
p1q
n pγ̂sctrq knpγ̂0r

SqPnrcospx,xSqs . (184)

The unknown expansion factors Ân and B̂n follow from the interface conditions at r “ a,
where the wave field and its radial derivative are continuous. This leads to

lim
rÓa

rp̂incpx|xSq ` p̂rflpx|xSqs “ lim
rÒa

p̂intpx|xSq , (185)

lim
rÓa

Brrp̂incpx|xSq ` p̂rflk px|xSqs “ lim
rÒa

Brp̂
int
k px|xSq . (186)

Substitution of the wave-field expressions into these interface conditions leads, for each n, to
the following set of equations:

ip1q
n pγ̂0aq ` Ân knpγ̂0aq “ B̂n i

p1q
n pγ̂sctaq , (187)

1

sρ0

”

Bri
p1q
n pγ̂0rq ` ÂnBrknpγ̂0rq

ı

r“a
“ B̂n

1

sρ̂sct
Br i

p1q
n pγ̂sctrq

ˇ

ˇ

ˇ

r“a
. (188)

✲
❄

O s
i2

i1

ρ0,κ0

ID
′

sct

▽

x
R

x
S

×

ρ̂sct, κ̂sct

IDsct

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
....
....
.....
......
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
......
.....
....
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

..........
........

.......
......
.....
.....
....
....
....
....
...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

..
..

..
..
..
...
...
.

....
....
....
.

......
.......

.............
..........................

.............

.............

.............

.....
.
.
.
.
.
.
.
.

 ✒

r=a

Figure 29: The 3D configuration with homogeneous sphere.

55

Solving these equations for the coefficients An and Bn leads to

Ân “ ´
Ẑ´1
sct Bip1q

n pγ̂sctaq ip1q
n pγ̂0aq ´ Z´1

0 Bip1q
n pγ̂0aq ip1q

n pγ̂sctaq

Ẑ´1
sct Bip1q

n pγ̂sctaq knpγ̂0aq ´ Z´1
0 Bknpγ̂0aq ip1q

n pγ̂sctaq
(189)

and

B̂n “
i
p1q
n pγ̂0aq ` Ân knpγ̂0aq

i
p1q
n pγ̂sctaq

, (190)

where Bi
p1q
n p¨q and Bknp¨q denote the derivatives of the functions ip1q

n p¨q and knp¨q with respect
to their arguments.
Substituting the reflection factors Ân in the expression for the reflected wave field of Eq. (183)
and taking x “ xR, we obtain

p̂rflpxR|xSq “
γ̂2
0Q̂

2π2

8
ÿ

n“0

p2n`1q Ân knpγ̂0r
Rq knpγ̂0r

SqPnrcospxR,xSqs . (191)

With this expression we are able to compute the synthetic data pertaining to the present
example of a domain scatterer. For the computation of the Bessel functions and the Legendre
polynomials we refer to the pertaining section of Chapter 1.
Similar as in Chapter 2, for r ď rS , we write the pressure of the incident wave field as the
infinite series

p̂incpxT |xS
T q “ γ̂0

Q̂

2π

8
ÿ

m“0

ϵm Impγ̂0rqKmpγ̂0r
Sq cosrmpϕ´ϕSqs , (192)

where ϵm “ 1 if m “ 0 and ϵm “ 2 if m ‰ 0. Here, Im and Km are the modified Bessel
functions of the first and second kind, and integer order m.
Taking into account the causality condition for the reflected wave field, we write the reflected
wave field outside the scattering cylinder as

p̂rflpxT |xS
T q “ γ̂0

Q̂

2π

8
ÿ

m“0

ϵmÂm Kmpγ̂0rqKmpγ̂0r
Sq cosrmpϕ´ϕSqs . (193)

The wave field inside the cylinder has to be bounded at r “ 0, hence, we write this interior
wave field as

p̂intpxT |xS
T q “ γ̂0

Q̂

2π

8
ÿ

m“0

ϵmB̂m Impγ̂sctrqKmpγ̂0r
Sq cosrmpϕ´ϕSqs . (194)

The unknown expansion factors Âm and B̂m follow from the interface conditions at r “ a,
where the pressure is continuous and the inverse of the mass density times the radial derivative
of the pressure is continuous. This leads to

lim
rÓa

rp̂incpxT |xS
T q ` p̂rflpxT |xS

T qs “ lim
rÒa

p̂intpxT |xS
T q , (195)

1

sρ0
lim
rÓa

Br r̂pincpxT |xS
T q ` p̂rflpxT |xS

T qs “
1

ŝρsct
lim
rÒa

Brp̂
intpxT |xS

T q . (196)

Substitution of the wave-field expressions into these interface conditions leads, for each m to
the following set of equations:

Impγ̂0aq ` Âm Kmpγ̂0aq “ B̂m Impγ̂sctaq , (197)
1

sρ0

”

BrImpγ̂0rq ` ÂmBrKmpγ̂0rq

ı

r“a
“

1

sρ̂sct
B̂m BrImpγ̂sctrq

ˇ

ˇ

ˇ

ˇ

r“a

. (198)

Solving these equations for the coefficients Am and Bm leads to

Âm “ ´
Ẑ´1
sct BImpγ̂sctaq Impγ̂0aq ´ Z´1

0 BImpγ̂0aq Impγ̂sctaq

Ẑ´1
sct BImpγ̂sctaqKmpγ̂0aq ´ Z´1

0 BKmpγ̂0aq Impγ̂sctaq
(199)

56

and
B̂m “

´

Impγ̂0aq ` Âm Kmpγ̂0aq

¯

{Impγ̂sctaq , (200)

where BImp¨q and BKmp¨q denote the derivatives of the functions Im and Km with respect to
their arguments. Substituting the factors Âm in the expression for the reflected wave field of
Eq. (193) and taking xT “ xR

T , we obtain

p̂rflpxR
T |xS

T q “ γ̂0
Q̂

2π

8
ÿ

m“0

ϵmÂm Kmpγ̂0r
RqKmpγ̂0r

Sq cosrmpϕR´ϕSqs . (201)

With this expression we are able to compute the synthetic data pertaining to the present
example of a domain scatterer.

End of excerpt from the book van den Berg (2017).

A Source and directory structure
/
Make_includeFile with system specific setting and can be adapted for specific Unix systems
MakefileControls the compilation and linking of the programs in the subdirectories
README
SU_LEGAL_STATEMENT.txt
binDirectory for the binaries compiled and linked using the Makefile
FFTlibLibrary for FFT transformation routines used by the programs
fdelmodcThis directory contains all source code for the program fdelmodc

FiguresPaperThe bash-script to generate the Figures from in Geophysics manuscript
demoBash-script which demonstrate the possibilities of fdelmodc

doc ..where you can find this manual
include ..Directory for the include file from the FFT library
lib ...Directory where the FFT library is placed
utilsAll source code for programs to generate models and wavelets can be found in here
/
bin/

basopExecutable for basic operations (shift, envelope, ..) on seismic data
extendModel Executable to extends the edges of a file with first and last trace and/or sample
fconvExecutable for auto-, cross-correlation, deconvolution or convolution computation
fdelmodcExecutable for elastic acoustic finite-difference wavefield modeling
greenExecutable for the calculation of 2D Greens function in homogeneous media
makemodExecutable for building gridded subsurface models
makewave ...Executable to generate wavelets

/include
genfft.h ...Include file for the FFT library

/lib
libgenfft.aLibrary which contains the objects of the FFT routines

/
fdelmodc/

Makefile controls the compilation and linking of the program fdelmodc
fdelmodc.h header file which defines structures used modeling
par.hheader file from SU for reading in program parameters
SUsegy.hadjusted segy header file, which defines ns as an integer
segy.h ..original segy header from SU
acoustic2.cKernel of acoustic FD using 2’nd order derivatives
acoustic4.cKernel of acoustic FD using 4’th order derivatives
acoustic6.cKernel of acoustic FD using 6’th order derivatives
applySource.cRoutine which adds source amplitude(s) to the wavefield grids
atopkge.c ... converts ascii to arithmetic from SU
CMWC4096.c .. random number generator

57

defineSource.ccomputes, or read from file, the source signature
docpkge.c ...function for self-documentation, from SU
elastic4.cKernel of elastic FD using 4’th order derivatives
fdelmodc.cmain FD modeling program, contains self-doc
fileOpen.c ...file handling routines to open SU files
gaussGen.cgenerate a Gaussian distribution of random numbers
getBeamTimes.cstores energy fields (beams) in arrays at certain time steps
getModelInfo.creads gridded model file to compute min/max and sampling intervals
getParameters.c reads in all parameters to set up a FD modeling
getRecTimes.cstores the wavefield at the receiver positions
getWaveletInfo.c reads source wavelet file and computes maximum frequency and sampling
getpars.c functions to get parameters from the command line, from SU
name_ext.cinserts a character string after the filename, before the extension
readModel.creads gridded model files and computes medium parameters used in the FD
kernels
recvPar.ccalculates the receiver positions based on the input parameters
spline3.ccomputes interpolation based on third order splines
taperEdges.ctapers the wavefield to suppress unwanted reflections from the edges
verbosepkg.cfunctions to print out verbose, error and warning messages to stderr
viscoacoustic4.cKernel of visco-acoustic FD using 4’th order derivatives
viscoelastic4.cKernel of visco-elastic FD using 4’th order derivatives
wallclock_time.cfunction used to calculate wallclock time
writeRec.cwrites the receiver array(s) to output file(s)
writeSnapTimes.cwrites gridded wavefield(s) at a desired time to output file(s)
writeSrcRecPos.cwrites the source and receiver positions into a gridded file
writesufile.c ..writes an 2D array to a SU file

/
fdelmodc/

FiguresPaper/ scripts to reproduce Figures in Thorbecke and Draganov (2011)
README briefly describes the runtimes of the scripts
clean removes all *.su *.bin *.txt *.eps in the current directory
Figure2.scr starts fdelmodc only to compute the source positions, 1 s.
Figure3.scrcalls Simple_model_base, and Simple_model_sides.scr, 122 hours!
Figure3_ref.scr direct modeled reference result Figure 3d, 500 s.
Figure4.scr5 different source signature lengths, 5x3.5 hours
Figure5.scrsimulates 8000 short (2.5 s) sources, 3.5 hours
Figure6.scr5 different number of random sources, 5x3.5 hours
Figure6f.scrmake postscript file of middle trace after Figure6.scr, 1 s.
Figure6length.scr ...alternative not used in paper, fixed source signature length, 5x3.5
hours
Figure7.scras Figure 6, but with 1000 deep sources, 3.5 hours
Figure7fmax.scr alternative not used in paper, varying maximum frequency, 5x3.5 hours
Figure7length.scr ...alternative not used in paper, fixed length deep sources, 3.5 hours
Figure8-9.scr for random and ricker wavelet deep, volume and plane sources, 6x3.5
hours
Figure8-9Hom.scr .. for reviewer, same as Fig. 8-9 in homogeneous medium, 6x3.5 hours
Figure10.scr .. reference and 2 SI results for visco-acoustic media, 2x200 s. + 2x1 hours
Figure11.scrcalls fdelmodc_long.scr, can not be reproduced; software in test phase
Figure12.scrcalls fdelmodc_amplitude.scr, can not be reproduced; software in test
phase
Figure13.scr amplitude variations on source strength, 3x1500 s.
Figure13Amp.scr computes only the amplitude distributions pictures, 5 s.
Figure14-15.scr receivers and source placed on model with topography, 161 hours
FigureSourcesAppendixA.scrsource construction shown in Figure A2-A3-A4, 150 s.
FigureGreenAppendixA.scr compares FD result with analytical result, used in Figure 23
FigureGreenDxAppendixA.scrdifference with analytical result, used in Figure 24

58

SIrand.scr middle trace is correlated with all the output traces to compute the SI result
Simple_model_base.scrmodels sequential 900 shots at level z “ 3600, 70 hours
Simple_model_sides.scrmodels sequential 2x360 shots at the sides x=1000,9000, 50
hours
fdelmodc_amplitude.scr ...models along recording on 3600 s. used in Fig 12, 100 hours
fdelmodc_long.scrmodels along recording on 3600 s. used in Fig 11, 100 hours
FigurePres.scrsnapshots for movie usage in presentation to explain SI, 2x800 s.
MakeGifMovie.scrattempt to make movie from FigurePres.scr snapshots, imageJ is
better
cross.scrcalls FigureCCsources.scr and compute cross-correlation used in Figure 12,
1600 s.
FigureCCsources.scr to compute source signature used in cross.scr, 1600 s.

/
fdelmodc/

demo/
clean removes all *.su *.bin *.txt *.eps in the current directory
eps_for_manual.scrthe results of fdelmodc_rand.scr in eps, used in Figure 8, 9, 10
fdelmodc_rand.scr ..generation of random source signatures placed at random positions
fdelmodc_srcrec.scrillustrates source and receiver positions, used in Figure 14
fdelmodc_taper.scrthe effect of (absorbing) tapering of the edges, used in Figure 6
fdelmodc_visco.scrwave propagation in visco-elastic medium, used in Figure 19
fdelmodc_circ.scr receivers placed on a circle, used in Figure21
fdelmodc_sourcepos.scrdifferent source distributions, used in Figure 20
fdelmodc_plane.scr plane wave at depth to receivers at the surface, including snapshots,
17
fdelmodc_stab.scr ...illustrates dispersion and instability in snapshots, used in Figure 3
fdelmodc_topography.scrsource and receivers on topography, used in Figure22
fdelmodc_obc.scrsame as fdelmodc_topography, but receivers on topography of
sea-bottom
model_flank.scrbuilds a steep flank model, used in fdelmodc_srcrec.scr

/
utils/

Makefile .. to compile and link the code
par.hheader file from SU for reading in program parameters
segy.h ..original segy header from SU
allocs.c ..allocate 2D arrays as pointer list
atopkge.c ... converts ascii to arithmetic from SU
basop.cmain program for basic operations on seismic data
diffraction.c insert diffractor in the model used, in makemod
docpkge.c ...function for self-documentation, from SU
elipse.c ...elipse shaped contrast used in makemod
extendModel.cmain program to extend the edges of a gridded model
fconv.c main program for auto-, cross-correlation, deconvolution or convolution computation
fractint.ccompute fractal shaped interface used in makemod
freqwave.ccompute wavelets in frequency domain, used in makewave
getFileInfo.c gets sizes, sampling and min/max values of a SU fil
getModelInfo.creads gridded model file to compute min/max and sampling intervals
getpars.c functions to get parameters from the command line, from SU
getrecpos.c ...read receiver positions used in green
green.cmain program for calculation of (exact) 2D Greens function in hom. medium
grid.cfills the gridded model below the interface zp used in makemod
gridabove.cfills the gridded model above the interface zp used in makemod
interpolation.c interpolates the interface defined by the input parameters to all grid points
linearint.ccompute piecewise linear interface used in makemod
makemod.cmain program of gridded subsurface model builder
makewave.cmain program for the generation of wavelets

59

http://rsbweb.nih.gov/ij/

name_ext.cinserts a character string after the filename, before the extension
plotexample.cprints an example parameter file for makemod
polint.ccompute polynominal shaped interface used in makemod
readData.creads SU file and returns header and 2D array
roughint.c compute rough shaped interface used in makemod
sinusint.ccompute sinus shaped interface used in makemod
spline.ccompute spline shaped interface used in makemod
verbosepkg.cfunctions to print out verbose, error and warning messages to stderr
wallclock_time.cfunction used to calculate wallclock time
writeData.c ..writes an 2D array to a SU file
xwgreen.c ..calculation of di/mono-pole response in 2D homogeneous medium used in green

B Differences in parameter use compared with DELPHI’s fdac-
mod

fdelmodc uses many similar parameters as the DELPHI application fdacmod. The differences are:

• acoustic modeling Ñ ischeme=1

• file_vel= Ñ file_cp=

• file_att= Ñ file_qp= or Qp=

• dipsrc=0 Ñ src_orient=1

• dipsrc=1 Ñ src_orient=2

• diprcv=0 Ñ rcv_type_p=1

• diprcv=1 Ñ rcv_type_vz=1

• xrcv= Ñ xrcva=

• zrcv= Ñ zrcva=

In fdelmodc there is no dxsrc dzsrc dxspread dzspread tapfact.

C Makewave
Makewave makes different types of waves which can be used as input wavelet for a modelling scheme.
Five type of wavelets can be defined, each type has is own set of characteristic parameters.

C.1 Parameters
makewave - generation of wavelets

makewave file= [optional parameters]

Required parameters:

file_out= output array-file (empty is SU pipe)

Optional parameters:

nt=256 number of samples
dt=0.004 stepsize in time-direction(s)
fmin=10 minimum frequency in wavelet(Hz)
flef=20 left attenuation point in freq. domain(Hz)

60

frig=50 right attenuation point in freq. domain(Hz)
fmax=60 maximum frequency in wavelet(Hz)
db=-20 attenuation at the maximum frequency fm in dB
fp=30 frequency peak in wavelet
t0=0.0 position of peak of wavelet
shift=0 shift wavelet until it's causal (overrides t0)
scale=1 1: sets value of maximum time-peak to scale
scfft=1 scale factor in fft^-1; 0-> 1/N, 1-> = df
cn=1 cn integer and 1 < cn < 3 (see Neidell)
cm=10 cm integer and 7 < cm < 25 (see Neidell)
w=g2 type of wavelet (g2 gives a Ricker Wavelet)
inverse=0 compute 1.0/(S(w)+eps)
eps=1.0 stabilization in inverse
verbose=0 silent option; >0 display info

Options for w :
- g0 = Gaussian wavelet
- g1 = derivative of a Gaussian wavelet
- g2 = second derivative of a Gaussian wavelet(=Ricker)
- sqrtg2 = sqrt of second derivative of a Gaussian wavelet(=Ricker)
- fw = wavelet defined by fmin, flef, frig and fmax
- mon = monochromatic wavelet defined by fp
- cs = suite of wavelets determined by cn and cm

(see Neidell: Geophysics 1991, p.681-690)

The parameters fmax or fp characterizes the wavelet. If both fmax and fp
are given fmax is used. For the Gaussian wavelet (w=g0) only the
parameter fmax has a meaning (the peak lies always at 0, fp=0).
Note that fmin, flef and frig are only used when the option fw is chosen.
If scale is chosen to be zero no scaling is done.

author : Jan Thorbecke : 27-09-1993 (janth@xs4all.nl)
product : Originates from DELPHI software

: revision 2010

The wavelets generated with makewave are

• g0: Gaussian wavelet

G0pfq “ expp´
f2

f2
p

q (202)

• g1: first derivative of a Gaussian wavelet

G1pfq “
f

?
2fp

expp´
f2

2f2
p

q (203)

• g2: second derivative of a Gaussian wavelet

G2pfq “
f2

f2
p

expp´
f2

f2
p

q (204)

• fw: flat wavelet spectrum

FW pfq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 f ă fmin

cospπ ˚
f´fmin

fmin´flef
q ` 1.0q{2.0; fmin ď f ă flef

1 flef ă f ă frig

cospπ ˚
f´frig

fmax´frig
q ` 1.0q{2.0; frig ď f ă fmax

0 f ą fmax

. (205)

61

where fp is the peak in the spectrum of the wavelet. If both fmax and fp are given fmax is used. For the
Ricker wavelet (w=g2) a frequency peak is most convenient to choose. For the Gaussian wavelet (w=g0)
only the parameter fmax has a meaning, because the peak lies always at fp=0. Note that fmin, flef and
frig are only used when the option fw is chosen.
If shift=1 then a time shift is calculated in such a way that the t=0 sample has a value smaller than 1e-3.

62

0 0.05 0.10 0.15 0.20
time

0

0.5

1.0

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0

10

20

am
pl

itu
de

a) G0 wavelet

0 0.05 0.10 0.15 0.20
time

-1

0

1

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0

10

20

am
pl

itu
de

b) G1 wavelet

0 0.05 0.10 0.15 0.20
time

0

1

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0

10

20

am
pl

itu
de

c) Ricker (G2) wavelet

0 0.05 0.10 0.15 0.20
time

0

100

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0.5

1.0
am

pl
itu

de

d) flat-spectum wavelet

0 0.05 0.10 0.15 0.20
time

0

0.5

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

10

20

am
pl

itu
de

e) ’sqrt-of-G2’ wavelet

0 0.05 0.10 0.15 0.20
time

-0.2

0

0.2

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

0

200

400

600

am
pl

itu
de

f) monochromatic wavelet

0 0.05 0.10 0.15 0.20
time

0

0.5

1.0

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
frequency

10

am
pl

itu
de

g) cs wavelet

Figure 30: Time and amplitude spectrum of the wavelet types generated by the program makewave.

63

A weak vertical line in the zero-offset receiver recording of Vx and Vz components can be observed if a G1

wavelet is chosen. This vertical line is caused by the shape of the input wavelet. In fdelmodc the wavelet
is integrated over time (see section 6.5 in the manual) and causes a G1 wavelet to become a wavelet with
only positive values. This is not a physical source and the modelling scheme can not completely deal
with that correctly. See also ”Numerical Techniques for Conservation Laws with Source Terms” by Justin
Hudson. To overcome the problems with the G1 wavelet you can set src_injectionrate=1.

C.2 Examples
A simple example of a Ricker wavelet (g2) with a maximum frequency of 60 Hz (-20dB attenuation), a
time sampling rate of 0.004 seconds and a time shift calculated by the program is obtained by typing:

makewave shift=1 verbose=1 | suxgraph
makewave shift=1 verbose=1 | sufft | suamp | suxgraph

The script in utils/demo/wavelet.scr reproduces the wavelets in Figure 30.

D Makemod
This program genererates 2D gridded velocity and density files based on user defined interfaces. The
interfaces are defined by several px, zq points. Through these points a linear, a polynomial or a splined
curve is calculated in order to define the whole range of x positions between the minimum and maximum
defined x positions. A sinusoidal or rough interface can be superpositioned on this defined interface. The
sinusoidal and rough interface variations are defined by some extra parameters.
The subsurface files makemod generates can be used in a migration or finite difference program. As a
result three (or two for the acoustic case) SU files are produced with extensions _cp.su, _cs.su and
_ro.su.

D.1 Parameters
makemod - gridded subsurface model builder

makemod file_base= cp0= sizex= sizez= dx= dz= [optional parameters]

Required parameters:

file_base= base name of the output file(s).
cp0= Cp for background medium.
sizex= x-size of the model in meters.
sizez= z-size of the model in meters.
dx= grid distance in x in meters.
dz= grid distance in z in meters.

Optional parameters:

orig=0,0 (x,z) origin at the top left corner of the model.
MEDIUM
cs0=0 Cs for background medium (0 is none).
ro0=0 Rho for background medium (0 is none).
gradt=1 type of boundary gradient (1=linear, 2=cos)
cp=none P-wave velocities below the interface
cs=none S-wave velocities below the interface
ro=none Density below the interface
above=0 define model below interface

=1: define model above interface
INTERFACE
intt=none Type of interface

64

var=none variables to describe the interface
grad=0.0 gradient(m) of the boundary
gradunit=0 gradient unit (m/s per gradunit)
gradcp=0.0 gradient(m/s per grad-unit) in the layer
gradcs=0.0 gradient(m/s per grad-unit) in the layer
gradro=0.0 gradient(kg/m3 per grad-unit) in the layer
poly=0 polynominal interpolation through (x,z) points
x=none x-positions for the interface
z=none z-positions for the interface
dtype=0 diffractor type for diffr and randdf

OUTPUT
writeint=0 interfaces as function of x (ext: _int)
rayfile=0 interfaces as function of x in ASCII file.mod
skip=5 number of x position to skip in file_ray
example=0 makes an example parameter file
verbose=0 silent option; >0 display info

Options for intt:
- def = default interface through the points(Xi, Zi)
- sin = sinus shaped interface
- rough = rough interface with beta(smoothness)
- fract = cosinus fractal shaped interface
- random = define random velocities in layer
- elipse = define elipse shaped body
- diffr = point diffractions
- randdf = define random diffractors

Options for var in case of intt =:
- sin(2) = wavelength,amplitude
- rough(3) = amplitude,beta,seed
- fract(6) = Nsinus,amplitude,dim,k0,freqscale,seed
- random(1) = min-max variation around cp
- elipse(2) = r1, r2: vertical and horizontal radius
- diffr(1) = width of each point, type(optional)
- randdf(2) = number of points, width of each point

Options for poly in default interface:
- 0 = linear
- 1 = polynomal
- 2 = cubic spline

Options for dtype value in var=width,dtype for diffr:
- -1 = random (0, 1, or 2) diffractor type
- 0 = cubic diffractor
- 1 = diamond diffractor
- 2 = circular diffractor

Option for gradunit, gradient unit per layer:
- 0 = gradient unit per layer is m/s per dz (default)
- 1 = gradient unit per layer is m/s per m

makemod builds a gridded subsurface file which can be used in a migration
or finite difference program. The gridded model is stored in files with
extensions _cp, _cs, _ro. The extensions _int and .mod are used for the
interface files. The output format of the file(s) depends on the .(dot)
extension of file_base.

author : Jan Thorbecke : 18-01-1994 (janth@xs4all.nl)
product : Originates from DELPHI software

: revision 2010

65

If the parameter grad is omitted then there is no gradient calculated. Not defining the parameter poly
will give stepwise linear interfaces. The rough interface is defined by an amplitude, a seed value for the
random generator and beta. The parameter beta defines the roughness of the interface for beta=1.0 a
very rough interface is defined while beta=3.0 gives a smooth interface. The interface is calculated by
using the equation(after: Korvin, G., 1992, Fractal models in earth sciences, Elsevier, Amsterdam)

Spxq “ F´1
␣

k´2β´1
x

(

The fractal interface is defined by 6 parameters The number of sinuses, amplitude, the fractal dimension
D (1 < D < 2), the fundamental spatial wavenumber k0, the spatial frequency scaling paramater b and
a seed value for the random generator. The interface is calculated by using the equation

frpxq “ σC
N
ÿ

n“0

pD ´ 1qn sin pk0b
nx ` ϕnq

with D: roughness fractal parameter D = 1 smooth periodic curve D = 2 rough areaifilling curve σ: rms
height b: frequency scaling (b>1) N: number of tones with

C “
2Dp2 ´ Dqq

r1 ´ pD ´ 1q2N s

1
2

such that σ is rms height. The given equation is an approximation of a fractal surface, with good control
over the wavenumber content (Jaggard, D.L. and Sun, X., 1990, Scattering from fractally corrugated
surfaces, Journal of the Optical Society of America, Vol. 7, p. 1131-1139.).
Vertical and horizontal gradients can be defined in the model.
For an example of the different possibilities in makemod see the example subsection. Special attention
is given to the implementation of a lateral velocity gradient. If the user gives only one cp value for
each interface a homogeneous layer is calculated. Two values defines a lateral velocity gradient form
the mininum x-position with the first value to the maximum x-position with the last value. For more
complicated lateral gradients the user has to define for every x,z position the medium parameters (cp
(cs) and ro). For more complicated medium changes it is also possible to define a lateral and vertical
gradient together.

D.2 Examples
By typing makemod example=1 ą parmodel a sample file is generated which contains all type of interface
definitions. Typing makemod par=parmodel generates the subsurface files example_cp.su, example_cs.su
and example_ro.su.

E fdemmodc
The program fdemmodc uses the same scheme as the acoustic mode of fdelmodc. For fdelmodc the
linearized equation of motion (Newton’s second law) and equation of deformation (Hook’s law) are given
by:

BVx

Bt
“ ´

1

ρ

BP

Bx
, (206)

BVz

Bt
“ ´

1

ρ

BP

Bz
, (207)

BP

Bt
“ ´

1

κ
t

BVx

Bx
`

BVz

Bz
u. (208)

In fdemmodc the electromagnetic field propagation equations are
BHz

Bt
“ ´

1

µ0

BEy

Bx
, (209)

BHx

Bt
“ ´

1

µ0

BEy

Bz
, (210)

BEy

Bt
“ ´

1

ε
t

BHz

Bx
`

BHx

Bz
u ` kσEy, (211)

66

with

µ0 “ 4.0 ˚ π ˚ 10´7 a constant, (212)
c0 “ 299792458.0 a constant, (213)

ε0 “
1

µ0 ˚ c2o
a constant, (214)

ε “ εr ˚ ε0 a constant. (215)

The input medium files in fdemmodc are file_er (“ εr) and file_ks (“ kσ).

References
Alford, R., Kelly, K., and Boore, D. (1974). Accuracy of �nite-difference modeling of the acoustic wave

equation. Geophysics, 39(6):834–842.

Bauer, A. L., Loubère, R., and Wendroff, B. (2008). On stability of staggered schemes. SIAM J. Numer.
Anal., 46(2):996–1011.

Berkhout, A. J. (1987). Applied seismic wave theory. Elsevier, Amsterdam.

Bohlen, T. (2002). Parallel 3-d viscoelastic �nite difference seismic modelling. Computer and Geosciences,
28:887–899.

Chew, W. C. and Liu, Q. H. (1996). Perfectly matched layers for elastodynamics: A new absorbing
boundary condition. Journal of Computational Acoustics, pages 341–359.

Courant, R., Friedrichs, K., and Lewy, H. (1967). On the partial difference equations of mathematical
physics. IBM Journal, English translation of the 1928 German original, pages 215–234. Available as
download http://www.stanford.edu/class/cme324/classics/courant-friedrichs-lewy.pdf.

Drossaert, F. H. and Giannopoulos, A. (2007). A nonsplit complex frequency-shifted pml based on
recursive integration for fdtd modeling of elastic waves. Geophysics, 72(2):T9–T17.

Fornberg, B. (1988). Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of
Computation, 51(184):699–706.

Pérez-Ruiz, J. A., Luzón, F., and García-Jerez, A. (2005). Simulation of an irregular free surface with
a displacement finite-difference scheme. Bulletin of the Seismological Society of America, 95(6):2216–
2231.

Robertsson, J. O. A. (1996). A numerical free-surface condition for elastic/viscoelastic finite-difference
modeling in the presence of topography. Geophysics, 61:1921–1934.

Robertsson, J. O. A., Blanch, J. O., and Symes, W. W. (1994). Viscoelastic finite-difference modeling.
Geophysics, 59(09):1444–1456.

Saenger, E. H. and Bohlen, T. (2004). Finite-difference modeling of viscoelastic and anisotropic wave
propagation using the rotated staggered grid. Geophysics, 69(2):583–591.

Sei, A. (1995). A family of numerical schemes for the computation of elastic waves. SIAM J. Sci. Comput.,
16(4):898–916.

Sei, A. and Symes, W. (1995). Dispersion analysis of numerical wave propagation and its computational
consequences. Journal of Scientific Computing, 10(1):1–27.

Thorbecke, J. and Draganov, D. (2011). Finite-difference modeling experiments for seismic interferometry.
Geophysics, 76(6):H1–H18.

van den Berg, P. M. (2017). Forward and Inverse Scattering Algorithms Based on Contrast Source Integral
Equations. in preparation.

67

http://www.stanford.edu/class/cme324/classics/courant-friedrichs-lewy.pdf

van Vossen, R., Robertsson, J. O. A., and Chapman, C. (2002). Finite-difference modeling of wave
propagation in a fluid-solid configuration. Geophysics, 67(2):618–624.

Virieux, J. (1986). P-Sv wave propagation in heterogeneous media - Velocity-stress finite-difference
method. Geophysics, 51(04):889–901.

Wapenaar, K. (1998). Reciprocity properties of one-way propagators. Geophysics, 63(4):1795�1798.

68

	Getting Started
	Installation
	Compilation and Linking
	Running examples

	Introduction to Finite-Difference
	Finite-difference algorithm
	Stability and Dispersion

	Acoustic
	Staggered scheme

	Visco-Acoustic
	Elastic
	Visco-Elastic
	Parameters in program fdelmodc
	Modelling parameters
	Medium parameters
	Boundaries
	Recursive Integration PML: acoustic
	Complex frequency shifted RIPML: acoustic

	Source signature parameters
	Source type and position parameters
	Source type
	Source positions

	Receiver, Snapshot and Beam parameters
	Receiver, Snapshot and Beam type
	Receiver positions
	Interpolation of receiver positions
	Snapshots and Beams

	Verbose

	Examples to run the code
	Example for plane waves: fdelmodc_plane.scr
	Example for viscoelastic media: fdelmodc_visco.scr
	Example for different source distributions: fdelmodc_sourcepos.scr
	Example with receivers on a circle: fdelmodc_circ.scr
	Example with topography: fdelmodc_topgraphy.scr
	Example verification with analytical results: FigureGreenDxAppendixA.scr
	Acoustic
	Elastic

	Verification with Scattered field of a cylinder
	1D scattering by a slab
	2D scattering by a circular cylinder
	3D scattering by a sphere

	Source and directory structure
	Differences in parameter use compared with DELPHI's fdacmod
	Makewave
	Parameters
	Examples

	Makemod
	Parameters
	Examples

	fdemmodc

